首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete primary structure of the two major hemoglobin components of sperm whale (Physeter catodon) is presented. The major components A and B account for 55% and 40% respectively whereas the minor component constitutes for 5% of the total hemoglobin. The globin chains were separated on CM-Cellulose in 8M urea buffer. The sequence was determined by automatic Edman degradation of tryptic and hydrolytic peptides in a liquid phase sequencer. Alignment of the sequence with human hemoglobin shows 22 exchanges each for the alpha I and alpha II and 21 exchanges for the beta I and beta II chains. Within the two beta-chains three differences have been located, beta NA2 His/Gln, beta A2 Gly/Ala and beta A8 Leu/Val. The two alpha-chains are characterized by heterogeneities at position alpha A8 Val/Ile or Ala/Ile (ratio of the phenylthiohydantoin derivatives of the amino acids 1:1) and alpha AB1 Asn/Ser (ratio of the phenylthiohydantoin derivatives of the amino acids 6:4). The role of these exchanges in modulating oxygen affinity is discussed.  相似文献   

2.
The amino acid sequence of the alpha and beta chains from the major hemoglobin component (HbA) of Australian Magpie Goose (Anseranas semipalmata) is given. The minor component with the alpha D chains was detected, but only found in low concentrations. By homologous comparison, Greylag Goose hemoglobin (Anser anser) and Australian Magpie Goose alpha chains differ by 13 amino acids or 17 nucleotide (4 two point mutations) exchanges, beta chains by 6 exchanges. Seven alpha 1 beta 1 contacts are modified by substitutions in positions alpha 30-(B11)Glu leads to Gln, alpha 34(B15)Thr leads to Gln, alpha 35(B16)-Ala leads to Thr, alpha 36(B17)Tyr leads to Phe, beta 55(D6)Leu leads to Ile, beta 119(GH2)Ala leads to Ser and beta 125(H3)Glu leads to Asp. Further, one alpha 1 beta 2 contact point was changed in beta 39(C5)Gln leads to Glu. Mutation in this position, except in two abnormal human hemoglobins, was not found in any species. Amino acid exchanges between hemoglobin of Australian Magpie Goose and other birds are discussed.  相似文献   

3.
The complete primary structure of the two hemoglobin components of the Great Indian Rhinoceros (Rhinoceros unicornis) is presented. The ratio for the two components B(alpha 2 beta I2): A(alpha 2 beta II2) is 6:4. Polypeptide subunits were separated by chromatography on CM-cellulose in a buffer containing 8M urea. The sequence was studied by degradation of the tryptic and hydrolytic cleavage products in a liquid phase sequencer. At position beta NA2 component B has Asp, whereas component A has Glu, an ATP-binding site in fish and reptilian hemoglobins. The other phosphate binding sites i.e. beta NA1 Val, beta EF6 Lys and beta H21 His are identical with 2,3-bisphosphoglycerate-(DPG)binding sites in mammalian hemoglobins, whereby rhinoceros hemoglobin resembles both ATP-sensitive poikilotherm hemoglobin and DPG-sensitive mammalian hemoglobin. The two components (beta I/beta II) additionally differ by exchange of Glu----Gly at position beta A3 and Gln----Lys at position beta GH3. The significance of these changes is discussed. Oxygenation properties of the two hemoglobins components and their dependence on ATP and DPG are given. The structure and function of Rhinoceros hemoglobin may give an insight into the evolution of the organic phosphate binding in vertebrate hemoglobins.  相似文献   

4.
The hemoglobins of the cold-adapted Antarctic teleost Cygnodraco mawsoni   总被引:1,自引:0,他引:1  
The blood of the teleost Cygnodraco mawsoni, of the endemic Antarctic family Bathydraconidae, contains a major hemoglobin (Hb 1), accompanied by a minor component (Hb 2, about 5% of total). The two hemoglobins have identical alpha chains and differ by the beta chain. The complete amino acid sequence of the three chains has been elucidated, thus establishing the primary structure of both hemoglobins. The sequences show a 53-65% identity with non-Antarctic poikilotherm fish species; on the other hand, a very high degree of similarity (83-88%) has been found between Hb 1 and the major component of another Antarctic species of a different family. The hemoglobin functional properties relative to oxygen binding have been investigated in intact erythrocytes, 'stripped' hemolysate and purified components of C. mawsoni. The hemoglobins display the Bohr and Root effects, indicating fine regulation of oxygen binding by pH and by the physiological effectors organic phosphates.  相似文献   

5.
The blood of the adult blackbird contains one major hemoglobin component (HbA = alpha A2, beta 2, ca. 80%) and one minor one (HbD = alpha D2 beta 2, ca. 20%). The Hb-components were separated by FPLC on a TSK SP-5 PW column, and eluted with a linear NaCl gradient, while the globin chains were purified on a cation exchange (CM-Cellulose). Tryptic peptides from the globin chains were separated by HPLC on an RP-2 Lichrosorb column. The complete amino acid sequence was determined by automatic Edman degradation, using film and gas phase methods. For the alpha A-, alpha D- and beta-chains, peptide alignment was carried out relative to the corresponding chains of the greylag goose (Anser anser). The close phylogenetic relationship between blackbird, tree sparrow and starling is verified by the hemoglobin sequence. The O2-affinities of the major and minor hemoglobin components of the blackbird are not yet known. Thus, the results were interpreted on the basis of primary structure. Substitutions of possible structural significance were examined with the help of molecular graphics/modelling.  相似文献   

6.
The adult bullfrog Rana catesbeiana has two major hemoglobin components, B and C. Component C polymerizes by disulfide bond formation between tetramers but component B does not. The amino acid sequence of the first 112 residues of the beta chain of component C has been reported (Baldwin, T. O., and Riggs, A. (1974) J. Biol. Chem. 249, 6110-6118). We have completed the sequence of the beta chain of component C by determining the last 28 residues. This segment contains the 2 cysteinyl residues of the chain. Examination of models indicates that neither of these is in a readily accessible position for the formation of intertetramer disulfide bonds. Reactive sulfhydryl groups of the alpha chains are shown to be responsible for the initial formation of disulfide bonds between tetramers. The beta chains within the tetramers form disulfide bonds only when the hemoglobin molecules are subjected to prolonged incubation at 37 degrees C under oxygen. The beta chains of components B and C appear to be identical; the alpha chains are clearly quite different. This suggests that the alpha B and alpha C subunits interact in the association of the deoxygenated tetramers B and C to form what appears to be a BC2 molecule.  相似文献   

7.
Allomyces arbuscula DNA isolated from whole cells (bulk DNA) is composed of a major (alpha) and two minor components (beta & gamma) with buoyant densities in neutral CsCl corresponding to 1.721, 1.710 and 1.702 g/cm3, respectively. The DNA obtained from purified nuclei contains alpha component only. The beta component corresponds to mitochondrial DNA. The gamma component is also extra-nuclear but has not been characterized. The reassociation kinetics of sheared, bulk and nuclear DNA show that (i) 25 % bulk and 10% of nuclear DNA reanneal very rapidly and contain highly repeated sequences; (ii) moderately repeated sequences, accounting for 15% of both bulk and nuclear DNA, have a sequence complexity of approximately 7.2-10(6) daltons and are repeated about 320 times; (iii) the slow reannealing fraction accounts for about 60% of the genome and has kinetic properties similar to single copy sequences. The sequence complexity of this fraction was determined in relation to that of Escherichia coli. After a correction for the size of the repeated sequences the genome size of A. arbuscula was calculated to be 1.7-10(10) daltons.  相似文献   

8.
Processing of the beta major and beta minor globin pre-mRNAs has been compared in murine erythroleukemia cells induced to synthesize hemoglobin by dimethyl sulfoxide or hemin treatment, using both the Northern blot technique and S1 nuclease mapping with 3' and 5' end-labeled probes. The small intervening sequence of both beta-globin pre-mRNAs was removed in one step, although minor amounts of incompletely spliced RNA were detected. During the processing of the large intervening sequence of beta major globin pre-mRNA two internal splice sites were clearly detected. On the contrary, the beta minor globin pre-mRNA did not show any internal splice sites. A model of processing of the mouse adult beta major globin pre-mRNA is proposed.  相似文献   

9.
The complete amino-acid sequence of the major hemoglobin component (HbA) of the adult Northern Mallard (Anas platyrhynchos platyrhynchos) is presented. A minor component HbD was also detected but in low concentrations. The sequences of alpha A- and beta-chains were established by automatic Edman degradation on tryptic peptides and peptides obtained by specific chemical cleavages. The alignment of the peptides was performed by comparison with the alpha A- and beta-chains of Greylag Goose hemoglobin (Anser anser). Thereby an exchange of five positions in the alpha A-chains and three in the beta-chains was observed. No exchanges were found in the surroundings of the heme, in alpha 1 beta 2-contact points, or allosteric regulatory sites. In the alpha 1 beta 1-subunit interface one amino-acid residue in alpha A-chains and one in beta-chains are exchanged. By comparison with the amino-acid sequence derived from globin genes of Domestic Duck (Anas platyrhynchos), the alpha A-chains differ by two exchanges in the N-terminal region and the beta-chains by five exchanges the in C-terminal region. The comparison of the amino-acid sequence derived from alpha A-globin gene of the Moscovy Duck (Cairina moschata) and alpha A-chains of the Northern Mallard, shows only one replacement.  相似文献   

10.
The hemoglobins from a lowland tapir (Tapirus terrestris) were analysed and the complete primary structure is described. The globin chains were separated on CM cellulose column in 8M urea and the amino-acid sequences were determined in the liquid phase sequenator. The results show that globin consists of two alpha chains (alpha I and alpha II) and beta major and beta minor components. The alpha chains differ only at one position: alpha I contains aspartic acid and alpha II glycine. The beta chains are heterogeneous: aspartic and glutamic acid were found at position beta 21 and beta 73 of the beta major components and asparagine and serine at position beta 139. In the beta minor components four positions were found with more than one amino acid, namely beta 2, beta 4, beta 6 and beta 56. The sequences are compared with those of man, horse and rhinoceros. Four residues of horse methemoglobin, which are involved in the alpha 1 beta 1 contacts are substituted in tapir hemoglobins. In the alpha chains: alpha 107(G14)Ser----Val, alpha 111-(G18) Val----Leu, alpha 115(GH3) Asn----Asp or Gly; in the beta chains: beta 116(G18) Arg----Gln. The amino acid at beta 2 of the major components is glutamic acid while glutamine and histidine are found in the minor components. Although glutamic acid, a binding site for ATP, does not interact with 2,3-bisphosphoglycerate, glutamine and histidine in the minor components are responsible for the slight effect of 2,3-bisphosphoglycerate on tapir hemoglobin.  相似文献   

11.
A 20-kDa DNA-binding protein that binds the AT-rich sequences within the promoters of the brain-specific protein kinase C (PKC) gamma and neurogranin/RC3 genes has been characterized as chromosomal nonhistone high-mobility-group protein (HMG)-I. This protein is a substrate of PKC alpha, beta, gamma, and delta but is poorly phosphorylated by PKC epsilon and zeta. Two major (Ser44 and Ser64) and four minor phosphorylation sites have been identified. The extents of phosphorylation of Ser44 and Ser64 were 1:1, whereas those of the four minor sites all together were <30% of the major one. These PKC phosphorylation sites are distinct from those phosphorylated by cdc2 kinase, which phosphorylates Thr53 and Thr78. Phosphorylation of HMG-I by PKC resulted in a reduction of DNA-binding affinity by 28-fold as compared with 12-fold caused by the phosphorylation with cdc2 kinase. HMG-I could be additively phosphorylated by cdc2 kinase and PKC, and the resulting doubly phosphorylated protein exhibited a >100-fold reduction in binding affinity. The two cdc2 kinase phosphorylation sites of HMG-I are adjacent to the N terminus of two of the three predicted DNA-binding domains. In comparison, one of the major PKC phosphorylation sites, Ser64, is adjacent to the C terminus of the second DNA-binding domain, whereas Ser44 is located within the spanning region between the first and second DNA-binding domains. The current results suggest that phosphorylation of the mammalian HMG-I by PKC alone or in combination with cdc2 kinase provides an effective mechanism for the regulation of HMG-I function.  相似文献   

12.
Two hemoglobin components HbA (alpha A2 beta 2) and (alpha D2 beta 2) have been detected by analytical electrophoresis in the lysed erythrocytes of the adult Black-Headed Gull (Larus ridibundus). We report the complete primary structure of the alpha A- and beta-chains of the major hemoglobin component HbA. Following the chain separation and isolation of the tryptic peptides by RP-HPLC, the amino-acid sequence was established by automatic Edman degradation in spinning cup and gas-phase sequencers. The primary structures of alpha A- and beta-chains from the Black-Headed Gull HbA differ by 11 and by 6 amino-acid residues from the corresponding chains of Greylag Goose. These changes are randomly distributed over both alpha-helical and interhelical regions. The presence of beta/beta'-chains is indicated by the observation of Ile/Leu at position beta 78. An exchange at position beta 55 (D6)Leu-Asn which is known to be involved in the alpha 1 beta 1-interface with alpha 119(H2)Pro has been found. It is suggested that packing contacts in the alpha 1 beta 1-interface are important for high altitude respiration in birds.  相似文献   

13.
Blood of the adult Tree Sparrow (Passer montanus) contains two hemoglobin components, Hb A (ca. 85%), Hb D (ca. 15%). They differ in their alpha-chains (alpha A, alpha D), the beta-chains are identical. The complete primary structures of alpha A-, alpha D- and beta-chains are presented. Comparison with the Greylag Goose (Anser anser) hemoglobin (Hb A) showed that the alpha A-chains differ by 22 amino-acid exchanges, the beta-chains by 16. Comparison with the minor component of the Pheasant (Phasianus colchicus colchicus) hemoglobin (Hb D) showed that the alpha D-chains differ by 34 amino-acid exchanges. Proline is found incorporated in an internal position of an alpha-helix (pos. 124, H7). In comparison to that of the Starling (Sturnus vulgaris) the ratio of amino-acid exchanges for beta: alpha A: alpha D chains is 1 : 7 : 4; in comparison to other birds this ratio is found to be 1 : 2 (1.4-2.2):3 (2.2-4).  相似文献   

14.
1. The hemoglobin of the sting-ray, Dasyatis sabina, is both polymorphic and heterogeneous; three components predominate. 2. One major component has two kinds of polypeptide chain, of which one, presumably an alpha-chain, has a blocked NH2-terminus and an arginyl COOH-terminus, whereas carboxypeptidases A and B release tyrosine and histidine from the COOH-terminus of the beta-chain. 3. The amino acid sequence of the beginning NH2-terminal segment of the beta-chain of the major component has been determined. 4. The hemoglobin of the sting-ray, Dasyatis sabina, is highly resistant to urea and does not dissociate readily into subunits. 5. Oxygen binding by the hemoglobin is not affected by organic phosphates or high concentrations of either NaCl or urea. 6. The hemoglobin does not polymerize beyond tetramers. 7. Cooperativity, as monitored by n in the Hill equation, is pH-dependent and maximal between pH 8.5 and 9.0. 8. The hemoglobin has a large Bohr effect; the oxygen affinity is 16 times higher at pH 10 than at pH 6.5.  相似文献   

15.
A relatively high concentration of 2,4-dichlorophenoxyacetic acid (45 μ M ) in solid culture medium stimulated the formation and secretion of mucilage polysaccharides by callus tissues of Arabidopsis thaliana L. Heynh. (line Estland). The mucilage was composed of at least two polysaccharides as revealed by gel chromatography on Sepharose 4B: the major component (87%) eluted in the void volume (molecular weight 2 × 106 or greater) and the minor component (13%) eluted in the molecular weight range from 2 × 104 to 4 × 105. Both polysaccharide components contained small amounts of uronic acids. The major polysaccharide consisted mostly of galactose (49%), arabinose (28%) and fucose (10%), whereas the minor one consisted of galactose (44%), xylose (18%), arabinose (14%) and rhamnose (14%). One of the components of the secreted mucilage seems to be an arabinogalactan.  相似文献   

16.
The blood of the Rock-Hopper Penguin contains only one hemoglobin component, corresponding to the Hb A of other birds. The primary structures of the alpha- and beta-chains are presented. The chains were separated by high-performance liquid chromatography and cleaved either enzymatically (alpha) or both enzymatically and chemically (beta). Both the native chains and their peptides were sequenced using liquid and gas phase sequenators. The peptides were aligned using their homology to the sequence of human hemoglobin and other bird hemoglobins. As compared to human hemoglobin, 44 amino-acid replacements are found in the alpha-chains (68% homology) and 47 in the beta-chains (67.8% homology). These exchanges involve seven alpha 1/beta 1 and one alpha 1/beta 2 contact in the alpha-chains, whereas in the beta-chains eight alpha 1/beta 1, one alpha 1/beta 2 and one hem contact are substituted. The influence of these replacements on the structure-function relationships in hemoglobin, as well as their importance for the diving ability of penguins, are discussed.  相似文献   

17.
The effects of the mutation beta9(A6)Ser --> Cys on the interactions between the human hemoglobin molecules were investigated, and comparisons were made with other variants having an additional cysteine residue. In hemoglobin Porto Alegre (PA), the beta9 mutation induces polymerization by forming interchain disulfide bonds via the extra cysteine. The hemolysate from a heterozygote was separated by gel filtration into a tetrameric fraction and a higher-molecular-weight oligomeric fraction (30%). Reversed-phase high-performance liquid chromatography and electrospray ionization mass spectrometry (ESI-MS) under denaturing conditions showed that the tetrameric fraction contained only normal alpha- and beta-chains, whereas the oligomeric fraction contained only normal alpha-chain and disulfide-linked beta(PA) dimer. Under native conditions, ESI-MS of the oligomeric fraction revealed a principal complex of mass 258,400 Da corresponding to a tetramer of tetramers, and 10% of minor components. Transmission electron microscopy corroborated this structure by showing four spheres of 140 A diameter surrounding a central cavity. Equilibrium experiments on the oligomer at different concentrations, using gel filtration and dimer exchange experiments with metHbA-CN, showed that the tetramer of tetramers dissociates into smaller species, probably by breaking the dimer-dimer allosteric interface. None of the other variants investigated formed such a large oligomer.  相似文献   

18.
Antenna components in the energy transfer processes of a green photosynthetic bacterium Chloroflexus aurantiacus were spectrally investigated by time-resolved fluorescence spectroscopy at −196°C on intact cells. Besides major antenna components so far reported, three minor components were resolved; those were Bchl c located at 785 nm, the baseplate Bchl a at 819 nm and Bchl a in the B808-866 complex at 910 nm. The last component was assigned to a longer wavelength antenna closely associated with a reaction center. An additional Bchl c fluorescence component was kinetically suggested to be present, which can be an energy donor to a major Bchl c. Presence of these minor components was signified in terms of (1) increase in the spectral overlap integral and (2) adjustment of the direction of dipole moments in the energy transfer sequence of intact cells.  相似文献   

19.
The hemoglobin of the Pale-Throated Three-Toed Sloth (Bradypus tridactylus, Xenarthra) was separated into two components (ratio 4:1) with identical amino-acid analyses for the alpha- and beta-chains. The primary structures of both chains from the major component are given. They could be isolated by chromatography on carboxymethyl cellulose CM-52. The sequences have been determined by automatic Edman degradation of the native chains and their tryptic peptides. The comparison with human hemoglobin showed 27 substitutions in the alpha-chains and 33 in the beta-chains. In the alpha-chains one amino-acid exchange involves an alpha 1/beta 1-contact. In the beta-chains two heme- and four alpha 1/beta 1-contacts are substituted. The hemoglobin of the Sloth is compared to that of the Nine-Banded Armadillo (Dasypus novemcinctus), another representative of the order Xenerthra.  相似文献   

20.
Recombinant mouse phosphatidylinositol transfer protein (PI-TP)beta is a substrate for protein kinase C (PKC)-dependent phosphorylation in vitro. Based on site-directed mutagenesis and two-dimensional tryptic peptide mapping, Ser(262) was identified as the major site of phosphorylation and Ser(165) as a minor phosphorylation site. The phospholipid transfer activities of wild-type PI-TP beta and PI-TP beta(S262A) were identical, whereas PI-TP beta(S165A) was completely inactive. PKC-dependent phosphorylation of Ser(262) also had no effect on the transfer activity of PI-TP beta. To investigate the role of Ser(262) in the functioning of PI-TP beta, wtPI-TP beta and PI-TP beta(S262A) were overexpressed in NIH3T3 fibroblast cells. Two-dimensional PAGE analysis of cell lysates was used to separate PI-TP beta from its phosphorylated form. After Western blotting, wtPI-TP beta was found to be 85% phosphorylated, whereas PI-TP beta(S262A) was not phosphorylated. In the presence of the PKC inhibitor GF 109203X, the phosphorylated form of wtPI-TP beta was strongly reduced. Immunolocalization showed that wtPI-TP beta was predominantly associated with the Golgi membranes. In the presence of the PKC inhibitor, wtPI-TP beta was distributed throughout the cell similar to what was observed for PI-TP beta(S262A). In contrast to wtPI-TP beta overexpressors, cells overexpressing PI-TP beta(S262A) were unable to rapidly replenish sphingomyelin in the plasma membrane upon degradation by sphingomyelinase. This implies that PKC-dependent association with the Golgi complex is a prerequisite for PI-TP beta to express its effect on sphingomyelin metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号