首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The Ca2+-activated K+ channel of the human red cell membranes was characterized with respect to rectification and selectivity using the patch-clamp technique. In inside-out patches exposed to symmetric solutions of K+, Rb+, and NH 4 + , respectively, inward rectifyingi-V curves were obtained. The zero current conductances were: K+ (23.5 pS±3.2)>NH 4 + (14.2 pS±1.2)>Rb+ (11.4 pS±1.8). With low extracellular K+ concentrations (substitution with Na+) the current fluctuations reversed close to the Nernst potential for the K ion and the rectification as well as thei-V slopes decreased. With mixed intracellular solutions of K+ and Na+ enhanced rectification were observed due to a Na+ block of outward currents. From bi-ionic reversal potentials the following permeability sequence (P K/P X) was calculated: K+ (1.0)>Rb+ (1.4±0.1)>NH 4 + (8.5±1.3)>Li+(>50); Na+ (>110); Cs+ (5). Li+, Na+, and Cs+ were not found to carry any current, and only minimum values of the permeability ratios were estimated. Tl+ was permeant, but the permeability and conductance were difficult to quantify, since with this ion the single channel activity was extremely low and the channels seemed to inactivate. The inward rectification in symmetric solutions indicate an asymmetric open channel structure, and the different selectivity sequences based on conductances and permeabilities reflect interionic interactions in the permeation process.  相似文献   

2.
Summary Ouabain-insensitive, furosemide-sensitive Rb+ influx (J Rb) into HeLa cells was examined as functions of the extracellular Rb+, Na+ and Cl concentrations. Rate equations and kinetic parameters, including the apparent maximumJ Rb, the apparent values ofK m for the three ions and the apparentK i for K+, were derived. Results suggested that one unit molecule of this transport system has one Na+, one K+ and two Cl sites with different affinities, one of the Cl sites related with binding of Na+, and the other with binding of K+(Rb+). A 11 stoichiometry was demonstrated between ouabain-insensitive, furosemidesensitive influxes of22Na+ and Rb+, and a 12 stoichiometry between those of Rb+ and36Cl. The influx of either one of these ions was inhibited in the absence of any one of the other two ions. Monovalent anions such as nitrate, acetate, thiocyanate and lactate as substitutes for Cl inhibited ouabain-insensitive Rb+ influx, whereas sulfamate and probably also gluconate did not inhibitJ Rb. From the present results, a general model and a specialized cotransport model were proposed: 1) In HeLa cells, one Na+ and one Cl bind concurrently to their sites and then one K+ (Rb+) and another Cl bind concurrently. 2) After completion of ion bindings Na+, K+(Rb) and Cl in a ratio of 112 show synchronous transmembrane movements.  相似文献   

3.
The ability of acid-sensing ion channels (ASICs) to discriminate among cations was assessed based on changes in conductance and reversal potential with ion substitution. Human ASIC1a was expressed in Xenopus laevis oocytes, and acid-induced currents were measured using two-electrode voltage clamp. Replacement of extracellular Na+ with Li+, K+, Rb+, or Cs+ altered inward conductance and shifted the reversal potentials consistent with a selectivity sequence of Li ∼ Na > K > Rb > Cs. Permeability decreased more rapidly than conductance as a function of atomic size, with PK/PNa = 0.1 and GK/GNa = 0.7 and PRb/PNa = 0.03 and GRb/GNa = 0.3. Stimulation of Cl currents when Na+ was replaced with Ca2+, Sr2+, or Ba2+ indicated a finite permeability to divalent cations. Inward conductance increased with extracellular Na+ in a hyperbolic manner, consistent with an apparent affinity (Km) for Na+ conduction of 25 mM. Nitrogen-containing cations, including NH4+, NH3OH+, and guanidinium, were also permeant. In addition to passing through the channels, guanidinium blocked Na+ currents, implying competition for a site within the pore. The role of negative charges in an external vestibule of the pore was evaluated using the point mutation D434N. The mutant channel had a decreased single-channel conductance, measured in excised outside-out patches, and a macroscopic slope conductance that increased with hyperpolarization. It had a weakened interaction with Na+ (Km = 72 mM) and a selectivity that was shifted toward larger atomic sizes. We conclude that the selectivity of ASIC1 is based at least in part on interactions with binding sites both within and internal to the outer vestibule.  相似文献   

4.
Acid-sensing ion channels (ASICs) are proton-gated cation-selective channels expressed in the peripheral and central nervous systems. The ion permeation pathway of ASIC1a is defined by residues 426–450 in the second transmembrane (TM2) segment. The gate, formed by the intersection of the TM2 segments, localizes near the extracellular boundary of the plasma membrane. We explored the contribution to ion permeation and selectivity of residues in the TM2 segment of ASIC1a. Studies of accessibility with positively charged methanethiosulfonate reagents suggest that the permeation pathway in the open state constricts below the gate, restricting the passage to large ions. Substitution of residues in the intracellular vestibule at positions 437, 438, 443, or 446 significantly increased the permeability to K+ versus Na+. ASIC1a shows a selectivity sequence for alkali metals of Na+>Li+>K+≫Rb+>Cs+. Alanine and cysteine substitutions at position 438 increased, to different extents, the relative permeability to Li+, K+, Rb+, and Cs+. For these mutants, ion permeation was not a function of the diameter of the nonhydrated ion, suggesting that Gly-438 encompasses an ion coordination site that is essential for ion selectivity. M437C and A443C mutants showed slightly increased permeability to K+, Rb+, and Cs+, suggesting that substitutions at these positions influence ion discrimination by altering molecular sieving. Our results indicate that ion selectivity is accomplished by the contribution of multiple sites in the pore of ASIC1a.  相似文献   

5.
Summary Ouabain-resistant (OR), volume-or N-ethylmaleimide (NEM)-stimulated K+(Rb+)Cl fluxes were measured in low-K+ sheep red cells and found to be functionally separate but immunologically similar. In anisosmotic solutions both K+ effluxes and Rb+ influxes of NEM-treated and control cells were additive. In contrast to the NEM-stimulated K+Cl flux, metabolic depletion did not reduce K+Cl flux of normal or swollen cells. The anion preference of OR K+ efflux in NEM-treated cells was Br>Cl>HCO 3 =FI=NO 3 =CNS, and hence consistent with a reported Br>Cl>NO 3 sequence of the volume-dependent K+Cl transport. Alloimmune anti-Ll antibodies known to decrease passive K+ fluxes in low K+ cells reduced by 51% both volume-and NEM-stimulated, furosemidesensitive Rb+Cl fluxes suggesting their immunologic identity, a conclusion also supported by anti-L1 absorption studies. Since pretreatment with anti-L1 prevented the activation of Rb+ influx by NEM, and the impermeant glutathionmaleimide-I did not stimulate Rb+Cl influx, the NEM reactive SH groups must be located apart from the L1 antigen either within the membrane or on its cytoplasmic face. A model is proposed consisting of a K+Cl transport path(s) regulated by a protein with two functional subunits or domains; a chemically (C s) and a volume (V s)-stimulated domain, both interfacing with the L1 surface antigen. Attachment of alloanti-L1 from the outside reduces K+Cl transport stimulated throughC s by NEM orV s by cell swelling.  相似文献   

6.
Summary The effect of the loop diuretic furosemide (4-chloro-N-furfuryl-5-sulfamoyl-anthranilic acid) on the thiol-dependent, ouabain-insensitive K(Rb)/Cl transport in low K+ sheep red cells was studied at various concentrations of extracellular Rb+, Na+ and Cl. In Rb+-free NaCl media, 2×10–3 m furosemide inhibited only one-half of thiol-dependent K+ efflux. In the presence of 23mm RbCl, however, the concentration of furosemide to produce 50% K+ efflux inhibition (IC50) was 5×10–5 m. In Rb+ containing NaCl media, the inhibitory effect of 10–3 m furosemide was equal to that caused by NO 3 replacement of Cl in the medium. The apparent synergistic action of furosemide and external Rb+ on K+ efflux was also seen in the ouabain-insensitive Rb+ influx. A preliminary kinetic analysis suggests that furosemide binding alters both maximal K+(Rb+) transport and apparent external Rb+ affinity. In the presence of external Rb+, Na+ (as compared to choline) exerted a small but significant augmentation of the furosemide inhibition of K+(Rb+) fluxes. There was no effect of Cl on the IC50 value of furosemide. As there is no evidence for coupled Na+K+ cotransport in low K+ sheep red cells, furosemide may modify thiol-dependent K+(Rb+/Cl flux or Rb+ (and to a slight degree Na+) modulate the effect of furosemide.  相似文献   

7.
The relative permeability of sodium channels to eight metal cations is studied in myelinated nerve fibers. Ionic currents under voltage-clamp conditions are measured in Na-free solutions containing the test ion. Measured reversal potentials and the Goldman equation are used to calculate the permeability sequence: Na+ ≈ Li+ > Tl+ > K+. The ratio PK/PNa is 1/12. The permeabilities to Rb+, Cs+, Ca++, and Mg++ are too small to measure. The permeability ratios agree with observations on the squid giant axon and show that the reversal potential ENa differs significantly from the Nernst potential for Na+ in normal axons. Opening and closing rates for sodium channels are relatively insensitive to the ionic composition of the bathing medium, implying that gating is a structural property of the channel rather than a result of the movement or accumulation of particular ions around the channel. A previously proposed pore model of the channel accommodates the permeant metal cations in a partly hydrated form. The observed sequence of permeabilities follows the order expected for binding to a high field strength anion in Eisenman's theory of ion exchange equilibria.  相似文献   

8.
The ionic selectivity of the Ca2+-activated K+ channel of Aplysia neurons and of the light-dependent K+ channel of Pecten photoreceptors to metal and organic cations was studied. The selectivity sequence determined from reversal potential measurements is T1+ K+ > Rb+ > NH+4 > Cs+ > Na+, Li+ and is identical to the sequence determined previously for voltage-dependent K+ channels in a variety of tissues. Our results suggest that some physical aspect of the K+ channel is conserved in phyllogenetically different tissues and cells.  相似文献   

9.
Passive H+/OH permeability across epithelial cell membranes is rapid and leads to partial dissipation of H+/OH gradients produced by H+ pumps and ion gradient-coupled H+/OH transporters. A heterogeneous set of H+/OH transport mechanisms exist in biological membranes: lipid solubility/diffusion, protein-mediated transport by specific proteins or by slippage through ion-coupled H+/OH transporters, and transport at the protein/lipid interface or through protein-dependent defects in the lipid structure. A variety of methods are available to study protein transport mechanisms accurately in cells and biomembrane vesicles including pH electrode recordings, pH-sensitive fluorescent and magnetic resonance probes, and potentiometric probes. In brush border vesicles from the renal proximal tubule, the characteristics of passive H+/OH permeability are quite similar to those reported for passive H+/OH permeability through pure lipid bilayers; slippage of protons through the brush border Na+/H+ antiporter or through brush border water channels is minimal. In contrast, passive H+/OH permeability in brush border vesicles from human placenta is mediated in part by a stilbene-sensitive membrane protein. To demonstrate the physiological significance of passive renal brush border H+/OH transport, proximal tubule acidification and cell pH regulation mechanisms are modeled mathematically for states of normal and altered H+/OH permeabilities.  相似文献   

10.
Summary It is shown that the ouabain-resistant (OR) furosemide-sensitive K+(Rb+) transport system performs a net efflux of K+ in growing mouse 3T3 cells. This conclusion is based on the finding that under the same assay conditions the furosemidesensitive K+(Rb+) efflux was found to be two- to threefold higher than the ouabain-resistant furosemide-sensitive K+(Rb+) influx. The oubain-resistant furosemide-sensitive influxes of both22Na and86Rb appear to be Cl dependent, and the data are consistent with coupled unidirectional furosemide-sensitive influxes of Na+, K+ and Cl with a ratio of 1 1 2. However, the net efflux of K+ performed by this transport system cannot be coupled to a ouabain-resistant net efflux of Na+ since the unidirectional ouabain-resistant efflux of Na+ was found to be negligible under physiological conditions. This latter conclusion was based on the fact that practically all the Na+ efflux appears to be ouabainsensitive and sufficient to balance the Na+ influx under such steady-state conditions. Therefore, it is suggested that the ouabain-resistant furosemide-sensitive transport system in growing cells performs a facilitated diffusion of K+ and Na+, driven by their respective concentration gradients: a net K+ efflux and a net Na+ influx.  相似文献   

11.
Membrane diffusion potentials induced by amphotericin B (AmB), amphotericin B methyl ester (AmE), N-fructosyl AmB (N FruAmB) and vacidin, an aromatic polyene antibiotic, in ergosterol- or cholesterol-containing egg yolk phosphatidylcholine large unilamellar vesicles (LUV), were measured in various media, in order to determine the relative selectivity of Na+, K+, Cl and other ions in these environments. Changes in the membrane potential were followed by fluorescence changes of 3,3-dipropylthiadicarbocyanine (diS-C3-(5)). Subtle changes in intercationic selectivity were monitored by measuring biionic potentials, using the fluorescent pH sensitive probe pyranine. In all the cases studied, the intereationic selectivity of the permeability pathways induced by the four antibiotics was weak compared to that of specific biological channels, though distinct differences were noted. With AmB the selectivity appeared to be concentration dependent. Above 5 × 10–7 M, the sequence determined for sterol-free small unilamellar vesicles (SUV) and cholesterol-containing SUV and LUV, Na+ > K+ > Rb+ Cs+ > Li+ (sulfate salts), corresponded closely to Eisenman selectivity sequence number VII. At 5 × 10–7 M and below the selectivity switched from Na+ > K+ to K+ > Na +. In contrast, Li+ was the most permeant ion for AmB channels in the presence of ergosterol. The selectivity between Na+ or K+ vs. Cl varied with the antibiotic. It was very strong with vacidin at concentrations below 5 × 10–7 M, smaller with AmB, nil with AmE and N FruAmB. The selectivities observed were antibiotic, concentration and time de pendent, which confirms the existence of different types of channels.Abbreviations AmB amphotericin B - AmE amphotericin B methylester - BLM bilayer membranes - DiSC3(5) 3,3-dipropylthi-acarbocyanine iodide - DMSO dimethylsulfoxide - EPC egg yolk lecithin - FCCP carbonyl cyanide p-trifluoro methoxyphenyl-hydrazone - HEPES N-(2-hydroxyethylpiperazine)-N-(2-ethanesulfonic acid) - LUV large unilamellar vesicles - MOPS 3-(N-morpholino)propanesulfonic acid - N-Fru AmB N(1-deoxy-D-fructos-1-yl) amphotericin B - Oxonol V1 bis(3-propyl-5-oxoisoazol-4yl)pentamethine oxonol - SUV small unilamellar vesicles  相似文献   

12.
Summary The bumetanide-sensitive uptake of Na+, K(Rb) and Cl has been measured at 21°C in ferrent red cells treated with (SITS+DIDS) to minimize anion flux via capnophorin (Band 3). During the time course of the influx experiments tracer uptake was a first-order rate process. At normal levels of external Na+ (150mm) the bumetanide-sensitive uptake of K+ was dependent on Cl and represented almost all of the K+ uptake, the residual flux demonstrating linear concentration dependence. The uptake of Na+ and Cl was only partially inhibited by bumetanide indicating that pathways other than (Na+K+Cl) cotransport participate in these fluxes. The diuretic-sensitive uptake of Na+ or Cl was, however, abolished by the removal of K+ or the complementary ion indicating that bumetanide-sensitive fluxes of Na+, K+ and Cl are closely coupled. At very low levels of [Na] o (<5mm) K+ influx demonstrated complex kinetics, and there was evidence of the unmasking of a bumetanide-sensitive Na+-independent K+ transport pathway. The stoichiometry of bumetanide-sensitive tracer uptake was 2Na1K3Cl both in cells suspended in a low and a high K+-containing medium. The bumetanide-sensitive flux was markedly reduced by ATP depletion. We conclude that a bumetanide-sensitive cotransport of (2Na1K3Cl) occurs as an electroneutral complex across the ferret red cell membrane.  相似文献   

13.
Summary A new method for localization of inorganic diffusible ions in tissue is introduced. It has been applied to localization of Tl+ and Rb+ in barley roots and is probably also suited for Cs+, Ca2+, Cl, Br, PO 4 3– and perhaps K+. Its principle consists of dissolution of the ice from frozen tissue in a concentrated aqueous solution of a precipitating agent that is kept at a temperature just above its melting point.  相似文献   

14.
To explore the role of pore-lining amino acids in Na+ channel ion-selectivity, pore residues were  replaced serially with cysteine in cloned rat skeletal muscle Na+ channels. Ionic selectivity was determined by measuring permeability and ionic current ratios of whole-cell currents in Xenopus oocytes. The rSkM1 channels displayed an ionic selectivity sequence Na+>Li+>NH4 +>>K+>>Cs+ and were impermeable to divalent cations.  Replacement of residues in domain IV showed significantly enhanced current and permeability ratios of NH4 + and K+, and negative shifts in the reversal potentials recorded in the presence of external Na+ solutions when compared to cysteine mutants in domains I, II, and III (except K1237C). Mutants in domain IV showed altered selectivity sequences: W1531C (NH4 +>K+>Na+≥Li+≈Cs+), D1532C, and G1533C (Na+>Li+≥NH4 +>K+>Cs+). Conservative replacement of the aromatic residue in domain IV (W1531) with phenylalanine or tyrosine retained Na+ selectivity of the channel while the alanine mutant (W1531A) reduced ion selectivity. A single mutation within the third pore forming region (K1237C) dramatically altered the selectivity sequence of the rSkM1 channel (NH4 +>K+>Na+≥Li+≈Cs+) and was permeable to divalent cations having the selectivity sequence Ca2+≥Sr2+>Mg2+>Ba2+. Sulfhydryl modification of K1237C, W1531C or D1532C with methanethiosulfonate derivatives that introduce a positively charged ammonium group, large trimethylammonium moiety, or a negatively charged sulfonate group within the pore was ineffective in restoring Na+ selectivity to these channels. Selectivity of D1532C mutants could be largely restored by increasing extracellular pH suggesting altering the ionized state at this position influences selectivity. These data suggest that K1237 in domain III and W1531, D1532, and G1533 in domain IV play a critical role in determining the ionic selectivity of the Na+ channel.  相似文献   

15.
The neutral, noncyclic, imide and ether containing ionophore AS701, has been developed as Li+-selective molecule, to be used potentially as an aid in the Li+-therapy of manic-depressive illness. The present report is a characterization of this molecule in neutral lipid bilayer membranes. This ionophore was found to the bilayers Li+-selective, acting as a selective carrier of monovalent cations. In addition, this molecule was found to be capable of acting as a selective carrier of monovalent anions. For both types of ions, the rate-limitting step in the process of permeation was found to be the diffusion of the carrier-ion complex through the membrane. The membrane-permeating species were found to be 2 : 1 carrier-ion complexes, carrying either a monovalent cation or a monovalent anion. The selectivity sequences among the ions studied being: Li+(1) > ClO4?(0.7) > Na+(0.07) > K+(0.016) > Rb+(0.0095) > Cs+(0.0083) > Cl?(0.001). Mg2+ and SO42? were found to be impermeant (under present experimental conditions). This sequence shows that the AS701 molecule has low selectivity for ions present in biological media, among those studied (i.e. Na+, K+, Mg2+, Cl2? and SO42?). This indicates that these ions will not interfere in the Li+ permeability induced by this carrier in vivo, and that the carrier will not interfere in the normal transport processes of these ions.  相似文献   

16.
Summary In cells of the freshwater algaHydrodictyon africanum, in solutions where [K+]0=0.1mm and pH0>7.0, the membrane in the light is hyperpolarized. The membrane potential difference {ie179-1} has values from –180 to –275 mV, more negative than any ion diffusion potential difference, and is predominantly a function of pH0, and independent of [K+]0. The hyperpolarization of the membrane appears to arise from an electrogenic efflux of H+, estimated from voltage-clamp data to be about 8 nmol m–2 sec–1 when pH0=8.5. In the light the membrane conductanceg m is about 0.084 S m–2. At light-off, {ie179-2} becomes less negative, with a halftime for change of 15 to 30 sec andg m decreases by about 0.052 S m–2. After dark periods of up to 300 sec, {ie179-3} is largely independent of pH0 for values greater than 6.0 and usually behaves as a combined K+ and Na+ diffusion potential with permeability ratioP Na/P K=0.05 to 0.2. The membrane potassium conductanceg K has either a low value of 2–6×10–2 Sm–2, or a high value of up to 18×10–2 S m–2 depending on [K+]0, the transition from low to high values occurring when {ie179-4} moves over a threshold value that is more negative than {ie179-5}, the electrochemical equilibrium potential for K+. The time for half-change of the transition is about 30 sec. The results are consistent with a model of the membrane in which the pump electromotive force and conductance are in parallel with diffusive electromotive forces and conductances. When the pump is operating its properties determine membrane properties, and when it is inoperative, or running at a diminished rate, the membrane properties are determined more by the diffusive pathways. Changes in both pump rate andg K can account for a variety of characteristic changes in membrane PD and conductance occurring in response to ligh-dark changes, changes in light intensity, pasage of externally applied electric current across the membrane and changes in ionic constituents of the external medium.  相似文献   

17.
In their influence on the P.D. across the protoplasm of Valonia macrophysa, Kütz., Li+ and Cs+ resemble Na+, while Rb+ and NH4 + resemble K+. The apparent mobilities of the ions in the external surface layer of Valonia protoplasm increase in the order: Cs+, Na+, Li+ < Cl- < Rb+ < K+ < NH4 +.  相似文献   

18.
Summary Renal brush border membrane vesicles (bbmv) from the aglomerular toadfish (Opsanus tau), isolated by differential precipitation, were tested for their ability to actively translocate (i) taurine, known to be secreted by the kidney of several marine teleosts, and (ii)l-alanine,l-glutamic acid, andd-glucose, solutes that are normally reabsorbed in the filtering nephron. Vesicular taurine uptake displayed a Na+ dependence. Transport was greatest under conditions of an inward-directed Na+ gradient, but a significant stimulation by Na+ over K+ could also be observed in the absence of a salt gradient. At high extravesicular K+, the addition of valinomycin reduced taurine uptake. Na+-dependent3H-taurine flux was almost completely inhibited by non-labeled taurine (tracer replacement) or -alanine, but was unaffected byl-alanine. Replacement of medium chloride by SCN or NO 3 in the presence of Na+ resulted in significantly lower uptake rates under both anion gradient and anion equilibrium conditions, whereas Br could almost fully substitute for the stimulatory Cl action. These results indicate the presence of an electrogenic Na+-cotransport mechanism with specificity for -amino acids in the toadfish renal brush border. Whether the system under physiological conditions mediates reabsorption or secretion of taurine remains to be determined. Toadfish bbmv also translocatedl-alanine andl-glutamic acid in a Na+-dependent manner. Possible roles for these most likely reabsorptive transport systems in a non-filtering kidney are discussed.d-glucose uptake, however, appeared to occur via Na+-independent pathways, since it was not affected by phlorizin in the presence of Na+, or by Na+ replacement.Abbreviation bbmv brush border membrane vesicles  相似文献   

19.
Summary The reaction of abdominal skins of the frog speciesRana temporaria on mucosal K+-containing solutions was studied in an Ussing-type chamber by recording transepithelial potential difference (PD), short-circuit current (SCC) and conductance (G). With Na-Ringer's as serosal medium, a linear correlation between PD and the logarithm of the mucosal K+-concentration ([K] o ) was obtained. The K+-dependent SCC saturated with increasing [K] o , and could quickly and reversibly be depressed by addition of Rb+, Cs+, and H+, Li+, Na+, and NH 4 + did not influence K+ current. A large scatter was obtained for kinetic parameters like the slope of the PD-log [K] o -line (18–36.5 mV/decade), the apparent Michaelis constant (13–200mm), and the maximal current of the saturable SCC (6–50 A·cm–2), as well as for the degree of inhibition by Cs+ ions. This seemed to be caused by a time-dependent change during long time exposure to high [K] o (more than 30 sec), thereby inducing a selectivity loss of K+-transporting structures, together with an increase in SCC andG and a decrease in PD. Short time exposure to K+-containing solutions showed a competitive inhibition of K+ current by Cs+ ions, and a Michaelis constant of 6.6mm for the inhibitory action of Cs+. Proton titration resulted in a decrease of K+ current at pH<3. An acidic membrane component (apparent dissociation constant 2.5×10–3 m) is virtually controlling K+ transfer. Reducing the transepithelial K+-concentration gradient by raising the serosal potassium concentration was accompanied by the disappearance of SCC and PD.  相似文献   

20.
During exposure to soft water, acidified to pH 4.0, the haemolymph concentrations of Na+, K+, and Cl decreased whereas the Ca2+ concentration fluctuated in Astacus astacus. The haemocyte content of K+ decreased from 9% to 2% of the total haemolymph K+ content after exposure to pH 3.7 for 3 days. Within 14 days, 250 µg Al3+ l–1, as Al2(SO4)3 at pH 5.0, reduced the haemolymph Na+ content in Astacus astacus and Pacifastacus leniusculus, however, the effects were less pronounced than earlier reported for fish. Disturbed ion regulation, mainly depending on low pH, is thought to contribute to the absence of these species in acid waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号