首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cytoplasmic membrane protein CcdA and its homologues in other species, such as DsbD of Escherichia coli, are thought to supply the reducing equivalents required for the biogenesis of c-type cytochromes that occurs in the periplasm of gram-negative bacteria. CcdA-null mutants of the facultative phototroph Rhodobacter capsulatus are unable to grow under photosynthetic conditions (Ps(-)) and do not produce any active cytochrome c oxidase (Nadi(-)) due to a pleiotropic cytochrome c deficiency. However, under photosynthetic or respiratory growth conditions, these mutants revert frequently to yield Ps(+) Nadi(+) colonies that produce c-type cytochromes despite the absence of CcdA. Complementation of a CcdA-null mutant for the Ps(+) growth phenotype was attempted by using a genomic library constructed with chromosomal DNA from a revertant. No complementation was observed, but plasmids that rescued a CcdA-null mutant for photosynthetic growth by homologous recombination were recovered. Analysis of one such plasmid revealed that the rescue ability was mediated by open reading frame 3149, encoding the dithiol:disulfide oxidoreductase DsbA. DNA sequence data revealed that the dsbA allele on the rescuing plasmid contained a frameshift mutation expected to produce a truncated, nonfunctional DsbA. Indeed, a dsbA ccdA double mutant was shown to be Ps(+) Nadi(+), establishing that in R. capsulatus the inactivation of dsbA suppresses the c-type cytochrome deficiency due to the absence of ccdA. Next, the ability of the wild-type dsbA allele to suppress the Ps(+) growth phenotype of the dsbA ccdA double mutant was exploited to isolate dsbA-independent ccdA revertants. Sequence analysis revealed that these revertants carried mutations in dsbB and that their Ps(+) phenotypes could be suppressed by the wild-type allele of dsbB. As with dsbA, a dsbB ccdA double mutant was also Ps(+) Nadi(+) and produced c-type cytochromes. Therefore, the absence of either DsbA or DsbB restores c-type cytochrome biogenesis in the absence of CcdA. Finally, it was also found that the DsbA-null and DsbB-null single mutants of R. capsulatus are Ps(+) and produce c-type cytochromes, unlike their E. coli counterparts, but are impaired for growth under respiratory conditions. This finding demonstrates that in R. capsulatus the dithiol:disulfide oxidoreductases DsbA and DsbB are not essential for cytochrome c biogenesis even though they are important for respiration under certain conditions.  相似文献   

2.
The gram-positive, endospore-forming bacterium Bacillus subtilis contains several membrane-bound c-type cytochromes. We have isolated a mutant pleiotropically deficient in cytochromes c. The responsible mutation resides in a gene which we have named ccdA (cytochrome c defective). This gene is located at 173 degrees on the B. subtilis chromosome. The ccdA gene was found to be specifically required for synthesis of cytochromes of the c type. CcdA is a predicted 26-kDa integral membrane protein with no clear similarity to any known cytochrome c biogenesis protein but seems to be related to a part of Escherichia coli DipZ/DsbD. The ccdA gene is cotranscribed with two other genes. These genes encode a putative 13.5-kDa single-domain response regulator, similar to B. subtilis CheY and Spo0F, and a predicted 18-kDa hydrophobic protein with no similarity to any protein in databases, respectively. Inactivation of the three genes showed that only ccdA is required for cytochrome c synthesis. The results also demonstrated that cytochromes of the c type are not needed for growth of B. subtilis.  相似文献   

3.
Mutants of Rhizobium leguminosarum bv. viciae unable to respire via the cytochrome aa3 pathway were identified by the inability to oxidize N,N'-dimethyl-p-phenylenediamine. Two mutants which were complemented by cosmid pIJ1942 from an R. leguminosarum clone bank were identified. Although pea nodules induced by these mutants contained many bacteroids, no symbiotic nitrogen fixation was detected. Heme staining of cellular proteins revealed that all cytochrome c-type heme proteins were absent. These mutants lacked spectroscopically detectable cytochrome c, but cytochromes aa3 and d were present, the latter at a higher-than-normal level. DNA sequence analysis of complementing plasmids revealed four apparently cotranscribed open reading frames (cycH, cycJ, cycK, and cycL). CycH, CycJ, CycK, and CycL are homologous to Bradyrhizobium japonicum and Rhizobium meliloti proteins thought to be involved in the attachment of heme to cytochrome c apoproteins; CycK and CycL are also homologous to the Rhodobacter capsulatus ccl1 and ccl2 gene products and the Escherichia coli nrfE and nrfF gene products involved in the assembly of c-type cytochromes. The absence of cytochrome c heme proteins in these R. leguminosarum mutants is consistent with the view that the cycHJKL operon could be involved in the attachment of heme to apocytochrome c.  相似文献   

4.
We have recently established that the facultative phototrophic bacterium Rhodobacter capsulatus has two different pathways for reduction of the photooxidized reaction center during photosynthesis (F.E. Jenney and F. Daldal, EMBO J. 12:1283-1292, 1993; F.E. Jenney, R.C. Prince, and F. Daldal, Biochemistry 33:2496-2502, 1994). One pathway is via the well-characterized, water-soluble cytochrome c2 (cyt c2), and the other is via a novel membrane-associated c-type cytochrome named cyt cy. In this work, we probed the role of cyt cy in respiratory electron transport by isolating a set of R. capsulatus mutants lacking either cyt c2 or cyt cy, in the presence or in the absence of a functional quinol oxidase-dependent alternate respiratory pathway. The growth and inhibitor sensitivity patterns of these mutants, their respiratory rates in the presence of specific inhibitors, and the oxidation-reduction kinetics of c-type cytochromes monitored under appropriate conditions demonstrated that cyt cy, like cyt c2, connects the bc1 complex and the cyt c oxidase during respiratory electron transport. Whether cyt c2 and cyt cy are the only electron carriers between these two energy-transducing membrane complexes of R. capsulatus is unknown.  相似文献   

5.
E Darrouzet  S Mandaci  J Li  H Qin  D B Knaff  F Daldal 《Biochemistry》1999,38(25):7908-7917
The cytochrome (cyt) c1 heme of the ubihydroquinone:cytochrome c oxidoreductase (bc1 complex) is covalently attached to two cysteine residues of the cyt c1 polypeptide chain via two thioether bonds, and the fifth and sixth axial ligands of its iron atom are histidine (H) and methionine (M), respectively. The latter residue is M183 in Rhodobacter capsulatus cyt c1, and previous mutagenesis studies revealed its critical role for the physicochemical properties of cyt c1 [Gray, K. A., Davidson, E., and Daldal, F. (1992) Biochemistry 31, 11864-11873]. In the homologous chloroplast b6f complex, the sixth axial ligand is provided by the amino group of the amino terminal tyrosine residue. To further pursue our investigation on the role played by the sixth axial ligand in heme-protein interactions, novel cyt c1 variants with histidine-lysine (K) and histidine-histidine axial coordination were sought. Using a R. capsulatus genetic system, the cyt c1 mutants M183K and M183H were constructed by site-directed mutagenesis, and chromatophore membranes as well as purified bc1 complexes obtained from these mutants were characterized in detail. The studies revealed that these mutants incorporated the heme group into the mature cyt c1 polypeptides, but yielded nonfunctional bc1 complexes with unusual spectroscopic and thermodynamic properties, including shifted optical absorption maxima (lambdamax) and decreased redox midpoint potential values (Em7). The availability and future detailed studies of these stable cyt c1 mutants should contribute to our understanding of how different factors influence the physicochemical and folding properties of membrane-bound c-type cytochromes in general.  相似文献   

6.
In gram-negative bacteria, like Rhodobacter capsulatus, about 10 membrane-bound components (CcmABCDEFGHI and CcdA) are required for periplasmic maturation of c-type cytochromes. These components perform the chaperoning and thio-oxidoreduction of the apoproteins as well as the delivery and ligation of the heme cofactors. In the absence of any of these components, including CcmI, proposed to act as an apocytochrome c chaperone, R. capsulatus does not have the ability to produce holocytochromes c or consequently to exhibit photosynthetic growth and cytochrome cbb3 oxidase activity. Previously, we have demonstrated that null mutants of CcmI partially overcome cytochrome c deficiency phenotypes upon overproduction of the CcmF-R. capsulatus CcmH (CcmF-CcmH(Rc)) couple in a growth medium-dependent manner and fully bypass these defects by additional overproduction of CcmG. Here, we show that overproduction of the CcmF-CcmH(Rc) couple and overproduction of the N-terminal membrane-spanning segment of CcmI (CcmI-1) have similar suppression effects of cytochrome c maturation defects in CcmI-null mutants. Likewise, additional overproduction of CcmG, the C-terminal periplasmic segment of CcmI (CcmI-2), or even of apocytochrome c2 also provides complementation abilities similar to those of these mutants. These results indicate that the two segments of CcmI have different functions and support our earlier findings that two independent steps are required for full recovery of the loss of CcmI function. We therefore propose that CcmI-1 is part of the CcmF-CcmH(Rc)-dependent heme ligation, while CcmI-2 is involved in the CcdA- and CcmG-dependent apoprotein thioreduction steps, which intersect at the level of CcmI during cytochrome c biogenesis.  相似文献   

7.
The c-type cytochromes are haemoproteins that are subunits or physiological partners of electron transport chain components, like the cytochrome bc(1) complex or the cbb(3)-type cytochrome c oxidase. Their haem moieties are covalently attached to the corresponding apocytochromes via a complex post-translational maturation process. During our studies of cytochrome biogenesis, we uncovered a novel class of mutants that are unable to produce ornithine lipid and that lack several c-type cytochromes. Molecular analyses of these mutants led us to the ornithine lipid biosynthesis genes of Rhodobacter capsulatus. Herein, we have characterized these mutants, and established the chemical structure of this non-phosphorus membrane lipid from R. capsulatus. Ornithine lipids are known to induce potent host immune responses, including B-lymphocyte mitogenicity, adjuvanticity and macrophage activation. Yet, despite their widespread occurrence in Eubacteria, and the diverse biological effects they elicit in mammals, their physiological role in bacterial cells remained hitherto poorly defined. Our findings now indicate that under certain bacterial growth conditions ornithine lipids are crucial for optimal steady-state amounts of some extracytoplasmic proteins, including several c-type cytochromes, and attribute them a novel and important biological function.  相似文献   

8.
Cytochromes of c-type contain covalently bound haem and in bacteria are located on the periplasmic side of the cytoplasmic membrane. More than eight different gene products have been identified as being specifically required for the synthesis of cytochromes c in Gram-negative bacteria. Corresponding genes are not found in the genome sequences of Gram-positive bacteria. Using two random mutagenesis approaches, we have searched for cytochrome c biogenesis genes in the Gram-positive bacterium Bacillus subtilis. Three genes, resB, resC and ccdA, were identified. CcdA has been found previously and is required for a late step in cytochrome c synthesis and also plays a role in spore synthesis. No function has previously been assigned for ResB and ResC but these predicted membrane proteins show sequence similarity to proteins required for cytochrome c synthesis in chloroplasts. Attempts to inactivate resB and resC in B. subtilis have indicated that these genes are essential for growth. We demonstrate that various nonsense mutations in resB or resC can block synthesis of cytochromes c with no effect on other types of cytochromes and little effect on sporulation and growth. The results strongly support the recent proposal that Gram-positive bacteria, cyanobacteria, epsilon-proteobacteria, and chloroplasts have a similar type of machinery for cytochrome c synthesis (System II), which is very different from those of most Gram-negative bacteria (System I) and mitochondria (System III).  相似文献   

9.
10.
F E Jenney  Jr  F Daldal 《The EMBO journal》1993,12(4):1283-1292
Mutants of Rhodobacter capsulatus lacking the soluble electron carrier cytochrome c2 are able to grow photosynthetically (Ps+), whereas Rhodobacter sphaeroides is unable to do so. To understand this unusual electron transfer pathway the gene required for cyt c2-independent growth of R.capsulatus was sought using chromosomal libraries derived from a cyt c2- mutant of this species to complement a Ps- cyt c2- mutant of R.sphaeroides to Ps+ growth. The complementing 1.2 kbp DNA fragment contained a gene, cycY, encoding a novel membrane-associated c-type cytochrome, cyt cy, based on predicted amino acid sequence, optical difference spectra and SDS-PAGE analysis of chromatophore membranes. The predicted primary sequence of cyt cy is unusual in having two distinct domains, a hydrophobic amino-terminal region and a carboxyl-terminus with strong homology to cytochromes c. A cyt cy- mutant of R.capsulatus remains Ps+ as does the cyt c2- mutant. However, a mutant lacking both cyt c2 and cy is Ps-, and can be complemented to Ps+ by either cyt c2 or cyt cy. These findings demonstrate that each of the cytochromes c2 and cy is essential for photosynthesis only in the absence of the other. Thus, two distinct electron transfer pathways, unrecognized until now, operate during photosynthesis in R.capsulatus under appropriate conditions, one via the soluble cyt c2 and the other via the membrane-associated cyt cy.  相似文献   

11.
We have recently established that the facultative phototrophic bacterium Rhodobacter sphaeroides, like the closely related Rhodobacter capsulatus species, contains both the previously characterized mobile electron carrier cytochrome c2 (cyt c2) and the more recently discovered membrane-anchored cyt cy. However, R. sphaeroides cyt cy, unlike that of R. capsulatus, is unable to function as an efficient electron carrier between the photochemical reaction center and the cyt bc1 complex during photosynthetic growth. Nonetheless, R. sphaeroides cyt cy can act at least in R. capsulatus as an electron carrier between the cyt bc1 complex and the cbb3-type cyt c oxidase (cbb3-Cox) to support respiratory growth. Since R. sphaeroides harbors both a cbb3-Cox and an aa3-type cyt c oxidase (aa3-Cox), we examined whether R. sphaeroides cyt cy can act as an electron carrier to either or both of these respiratory terminal oxidases. R. sphaeroides mutants which lacked either cyt c2 or cyt cy and either the aa3-Cox or the cbb3-Cox were obtained. These double mutants contained linear respiratory electron transport pathways between the cyt bc1 complex and the cyt c oxidases. They were characterized with respect to growth phenotypes, contents of a-, b-, and c-type cytochromes, cyt c oxidase activities, and kinetics of electron transfer mediated by cyt c2 or cyt cy. The findings demonstrated that both cyt c2 and cyt cy are able to carry electrons efficiently from the cyt bc1 complex to either the cbb3-Cox or the aa3-Cox. Thus, no dedicated electron carrier for either of the cyt c oxidases is present in R. sphaeroides. However, under semiaerobic growth conditions, a larger portion of the electron flow out of the cyt bc1 complex appears to be mediated via the cyt c2-to-cbb3-Cox and cyt cy-to-cbb3-Cox subbranches. The presence of multiple electron carriers and cyt c oxidases with different properties that can operate concurrently reveals that the respiratory electron transport pathways of R. sphaeroides are more complex than those of R. capsulatus.  相似文献   

12.
13.
S E Lang  F E Jenney  Jr    F Daldal 《Journal of bacteriology》1996,178(17):5279-5290
While searching for components of the soluble electron carrier (cytochrome c2)-independent photosynthetic (Ps) growth pathway in Rhodobacter capsulatus, a Ps- mutant (FJM13) was isolated from a Ps+ cytochrome c2-strain. This mutant could be complemented to Ps+ growth by cycA encoding the soluble cytochrome c2 but was unable to produce several c-type cytochromes. Only cytochrome c1 of the cytochrome bc1 complex was present in FJM13 cells grown on enriched medium, while cells grown on minimal medium contained at various levels all c-type cytochromes, including the membrane-bound electron carrier cytochrome cy. Complementation of FJM13 by a chromosomal library lacking cycA yielded a DNA fragment which also complemented a previously described Ps- mutant, MT113, known to lack all c-type cytochromes. Deletion and DNA sequence analyses revealed an open reading frame homologous to cycH, involved in cytochrome c biogenesis. The cycH gene product (CycH) is predicted to be a bipartite protein with membrane-associated amino-terminal (CycH1) and periplasmic carboxyl-terminal (CycH2) subdomains. Mutations eliminating CyCH drastically decrease the production or all known c-type cytochromes. However, mutations truncating only its CycH2 subdomain always produce cytochrome c1 and affect the presence of other cytochromes to different degrees in a growth medium-dependent manner. Thus, the subdomain CycH1 is sufficient for the proper maturation of cytochrome c1 which is the only known c-type cytochrome anchored to the cytoplasmic membrane by its carboxyl terminus, while CycH2 is required for efficient biogenesis of other c-type cytochromes. These findings demonstrate that the two subdomains of CycH play different roles in the biogenesis of topologically distinct c-type cytochromes and reconcile the apparently conflicting data previously obtained for other species.  相似文献   

14.
Gram-negative bacteria like Rhodobacter capsulatus use intertwined pathways to carry out the posttranslational maturation of c-type cytochromes (Cyts). This periplasmic process requires at least 10 essential components for apo-Cyt c chaperoning, thio-oxidoreduction, and the delivery of heme and its covalent ligation. One of these components, CcmI (also called CycH), is thought to act as an apo-Cyt c chaperone. In R. capsulatus, CcmI-null mutants are unable to produce c-type Cyts and thus sustain photosynthetic (Ps) growth. Previously, we have shown that overproduction of the putative heme ligation components CcmF and CcmH(Rc) (also called Ccl1 and Ccl2) can partially bypass the function of CcmI on minimal, but not on enriched, media. Here, we demonstrate that either additional overproduction of CcmG (also called HelX) or hyperproduction of CcmF-CcmH(Rc) is needed to completely overcome the role of CcmI during the biogenesis of c-type Cyts on both minimal and enriched media. These findings indicate that, in the absence of CcmI, interactions between the heme ligation and thioreduction pathways become restricted for sufficient Cyt c production. We therefore suggest that CcmI, along with its apo-Cyt chaperoning function, is also critical for the efficacy of holo-Cyt c formation, possibly via its close interactions with other components performing the final heme ligation steps during Cyt c biogenesis.  相似文献   

15.
A transposon Tn5-mob insertional mutant of Paracoccus pantotrophus GB17, strain TP43, was unable to oxidize thiosulfate aerobically or to reduce nitrite anaerobically, and the cellular yields were generally decreased by 11 to 20%. Strain TP43 was unable to form functional c-type cytochromes, as determined by difference spectroscopy and heme staining. However, formation of apocytochromes and their transport to the periplasm were not affected, as seen with SoxD, a c-type cytochrome associated with the periplasmic sulfite dehydrogenase homologue. The Tn5-mob-containing DNA region of strain TP43 was cloned into pSUP205 to produce pE18TP43. With the aid of pE18TP43 the corresponding wild-type gene region of 15 kb was isolated from a heterogenote recombinant to produce pEF15. Sequence analysis of 2.8 kb of the relevant region uncovered three open reading frames, designated ORFA, ccdA, and ORFB, with the latter being oriented divergently. ORFA and ccdA were constitutively cotranscribed as determined by primer extension analysis. In strain TP43 Tn5-mob was inserted into ccdA. The deduced ORFA product showed no similarity to any protein in databases. However, the ccdA gene product exhibited similarities to proteins assigned to different functions in bacteria, such as cytochrome c biogenesis. For these proteins at least six transmembrane helices are predicted with the potential to form a channel with two conserved cysteines. This structural identity suggests that these proteins transfer reducing equivalents from the cytoplasm to the periplasm and that the cysteines bring about this transfer to enable the various specific functions via specific redox mediators such as thioredoxins. CcdA of P. pantotrophus is 42% identical to a protein predicted by ORF2, and its location within the sox gene cluster coding for lithotrophic sulfur oxidation suggested a different function.  相似文献   

16.
Although structurally related to other members of the class I c-type cytochromes, the cytochromes c2 have little amino acid sequence homology to the eukaryotic cytochromes c. Moreover, the cytochromes c2 exhibit distinct properties such as redox potential and an isoelectric point. In an effort to understand the differences between the cytochromes c2 and the other class I c-type cytochromes, we have developed a genetic system to study Rhodobacter capsulatus cytochrome c2 by site-directed mutagenesis. We describe here overproduction of R. capsulatus wild-type cytochrome c2 in cytochrome c2-minus strains of R. capsulatus and Rhodobacter sphaeroides. We demonstrate that R. capsulatus wild-type cytochrome c2 can transcomplement for photosynthetic growth in R. sphaeroides. Further, we describe the generation, expression, and in vivo functionality properties of nine R. capsulatus site-directed mutants. We show that mutants K12D, K14E, K32E, K14E/K32E, P35A, W67Y, and Y75F are overproduced and functional in vivo. In contrast, mutants Y75C and Y75S are expressed at low levels and exhibit poor functionality in vivo. These findings establish an effective system for the production of R. capsulatus site-directed mutants and demonstrate that interspecies complementation can be used to detect defective cytochrome c2 mutants.  相似文献   

17.
Plasmids encoding the structural genes for the Rhodobacter capsulatus and Rhodobacter sphaeroides cytochrome (cyt) bc1 complexes were introduced into strains of R. capsulatus lacking the cyt bc1 complex, with and without cyt c2. The R. capsulatus merodiploids contained higher than wild-type levels of cyt bc1 complex, as evidenced by immunological and spectroscopic analyses. On the other hand, the R. sphaeroides-R. capsulatus hybrid merodiploids produced only barely detectable amounts of R. sphaeroides cyt bc1 complex in R. capsulatus. Nonetheless, when they contained cyt c2, they were capable of photosynthetic growth, as judged by the sensitivity of this growth to specific inhibitors of the photochemical reaction center and the cyt bc1 complex, such as atrazine, myxothiazol, and stigmatellin. Interestingly, in the absence of cyt c2, although the R. sphaeroides cyt bc1 complex was able to support the photosynthetic growth of a cyt bc1-less mutant of R. capsulatus in rich medium, it was unable to do so when C4 dicarboxylic acids, such as malate and succinate, were used as the sole carbon source. Even this conditional ability of R. sphaeroides cyt bc1 complex to replace that of R. capsulatus for photosynthetic growth suggests that in the latter species the cyt c2-independent rereduction of the reaction center is not due to a structural property unique to the R. capsulatus cyt bc1 complex. Similarly, the inability of R. sphaeroides to exhibit a similar pathway is not due to some inherent property of its cyt bc1 complex.  相似文献   

18.
Photosynthetic (Ps) electron transport pathways often contain multiple electron carriers with overlapping functions. Here we focus on two c-type cytochromes (cyt) in facultative phototrophic bacteria of the Rhodobacter genus: the diffusible cyt c2 and the membrane-anchored cyt c(y). In species like R. capsulatus, cyt c(y) functions in both Ps and respiratory electron transport chains, whereas in other species like R. sphaeroides, it does so only in respiration. The molecular bases of this difference was investigated by producing a soluble variant of cyt c(y) (S-c(y)), by fusing genetically the cyt c2 signal sequence to the cyt c domain of cyt c(y). This novel electron carrier was unable to support the Ps growth of R. capsulatus. However, strains harboring cyt S-c(y) regained Ps growth ability by acquiring mutations in its cyt c domain. They produced cyt S-c(y) variants at amounts comparable with that of cyt c2, and conferred Ps growth. Chemical titration indicated that the redox midpoint potential of cyt S-c(y) was about 340 mV, similar to that of cyts c2 or c(y). Remarkably, electron transfer kinetics from the cyt bc1 complex to the photochemical reaction center (RC) mediated by cyt S-c(y) was distinct from those seen with the cyt c2 or cyt c(y). The kinetics exhibited a pronounced slow phase, suggesting that cyt S-c(y) interacted with the RC less tightly than cyt c2. Comparison of structural models of cyts c2 and S-c(y) revealed that several of the amino acid residues implicated in long-range electrostatic interactions promoting binding of cyt c2 to the RC are not conserved in cyt c(y), whereas those supporting short-range hydrophobic interactions are conserved. These findings indicated that attaching electron carrier cytochromes to the membrane allowed them to weaken their interactions with their partners so that they could accommodate more rapid multiple turnovers.  相似文献   

19.
Modular organization of proteins has been postulated as a widely used strategy for protein evolution. The multidomain transmembrane protein DsbD catalyzes the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. Most bacterial species do not have DsbD, but instead their genomes encode a much smaller protein, CcdA, which resembles the central hydrophobic domain of DsbD. We used reciprocal heterologous complementation assays between E.coli and Rhodobacter capsulatus to show that, despite their differences in size and structure, DsbD and CcdA are functional homologs. While DsbD transfers reducing potential to periplasmic protein disulfide bond isomerases and to the cytochrome c thioreduction pathway, CcdA appears to be involved only in cytochrome c biogenesis. Our findings strongly suggest that, by the acquisition of additional thiol-redox active domains, DsbD expanded its substrate specificity.  相似文献   

20.
Unlike other cytochromes, c-type cytochromes have two covalent bonds formed between the two vinyl groups of haem and two cysteines of the protein. This haem ligation requires specific assembly proteins in prokaryotes or eukaryotic mitochondria and chloroplasts. Here, it is shown that Bordetella pertussis is an excellent bacterial model for the widespread system II cytochrome c synthesis pathway. Mutations in four different genes (ccsA, ccsB, ccsX and dipZ) result in B. pertussis strains unable to synthesize any of at least seven c-type cytochromes. Using a cytochrome c4:alkaline phosphatase fusion protein as a bifunctional reporter, it was demonstrated that the B. pertussis wild-type and mutant strains secrete an active alkaline phosphatase fusion protein. However, unlike the wild type, all four mutants are unable to attach haem covalently, resulting in a degraded N-terminal apocytochrome c4 component. Thus, apocytochrome c secretion is normal in each of the four mutants, but all are defective in a periplasmic assembly step (or export of haem). CcsX is related to thioredoxins, which possess a conserved CysXxxXxxCys motif. Using phoA gene fusions as reporters, CcsX was proven to be a periplasmic thioredoxin-like protein. Both the B. pertussis dipZ (i. e. dsbD) and ccsX mutants are corrected for their assembly defects by the thiol-reducing compounds, dithiothreitol and 2-mercaptoethanesulphonic acid. These results indicate that DipZ and CcsX are required for the periplasmic reduction of the cysteines of apocytochromes c before ligation. In contrast, the ccsA and ccsB mutants are not corrected by exogenous reducing agents, suggesting that CcsA and CcsB are required for the haem ligation step itself in the periplasm (or export of haem to the periplasm). Related to this suggestion, the topology of CcsB was determined experimentally, demonstrating that CcsB has four transmembrane domains and a large 435-amino-acid periplasmic region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号