首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
A cellulase component of Avicelase type was obtained from Driselase, a commercial enzyme preparation from a wood-rotting fungus Irpex lacteus (Polyporus tulipiferae). It showed a single band on SDS-polyacrylamide electrophoresis. The amino acid composition of this cellulase resembled those of cellulase components of endo-type from the same fungus. However, it produced exclusively cellobiose from CMC as well as from water-insoluble celluloses such as Avicel or cotton at earlier stages of hydrolysis. In addition, the hydrolysis of CMC practically stopped after an initial rapid stage. The cellulase showed a strong synergistic action with an endo-cellulase of higher randomness (typical CMCase-type) in the hydrolysis of CMC as well as Avicel. In contrast to cellotriose and -tetraose, cellopentaose and -hexaose were attacked very rapidly, and only cellobiose was produced. These results suggest that the cellulase is an exo-type component. However, it mutarotated the products from cellopentaitol in the same direction as endo-cellulases. it represented a relatively large portion of the total cellulase activity, and may play an important role in the degradation of native cellulose in vivo.  相似文献   

2.
A low molecular weight 1,4-beta-D-glucan glucohydrolase from an extracellular culture filtrate of Thermomonospora sp. was purified to homogeneity. The molecular weight of the purified enzyme was 14.2 kDa by MALDI-TOF analysis and is in agreement with SDS-PAGE and gel filtration chromatography. The purified enzyme exhibited both endocarboxymethyl cellulase and endoxylanase activities. A kinetic method was employed to study the active site of the enzyme that hydrolyzes both carboxymethyl cellulose and xylan. The experimental data coincide well with the theoretical values calculated for the case of a single active site. Conformation and microenvironment at the active site was probed with fluorescent chemo-affinity labeling using o-phthalaldehyde as the chemical initiator. Formation of isoindole derivative resulted in complete inactivation of the enzyme to hydrolyze both xylan and CMC as judged by fluorescence studies corroborating a single active site for the hydrolysis of xylan and CMC.  相似文献   

3.
The cellulase system of Clostridium papyrosolvens C7 was fractionated by means of ion-exchange chromatography into at least seven high-molecular-weight multiprotein complexes, each with different enzymatic and structural properties. The molecular weights of the complexes, as determined by gel filtration chromatography, ranged from 500,000 to 660,000, and the isoelectric points ranged from 4.40 to 4.85. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the complexes showed that each complex had a distinct polypeptide composition. Avicelase, carboxymethyl cellulase, and xylanase activity profiles differed from protein complex to protein complex. Three of the complexes hydrolyzed crystalline cellulose (Avicel). Activity zymograms of gels (following electrophoresis under mildly denaturing conditions) revealed different carboxymethyl cellulase-active proteins in all complexes but xylanase-active proteins in only two of the complexes. The xylanase specific activity of these two complexes was more than eightfold higher than that of the unfractionated cellulase preparation. A 125,000-M(r) glycoprotein with no apparent enzyme activity was the only polypeptide present in all seven complexes. Experiments involving recombination of samples eluted from the ion-exchange chromatography column indicated that synergistic interactions occurred in the hydrolysis of crystalline cellulose by the cellulase system. We propose that the C. papyrosolvens enzyme system responsible for the hydrolysis of crystalline cellulose and xylan is a multicomplex system comprising at least seven diverse protein complexes.  相似文献   

4.
Summary Growth and extracellular enzyme production of Cellulomonas sp. ATCC 21399 on carboxymethylcellulose (CMC), microcrystalline cellulose (Avicel), xylan, galactomannan and starch were compared. The bacteria grew poorly on CMC, whereas high cell densities were obtained on the other substrates. Growth on Avicel resulted in extracellular enzyme activities against CMC, Avicel, xylan, galactomannan and amylose. By contrast, growth on xylan, galactomannan and starch induced only the enzymes neccessary for the degradation of the growth substrate. Extracellular proteinase activity could be measured during growth on all substrates but CMC, and the possibility of proteolytic inactivation of some of the unstable enzymes (i.e. Avicelase and amylase) in discussed.  相似文献   

5.
Summary Purified xylanase A ofTrichoderma longibrachiatum was active on one of two carboxymethyl cellulose (CMC) preparations used as cellulase assay substrates. The pattern of enzyme activity, and analysis of the substrate by acid hydrolysis and thin-layer chromatography (TLC) suggested that the enzyme had acted on xylan present in the CMC.  相似文献   

6.
Characterization of a gene encoding cellulase from uncultured soil bacteria   总被引:2,自引:0,他引:2  
To detect cellulases encoded by uncultured microorganisms, we constructed metagenomic libraries from Korean soil DNAs. Screenings of the libraries revealed a clone pCM2 that uses carboxymethyl cellulose (CMC) as a sole carbon source. Further analysis of the insert showed two consecutive ORFs (celM2 and xynM2) encoding proteins of 226 and 662 amino acids, respectively. A multiple sequence analysis with the deduced amino acid sequences of celM2 showed 36% sequence identity with cellulase from the Synechococcus sp., while xynM2 had 59% identity to endo-1,4-beta-xylanase A from Cellulomonas pachnodae. The highest enzymatic CMC hydrolysis was observable at pH 4.0 and 45 degrees C with recombinant CelM2 protein. Although the enzyme CelM2 additionally hydrolyzed avicel and xylan, no substrate hydrolysis was observed on oligosaccharides such as cellobiose, pNP-beta-cellobioside, pNP-beta-glucoside, and pNP-beta-xyloside. These results showed that CelM2 is a novel endo-type cellulase.  相似文献   

7.
An extracellular, 700,000-Mr multiprotein complex that catalyzed the hydrolysis of crystalline cellulose (Avicel) was isolated from cultures of Clostridium sp. strain C7, a mesophile from freshwater sediment. In addition to cellulose (Avicel, ball-milled filter paper), the multiprotein complex hydrolyzed carboxymethylcellulose, cellodextrins, xylan, and xylooligosaccharides. Hydrolysis of cellulose or cellotetraose by the complex yielded cellobiose as the main product. Cellopentaose or cellohexaose was hydrolyzed by the complex to cellotriose or cellotetraose, respectively, in addition to cellobiose. Xylobiose was the main product of xylan hydrolysis, and xylobiose and xylotriose were the major products of xylooligosaccharide hydrolysis. Activity (Avicelase) resulting in hydrolysis of crystalline cellulose required Ca2+ and a reducing agent. The multiprotein complex had temperature optima for Avicelase, carboxymethylcellulase, and xylanase activities at 45, 55, and 55 degrees C, respectively, and pH optima at 5.6 to 5.8, 5.5, and 6.55, respectively. Electron microscopy of the 700,000-Mr enzyme complex revealed particles relatively uniform in size (12 to 15 nm wide) and apparently composed of subunit structures. Elution of strain C7 concentrated culture fluid from Sephacryl S-300 columns yielded an A280 peak in the 130,000-Mr region. Pooled fractions from the 130,000-Mr peak had carboxymethylcellulase activity but lacked Avicelase activity. Except for the inability to hydrolyze cellulose, the 130,000-Mr preparation had a substrate specificity identical to that of the 700,000-Mr protein complex. A comparison by immunoblotting techniques of proteins in the 130,000- and 700,000-Mr preparations, indicated that the two enzyme preparations had cross-reacting antigenic determinants.  相似文献   

8.
Analysis of a carboxymethyl-cellulase clone isolated from the cDNA library of the ruminal fungus, Piromyces rhizinflata 2301, revealed that the clone encoded a polypeptide containing a cellulase catalytic domain, designated CelAcd. CelAcd was flanked by a 28-amino acid linker peptide at the N-terminus and linked to a dockerin domain by a 7-amino acid linker at the C-terminus. CelAcd showed homology with the family 5 of glycosyl hydrolases. CelAcd plus the linker peptides at both termini (designated CelcdN'C') was expressed in Escherichia coli and the purified enzyme was characterized. The feature of particular interest of CelcdN'C' was its bifunctional endo- and exo-glucanase activity, demonstrated by its ability to hydrolyse carboxymethyl cellulose (CMC) and pNP-beta-D-cellobioside. Furthermore, CelcdN'C' exhibited relatively high ability to degrade both microcrystalline Avicel and filter paper. CelcdN'C' also showed activity against barley beta-glucan, Lichenin and oat spelt xylan. The optimal activity conditions for CelcdN'C' with CMC as the substrate were pH 5.5 and 50 degrees C. Fifty percent of the enzyme activity was lost when CelcdN'C' was treated at 55 degrees C for 10 min. CelcdN'C' retained more than 10% enzyme activity after being heated under 90 degrees C for 10 min. Deletion of the N-terminal flanking linker of CelcdN'C' (the resulting protein was designated CelcdC') did not alter the enzymatic function of the catalytic domain. However, the thermal stability of CelcdC' was dramatically reduced. We conclude that the N-terminal flanking linker of CelAcd stabilizes the enzyme protein.  相似文献   

9.
10.
An alpha-l-arabinofuranosidase (EC 3.2.1.55) was purified from the cytoplasm of Butyrivibrio fibrisolvens GS113. The native enzyme had an apparent molecular mass of 240 kDa and was composed of eight polypeptide subunits of 31 kDa. The enzyme displayed an isoelectric point of 6.0, a pH optimum of 6.0 to 6.5, a pH stability of 4.0 to 8.0, and a temperature optimum of 45 degrees C and was stable to 55 degrees C. The K(m) and V(max) for p-nitrophenyl-alpha-l-arabinofuranoside were 0.7 mM and 109 mumol/min/mg of protein, respectively. The enzyme was specific for the furanoside configuration and also readily cleaved methylumbelliferyl-alpha-l-arabinofuranoside but had no activity on a variety of other nitrophenyl- or methylumbelliferyl glycosides. When the enzyme was incubated with cellulose, carboxymethyl cellulose, or arabinogalactan, no release of sugars was found. Arabinose was found as the hydrolysis product of oatspelt xylan, corn endosperm xylan, or beet arabinan. No activity was detected when either coumaric or ferulic acid ester linked to arabinoxylobiose was used as substrates, but arabinoxylobiose was degraded to arabinose and xylobiose. Since B. fibrisolvens GS113 possesses essentially no extracellular arabinofuranosidase activity, the major role of the purified enzyme is apparently in the assimilation of arabinose-containing xylooligosaccharides generated from xylosidase, phenolic esterase, xylanase, and other enzymatic activities on xylans.  相似文献   

11.
Alkaline endo-1,4-beta-d-glucanase was secreted by Bacillus pumilus grown in submerged culture on a combination of oat spelt xylan and corn starch as carbon sources. The enzyme was purified to homogeneity by Sephacryl S-200 and Q-Sepharose column chromatography. The protein corresponded to molecular mass and pI values of 67 kDa and 3.7, respectively. The enzyme was optimally active at pH 7.0-8.0 and 60 degrees C and retained 50% of its optimum activity at pH 12. The most notable characteristic of the endoglucanase was its high stability up to pH 12 for 20 h at 30 degrees C. The enzyme hydrolyzed carboxymethylcellulose (CMC) and cello-oligosaccharides but was inactive on cellobiose, cellotriose, Avicel, xylan, 4-nitrophenyl-beta-d-glucoside, 4-nitrophenyl-beta-d-cellobioside, and 4-nitrophenyl-beta-d-xyloside. Analysis of reaction mixtures by HPLC revealed that the enzyme produced almost exclusively cellotriose when acted on CMC and appeared to hydrolyze cello-oligosaccharides by successively releasing cellotriose. The use of 4-methylumbelliferyl cello-oligosaccharides and the determination of bond cleavage frequency revealed that the enzyme preferentially hydrolyzed the third glycosidic bond adjacent to the glycon. The enzyme mediated a decrease in the viscosity of CMC associated with a release of only small amounts of reducing sugar. The enzyme activity was not inhibited by metal ions, surfactants, and chelating agents used as components of laundry detergents.  相似文献   

12.
A facultatively anaerobic bacterium, Paenibacillus curdlanolyticus B-6, isolated from an anaerobic digester produces an extracellular xylanolytic-cellulolytic enzyme system containing xylanase, β-xylosidase, arabinofuranosidase, acetyl esterase, mannanase, carboxymethyl cellulase (CMCase), avicelase, cellobiohydrolase, β-glucosidase, amylase, and chitinase when grown on xylan under aerobic conditions. During growth on xylan, the bacterial cells were found to adhere to xylan from the early exponential growth phase to the late stationary growth phase. Scanning electron microscopic analysis revealed the adhesion of cells to xylan. The crude enzyme preparation was found to be capable of binding to insoluble xylan and Avicel. The xylanolytic-cellulolytic enzyme system efficiently hydrolyzed insoluble xylan, Avicel, and corn hulls to soluble sugars that were exclusively xylose and glucose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of a crude enzyme preparation exhibited at least 17 proteins, and zymograms revealed multiple xylanases and cellulases containing 12 xylanases and 9 CMCases. The cellulose-binding proteins, which are mainly in a multienzyme complex, were isolated from the crude enzyme preparation by affinity purification on cellulose. This showed nine proteins by SDS-PAGE and eight xylanases and six CMCases on zymograms. Sephacryl S-300 gel filtration showed that the cellulose-binding proteins consisted of two multienzyme complexes with molecular masses of 1,450 and 400 kDa. The results indicated that the xylanolytic-cellulolytic enzyme system of this bacterium exists as multienzyme complexes.  相似文献   

13.
An enzyme active against carboxymethyl cellulose (CMC) was purified from the stationary-phase-culture supernatant of Clostridium josui grown in a medium containing ball-milled cellulose. The purification in the presence of 6 M urea yielded homogeneous enzyme after an approximately 50-fold increase in specific activity and a 13% yield. The enzyme had a molecular mass of 45 kilodaltons. The optimal temperature and pH of the enzyme against CMC were 60 degrees C and 6.8, respectively. The enzyme hydrolyzed cellotetraose, cellopentaose, and cellohexaose to cellobiose and cellotriose but did not hydrolyze cellobiose or cellotriose. A microcrystalline cellulose, Avicel, was also hydrolyzed significantly, but the extent of hydrolysis was remarkably less than that of CMC. On the basis of these results, the enzyme purified here is one of the endo-1,4-beta-glucanases. The N-terminal amino acid sequence of the enzyme is Tyr-Asp-Ala-Ser-Leu-Lys-Pro-Asn-Leu-Gln-Ile-Pro-Gln-Lys-Asn-Ile-Pro-Asn- Asn-Asp-Ala-Val-Asn-Ile-Lys.  相似文献   

14.
A facultatively anaerobic bacterium, Paenibacillus curdlanolyticus B-6, isolated from an anaerobic digester produces an extracellular xylanolytic-cellulolytic enzyme system containing xylanase, beta-xylosidase, arabinofuranosidase, acetyl esterase, mannanase, carboxymethyl cellulase (CMCase), avicelase, cellobiohydrolase, beta-glucosidase, amylase, and chitinase when grown on xylan under aerobic conditions. During growth on xylan, the bacterial cells were found to adhere to xylan from the early exponential growth phase to the late stationary growth phase. Scanning electron microscopic analysis revealed the adhesion of cells to xylan. The crude enzyme preparation was found to be capable of binding to insoluble xylan and Avicel. The xylanolytic-cellulolytic enzyme system efficiently hydrolyzed insoluble xylan, Avicel, and corn hulls to soluble sugars that were exclusively xylose and glucose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of a crude enzyme preparation exhibited at least 17 proteins, and zymograms revealed multiple xylanases and cellulases containing 12 xylanases and 9 CMCases. The cellulose-binding proteins, which are mainly in a multienzyme complex, were isolated from the crude enzyme preparation by affinity purification on cellulose. This showed nine proteins by SDS-PAGE and eight xylanases and six CMCases on zymograms. Sephacryl S-300 gel filtration showed that the cellulose-binding proteins consisted of two multienzyme complexes with molecular masses of 1,450 and 400 kDa. The results indicated that the xylanolytic-cellulolytic enzyme system of this bacterium exists as multienzyme complexes.  相似文献   

15.
Bacillus sp. 11-IS, a strain of thermophilic acidophilic bacteria, produced an extracellular xylanase during growth on xylan. The enzyme purified from the culture supernatant solution was homogeneous on disc-gel electrophoresis. The molecular weight was calculated to be 56,000 by SDS-gel electrophoresis. The enzyme had a pH optimum for activity at 4.0, and its stability range was pH 2.0 ~ 6.0. The temperature optimum was 80°C (10-min assay); however, the enzyme retained full activity after incubation at 70°C for 15 min. The enzyme acted on carboxymethyl cellulose (CMC) and cellulose, as well as on xylan. The Michaelis constants for larchwood xylan and CMC were calculated to be 1.68 mg xylose eq/ml and 0.465 mg glucose eq/ml, respectively. The predominant hydrolysis products from larchwood xylan were xylobiose, xylotriose, and xylose; the release of arabinose from rice-straw arabinoxylan was not detected. CMC was cleaved to cellobiose and larger oligosaccharides. Thus, the enzyme is considered to be an endoenzyme which degrades the β-1,4-glycosyl linkages in xylan and cellulose.  相似文献   

16.
A cellulase from the ruminal fungus Orpinomyces joyonii cloned in Escherichia coli was purified 88-fold by chromatography on High Q and hydroxyapatite. N-terminal amino acid sequence analyses confirmed that the cellulase represented the product of the cellulase gene Cel B2. The purified enzyme possessed high activity toward barley beta-glucan, lichenan, carboxymethyl cellulose (CMC), xylan, but not toward laminarin and pachyman. In addition, the cloned enzyme was able to hydrolyze p-nitrophenyl (PNP)-cellobioside, PNP-cellotrioside, PNP-cellotetraoside, PNP-cellopentaoside, but not PNP-glucopyranoside. The specific activity of the cloned enzyme on barley beta-glucan was 297 units/mg protein. The purified enzyme appeared as a single band in SDS-polyacrylamide gel electrophoresis and the molecular mass of this enzyme (58000) was consistent with the value (56463) calculated from the DNA sequence. The optimal pH of the enzyme was 5.5, and the enzyme was stable between pH 5.0 and pH 7.5. The enzyme had a temperature optimum at 40 degrees C. The K(m) values estimated for barley beta-glucan and CMC were 0.32 and 0.50 mg/ml, respectively.  相似文献   

17.
The extracellular cellulase enzyme system of Clostridium A11 was fractionated by affinity chromatography on Avicel: 80% of the initial carboxymethylcellulase (CMCase) activity was adhered. This cellulase system was a multicomponent aggregate. Several CMCase activities were detected, but the major protein P1 had no detectable activity. Adhered and unadhered cellulases showed CMCase activity with the highest specific activity in Avicel-adhered fraction. However, only afhered fractions could degrade Avicel. Thus, efficiency of the enzymatic hydrolysis of Avicel was related to the cellulase-adhesion capacity. Carboxymethylcellulase and Avicelase activities were studied with the extracellular enzyme system and cloned cellulases. Genomic libraries from Clostridium A11 were constructed with DNA from this Clostridium, and a new gene cel1 was isolated. The gene(s) product(s) from cel1 exhibited CMCase and p-nitrophenylcellobiosidase (pNPCbase) activities. This cloned cellulase adhered to cellulose. Synergism between adhered enzyme system and cloned endoglucanases was observed on Avicel degradation. Conversely, no synergism was observed on CMC hydrolysis. Addition of cloned endoglucanase to cellulase complex led to increase of the Vmax without significant K m variation. Cloned endoglucanases can be added to cellulase complexes to efficiently hydrolyze cellulose.  相似文献   

18.
Two endoglucanases with processive cellulase activities, produced from Fomitopsis palustris grown on 2% microcrystalline cellulose (Avicel), were purified to homogeneity by anion-exchange and gel filtration column chromatography systems. SDS-PAGE analysis indicated that the molecular masses of the purified enzymes were 47 kDa and 35 kDa, respectively. The amino acid sequence analysis of the 47-kDa protein (EG47) showed a sequence similarity with fungal glycoside hydrolase family 5 endoglucanase from the white-rot fungus Phanerochaete chrysosporium. N-terminal and internal amino acid sequences of the 35-kDa protein (EG35), however, had no homology with any other glycosylhydrolases, although the enzyme had high specific activity against carboxymethyl cellulose, which is a typical substrate for endoglucanases. The initial rate of Avicel hydrolysis by EG35 was relatively fast for 48 h, and the amount of soluble reducing sugar released after 96 h was 100 microg/ml. Although EG47 also hydrolyzed Avicel, the hydrolysis rate was lower than that of EG35. Thin layer chromatography analysis of the hydrolysis products released from Avicel indicated that the main product was cellobiose, suggesting that the brown-rot fungus possesses processive EGs capable of degrading crystalline cellulose.  相似文献   

19.
Among 180 Streptomyces strains tested, 25 were capable of hydrolyzing microcrystalline cellulose (Avicel) at 30°C. Streptomyces reticuli was selected for further studies because of its ability to grow at between 30 and 50°C on Avicel. Enzymatic activities degrading Avicel, carboxymethyl cellulose, and cellobiose were found both in the culture supernatant and in association with the mycelium and crystalline substrate. The bound enzymes were efficiently solubilized by repeated washes with buffer of low ionic strength (50 mM Tris hydrochloride [pH 7.5]) and further purified by fast protein liquid chromatography. A high-molecular-weight Avicelase of >300 kilodaltons could be separated from carboxymethyl cellulase (CMCase) and β-glucosidase activities (molecular mass, 40 to 50 kilodaltons) by gel filtration on Superose 12. The CMCase fraction was resolved by Mono Q anion-exchange chromatography into two enzymes designated CMCase 1 and CMCase 2. The β-glucosidase activity was found to copurify with CMCase 2. The purified cellulase components showed optimal activity at around pH 7.0 and temperatures of between 45 and 50°C. Avicelase (but not CMCase) activity was stimulated significantly by the addition of CaCl2.  相似文献   

20.
A cellulase (endo-beta-1,4-D-glucanase, EC 3.2.1.4) from blue mussel (Mytilus edulis) was purified to homogeneity using a combination of acid precipitation, heat precipitation, immobilized metal ion affinity chromatography, size-exclusion chromatography and ion-exchange chromatography. Purity was analyzed by SDS/PAGE, IEF and RP-HPLC. The cellulase (endoglucanase) was characterized with regard to enzymatic properties, isoelectric point, molecular mass and amino-acid sequence. It is a single polypeptide chain of 181 amino acids cross-linked with six disulfide bridges. Its molecular mass, as measured by MALDI-MS, is 19 702 Da; a value of 19 710.57 Da was calculated from amino-acid composition. The isoelectric point of the enzyme was estimated by isoelectric focusing in a polyacrylamide gel to a value of 7.6. According to amino-acid composition, the theoretical pI is 7.011. The effect of temperature on the endoglucanase activity, with carboxymethyl cellulose and amorphous cellulose as substrates, respectively, was studied at pH 5.5 and displayed an unusually broad optimum activity temperature range between 30 and 50 degrees C. Another unusual feature is that the enzyme retains 55-60% of its maximum activity at 0 degrees C. The enzyme readily degrades amorphous cellulose and carboxymethyl cellulose but displays no hydrolytic activity towards crystalline cellulose (Avicel) and shows no cross-specificity for xylan; there is no binding to Avicel. The enzyme can withstand 10 min at 100 degrees C without irreversible loss of enzymatic activity. Amino-acid sequence-based classification has revealed that the enzyme belongs to the glycoside hydrolase family 45, subfamily 2 (B. Henrissat, Centre de Recherches sur les Macromolecules Végétales, CNRS, Joseph Fourier Université, Grenoble, France, personal communication).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号