首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two proteins (A and B) from Escherichia, coli are required for in, vitro synthesis of the NAD+ precursor, quinolinate, from L-aspartate and dihydroxyacetone phosphate. The requirement for B protein and L-aspartate in this system can be replaced by millimolar concentrations of oxaloacetate and ammonia if they are added together. This finding supports the concept that the B protein (L-aspartate oxidase) functions to form iminoaspartate which is condensed with dihydroxyacetone phosphate by the A protein to form quinolinate.  相似文献   

2.
The effects of the inhibitors trimethylacetyl phosphate and cAMP have been determined in reactions catalyzed by d-glyceraldehyde-3-phosphate dehydrogenase. These inhibitors must influence the oxidation of aldehydes through substrate dependent co-operative conformational changes. Both trimethylacetyl phosphate and cAMP give sigmoidal 1V vs (I) plots in oxidation of glyceraldehyde 3-phosphate, but exert linear competitive effects on the acyl phosphatase site in acylation reactions of β-(2-furyl) acryloyl phosphate. The linear inhibition in the latter reactions indicates that one inhibitor molecule is bound per active site. Hydride transfer to NAD+ is the ratedetermining step in oxidation of benzaldehyde to an acylenzyme, as shown by the threefold decrease in Vmax without change in Km when 1-deuterobenzaldehyde is the substrate; it is very likely this step that is affected by acyl phosphate inhibitors. Plots of 1V vs cAMP concentration for oxidation of benzaldehyde at a series of trimethylacetyl phosphate concentrations are parallel at concentrations of acyl phosphate less than 0.00625 m, which demonstrates that binding of the inhibitors is mutually exclusive. However, at higher concentrations of trimethylacetyl phosphate, the slopes are affected, which shows that both inhibitors are then binding. Thus, the binding of high concentrations of acyl phosphate must result in a conformational change of the enzyme that permits binding of both inhibitors. A number of conformations with different kinetic properties are formed with the various substrate and inhibitor combinations. In reactions of muscle d-glyceraldehyde-3-phosphate dehydrogenase, binding of these inhibitors is best explained in terms of induced fit and a sequential model of conformational changes.  相似文献   

3.
Antrycide and ethidium bromide — 2 cationic trypanocides — inhibited NAD-linked α-glycerophosphate dehydrogenase from Leptomonas sp. The kinetics of enzyme inhibition was determined by Lineweaver-Burk, Dixon, or direct linear plots. Inhibition by Antrycide was noncompetitive for dihydroxyacetone phosphate in the presence of saturating Mg2+ or spermidine. With dihydroxyacetone phosphate at saturation, Antrycide inhibition was also noncompetitive with respect to Mg2+ (Ki = 115 μM) and spermidine (Ki = 85 μM). Inhibition by ethidium in the presence of saturating dihydroxyacetone phosphate, was noncompetitive for Mg2+ (Ki = 400 μM) but mixed for spermidine (Ki = 495 μM); inhibition was noncompetitive for dihydroxyacetone phosphate in the presence of saturating Mg2+ or spermidine. Rabbit-muscle α-glycerophosphate dehydrogenase was inhibited at all concentrations of Antrycide and ethidium tested, but the Leptomonas enzyme was stimulated up to 3.5-fold by low concentrations of inhibitors in the absence of polyamine. New chemotherapeutic possibilities may thus be opened and an evolutionary distinction between trypanosomatid and mammalian enzyme.  相似文献   

4.
Penicilliumcharlesii incorporates 3H or 14C from 3H- or 14C-labeled ethanolamine into an -alkali soluble, alcohol -insoluble fraction obtained from cell walls. Dansyl ethanolamine was isolated from this alcohol-insoluble fraction following dansylation and hydrolysis. The alcohol-insoluble material was non-dialyzable and contained galactofuranosyl, glucosyl, phosphoryl, amino acyl and variable quantities of uronosyl residues. The lack of detectable quantities of mannosyl residues in this material suggests that the galactofuranosyl-containing cell wall polymer is distinct from the peptidophosphogalactomannan which is obtained from culture filtrates of P. charlesii (Gander etal., (1974) J. Biol. Chem. 249, 2063).  相似文献   

5.
Experiments were performed with intact chloroplasts and leaf cell protoplasts isolated from spinach. The light-dependent decrease in (H+) in the chloroplast stroma counteracts carbon reduction and is offset at low light intensities by a large decrease in NADP and a significant increase in [ATP][ADP] ratios. Excess accumulation of NADPH and/or ATP permits 3-phosphogly cerate reduction to occur. With increasing light intensity, NADP levels and [ATP][ADP] ratios increased. High rates of photosynthesis were observed at high and at low [ATP][ADP] ratios. Levels of dihydroxyacetone phosphate were dramatically increased in the light. In chloroplasts, this permitted conversion to ribulose bisphosphate which on carboxylation yields 3-phosphoglycerate. The light-dependent alkalization of the chloroplast stroma is known to be responsible for phosphogly cerate retention in the chloroplasts. A high chloroplast ratio of phosphogly cerate to dihydroxyacetone phosphate aids carbon reduction. Measured ratios of dihydroxyacetone phosphate to phosphogly cerate were averages between low chloroplast ratios and high cytosolic ratios. They were far higher, even under low-intensity illumination, than dark ratios. Since cytosolic NADH levels are known to increase much less in the light than cytosolic dihydroxyacetone phosphate levels, the large increase in the ratio of didydroxyacetone phosphate to phosphogly cerate must considerably increase cytosolic phosphorylation potentials even at very low light intensities. It is proposed that this increase is communicated to the mitochondrial adenylate system, and inhibits dark respiratory activity, giving rise to the Kok effect. The extent of stroma alkalization, the efficiency of metabolite shuttles across the chloroplast envelope, and rates of cytosolic ATP consumption are proposed to be factors determining whether and to what extent the Kok effect can be observed. Light activation of chloroplast enzymes was slow at low and fast at high light intensities. This contrasts to low NADP levels at low and usually higher levels at high light intensities. Maximum enzyme activation was observed far below light saturation of photosynthesis, and light activation of enzymes was often less pronounced at very high than at intermediate light intensities.  相似文献   

6.
2-Hydroxymethyl-4-nitrophenyl trimethylacetate is rapidly converted, by an intramolecular pathway, to its benzyl ester counterpart in aqueous solutions of dilute buffers. Intramolecular acyl migration is favored by a factor of 105 over intermolecular transfer of the trimethylacetyl group to surrounding water molecules. The activation parameters of the reaction demonstrate that the rate acceleration is primarily entropic in origin. At constant pH, the apparent first-order rate constant for intramolecular acyl migration displays a linear dependence on the concentration of the basic component of the buffer. For catalysis by imidazole, a solvent deuterium isotope effect of kHkD = 2.4 is observed, in accord with a general base-catalyzed pathway. Similarities between intramolecular and intracomplex transacylations are discussed with the conclusion that the migration of a trimethylacetyl group from the phenolic oxygen atom of a 2-hydroxymethyl-4-nitrophenol to the adjacent benzylic oxygen atom provides an accurate model for acylation of the serine hydroxyl group at the active site of α-chymotrypsin by nitrophenyl esters.  相似文献   

7.
A low molecular weight protein of less than 10, 000 Daltons has been isolated from Subunit I (β-ketoacyl thioester reductase) of the pigeon liver fatty acid synthetase complex and purified to homogeneity. This protein contains all of the [14C]-labeled pantetheine incorporated into the fatty acid synthetase on injection of [14C]-labeled pantetheine into pigeons. It also has one β-alanine and one sulfhydryl group. This protein is an acceptor of an acetyl group from acetyl-CoA and a malonyl group from malonyl-CoA in the presence of Subunit II (transacylase). In these respects it is very similar to E. coli acyl carrier protein.  相似文献   

8.
Two proteins (A and B) from Escherichia coli are required for the synthesis of the NAD precursor quinolinate from aspartate and dihydroxyacetone phosphate. Mammalian liver contains a FAD linked protein which replaces E. coli B protein for quinolinate synthesis. D-aspartic acid but not L-aspartic acid is a substrate for quinolinic acid synthesis in a system composed of the B protein replacing activity of mammalian liver and E. coli A protein. In contrast the E. coli B protein-E. coli A protein quinolinate synthetase system requires L-aspartic acid as substrate. The previous report that L-aspartate was a substrate in the liver-E. coli system was due to contamination of commercially available [14C]L-aspartate with [14C]D-aspartate. These and other observations suggest that liver B protein is D-aspartate oxidase and E. coli B protein is L-aspartate oxidase.  相似文献   

9.
Dipalmitoyl-3-sn-phosphatidylcholine is specifically deuterated at the C-2 position of the fatty acyl chains. Using deuterium magnetic resonance it is then possible to probe the chain conformation in the vicinity the polar head groups. Three separate quadrupole splittings are observed for bilayers of 1,2[2′-2H2] palmitoyl-3-sn-phosphatidylcholine, indicating that the two chains behave differently. The synthesis of phosphatidylcholines each deuterated in only one chain allows the assignment of the three resonances. It is concluded that the beginnings of the two chains have orientations parallel and perpendicular to the bilayer normal. The data further suggest the possibility of two long-lived conformations of the glycerol constituent.  相似文献   

10.
The composition of the C-terminal end of a variant surface glycoprotein from Trypanosoma equiperdum (BoTat-1 VSG) has been examined. It has been reported for two Trypanosoma brucei VSGs (Holder, A.A., Biochem. J. (1983), 209, 261–262) that ethanolamine was involved in binding the C-terminal amino acid to an oligosaccharide side chain. Tryptic glycopeptides were prepared from BoTat-1 VSG and analyzed. One of them was found to contain ethanolamine and consequently was assumed to be C-terminal. It was shown that the glycopeptide also included phosphate, glycerol and fatty acids. The fatty acid composition was representative of that of glycerolipids. All the results suggest that the end of the molecule is a core of phosphatidylethanolamine.  相似文献   

11.
Illumination of isolated type A spinach chloroplasts causes a rapid increase in their activity of fructosebisphosphatase, as assayed at physiological substrate and Mg2+ concentrations. Activation is accelerated by addition of dihydroxyacetone phosphate to the chloroplasts and decreased by inorganic phosphate concentrations greater than those optimal for CO2 fixation. At all times, measured fructosebisphosphatase activity was greater than was necessary to account for the observed rates of CO2 fixation. Activation of purified fructosebisphosphatase in vitro by dithiothreitol or reduced thioredoxin is extremely slow, but is greatly accelerated in the presence of physiological concentrations of Mg2+ and fructosebisphosphate if Ca2+ ions are present. Increased concentrations of fructosebisphosphate greatly increase the rate and extent of activation whereas in the absence of fructosebisphosphate Ca2+ ions have no effect. Neither inorganic phosphate nor dihydroxyacetone phosphate significantly affect the rate of activation. Ca2+ ions strongly inhibit the activity of the activated form of fructosebisphosphatase. It is proposed that free Ca2+ ions within chloroplasts are involved in preventing fructosebisphosphatase from functioning in the dark, and that free and/or bound Ca2+ facilitates the rapid reductive activation of this enzyme when the light is turned on again.  相似文献   

12.
There was a decrease in the polarisation value of the fluorescent probe diphenylhexatriene in a wide range of purified plasma and subcellular membranes of obese (obob) mice. These changes were consistent with alterations in the fatty acyl chain content of specific membrane phospholipids. An increase in 22:6 and a loss of 18:2 in phosphatidyl ethanolamine was the major compositional change in adipocyte plasma membranes of obob mice.  相似文献   

13.
14.
Rates of phosphatidate synthesis from dihydroxyacetone phosphate via acyl dihydroxyacetone phosphate or glycerol phosphate are compared in homogenates of 13 tissues, most of which are deficient in glycerol phosphate dehydrogenase (EC 1.1.1.8). In all tissues examined, dihydroxyacetone phosphate entered phosphatidate more rapidly via acyl dihydroxyacetone phosphate than via glycerol phosphate. Tissues with a relatively low rate of phosphatidate synthesis via glycerol phosphate, showed no compensating increase in the rate of synthesis via acyl dihydroxyacetone phosphate. The rates at which tissue homogenates synthesize phosphatidate from dihydroxyacetone phosphate via glycerol phosphate increase as glycerol phosphate dehydrongenase increase. Both glycerol phosphate dehydrogenase and glycerol phosphate: acyl CoA acyltransferase (EC 2.3.1.15) are more active than dihydroxyacetone phosphate : acyl CoA acyltransferase (EC 2.3.1.42). Thus, all the tissue homogenates possessed an apparently greater capability to synthesize phosphatidate via glycerol phosphate than via acyl dihydroxyacetone phosphate, but did not express this potential. This result is discussed in relation to in vivo substrate limitations.  相似文献   

15.
The fatty acid of acyl dihydroxyacetone phosphate can be exchanged enzymatically for another fatty acid. It has been shown that this reaction proceeds by cleavage of the oxygen bound to C-1 of the dihydroxyacetone phosphate (DHAP) moiety rather than by the more common cleavage at the acyl to oxygen bond. In the present study, the stereochemistry of this reaction was defined further; using deuterated substrates and fast atom bombardment-mass spectrometry, it was shown that the fatty acid exchange involves the stereospecific labilization of the pro-R hydrogen at C-1 of the DHAP moiety of acyl DHAP. The mechanism of ether bond formation, in which acyl DHAP is converted to O-alkyl DHAP, also proceeds via labilization of the pro-R hydrogen and cleavage of the fatty acid at the C-1 to oxygen bond. In addition, other workers have provided evidence that the enzyme responsible for the exchange reaction is O-alkyl DHAP synthetase. Therefore, the present results support the hypothesis that the acyl exchange is the reverse reaction of the first step in O-alkyl DHAP synthesis; in both of these reactions the pro-R hydrogen of C-1 of the DHAP moiety of acyl DHAP and the fatty acid moiety are labilized with cleavage of the fatty acid at the DHAP C-1 to oxygen bond.  相似文献   

16.
Haloacetol phosphates as affinity labels for methylglyoxal synthase   总被引:1,自引:0,他引:1  
3-Bromo- and 3-iodoacetol phosphates irreversibly inactivate methylglyoxal synthase. The substrate, dihydroxyacetone phosphate, and inorganic phosphate protect against the inhibition. Although the 3-chloro derivative does not inactivate the enzyme, it is a competitive inhibitor. Reduction of the enzyme-inactivator complex with [3H]-NaBH4 indicates the incorporation of four haloacetol phosphates per mole of enzyme. These studies suggest the bromo- and iodoacetol phosphates inactivate the enzyme by reacting with a nucleophilic group located in the active center.  相似文献   

17.
NAD-linked α-glycerophosphate dehydrogenase plays a key role in the α-glycerophosphate cycle of Trypanosoma brucei. The activity in cell lysates was ample for this role. The enzyme was activated by salts (e.g. MgCl2 or NaCl); it had a broad pH-optimum for the reduction of dihydroxyacetone phosphate centred at pH 7.4, with an apparent Km of 0.5 mM; and it was weakly bound to particulate components of cell lysates. The enzyme from T. vivax was similar to that of T. brucei. These trypanosomal enzymes resemble that of the trypanosomatid Crithidia fasciculata, but are rather different from the enzymes of mammals, birds and insects.  相似文献   

18.
d-Glyceraldehyde stimulated the release of insulin from pancreatic islets of Umeå-obob-mice whether or not glucose was present in the medium. Like the action of glucose, that of d-glyceraldehyde was biphasic in time, exhibited a sigmoidal dose-response relationship, was potentiated by theophylline, arginine, iodoacetamide, or l-glyceraldehyde, and was inhibited by epinephrine, 2,4-dinitrophenol, or Ca2+ deficiency. Half-maximum and maximum stimulations were produced by about 3 mm and 10 mm d-glyceraldehyde. Positive interactions were observed between 5 mm d-glyceraldehyde and 5 mm glucose and between 10 mm d-glyceraldehyde and 10 mm leucine. Mannoheptulose (10 mm) or glucosamine (10 mm) did not inhibit but potentiated the effect of 10 mm d-glyceraldehyde. Dihydroxyacetone (2.5–20 mm) also initiated insulin release in the absence of glucose. On the other hand, 5–10 mm l-glyceraldehyde did not initiate secretion but potentiated the effects of 5 mm glucose or 5 mm d-glyceraldehyde. d-Glyceraldehyde or dihydroxyacetone reduced the production of 14CO2 from d-[U-14C]glucose; l-glyceraldehyde had a smaller and statistically insignificant effect. The results suggest that by being phosphorylated and entering glycolysis in the β-cells, d-glyceraldehyde and dihydroxyacetone act as functional analogues of glucose as secretory stimulus. Initiation of insulin release by glucose, d-glyceraldehyde, or dihydroxyacetone may thus depend on the production of a metabolic signal at or below the triose phosphate level.  相似文献   

19.
Escherichia coli contains two proteins (A and B) which together convert dihydroxyacetone phosphate and aspartate to quinolinic acid, a precursor of NAD. Although mammalian liver homogenate does not catalyze this reaction it contains a protein which will replace the B protein of the E. coli system. The behavior of the liver protein on Sephadex G-75 suggests it is much smaller than the E. coli B protein. Liver B protein also appears to contain tightly bound FAD while FAD is easily removed from the E. coli B protein. The pH optimum for the hybrid system E. coli A protein-liver B protein is 9.0 while in the pure E. coli system the optimum is pH 8.0. The hybrid system is inhibited by NAD to the same extent as the pure E. coli system.  相似文献   

20.
The adenine nucleotide translocase, the transport protein for ADP and ATP, located in the inner mitochondrial membrane is an important site for the regulation of cell metabolism. Inhibition of the adenine nucleotide translocase by long chain fatty acyl CoA esters demonstrated invitro may also occur invivo when the complete oxidation of fatty acids by the myocardium has been compromised during ischemia. Reversal of this biochemical lesion may be of benefit in the preservation of the ischemic myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号