首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulindac is a sulfoxide prodrug that, in vivo, is converted to the metabolites sulindac sulfide and sulindac sulfone. It is therapeutically used as an anti-inflammatory and analgesic in the symptomatic treatment of acute and chronic rheumatoid arthritis, osteoarthritis, and ankylosing spondylitis. In addition to its anti-inflammatory properties, sulindac and its metabolites have been shown to have an important role in the prevention of colonic carcinogenesis. Although the inhibition of prostaglandin synthesis constitutes the primary mechanism of action of sulindac, it is well known that reactive oxygen species (ROS) and reactive nitrogen species (RNS) are implicated in the pathophysiology of inflammation and cancer. Thus, the aim of this study was to evaluate the scavenging activity of sulindac and its sulfone and sulfide metabolites for an array of ROS (HO*, O2(*-), and HOCl) and RNS (*NO and ONOO-) using in vitro systems. The results we obtained demonstrate that the metabolism of sulindac increases its scavenging activity for all RNS and ROS studied, notably with regard to the scavenging of HOCl. These effects may strongly contribute to the anti-inflammatory and anticarcinogenic efficacy that has been shown for sulindac.  相似文献   

2.
Background: A recent study conducted by Medina et al. disclosed that virgin olive oil has a bactericidal effect in vitro against Helicobacter pylori because of its contents of certain phenolic compounds with dialdehydic structures. We carried out two clinical trials to evaluate the effect of virgin olive oil on H. pylori‐infected individuals. Materials and Methods: Two different pilot studies were performed with 60 H. pylori‐infected adults. In the first study, thirty subjects who tested positive for H. pylori received 30 g of washed virgin olive oil for 14 days, and after 1 month, the patients took 30 g of unwashed virgin olive oil for another 14 days. In a second study, a group of 30 subjects received 30 g of a different virgin olive oil for 14 days. Helicobacter pylori‐infection status was checked by the urea breath test. Results: Helicobacter pylori was eradicated in 8 of 30 individuals when microorganism status was checked after 4–6 weeks from the first clinical intervention although 12 of 30 individuals did not show H. pylori infection at 24–72 hour of the last oil dose. Eradication rates were 27 and 40% by intention to treat and per protocol, respectively. Moreover, only 3 of 30 individuals were H. pylori negative after 4–6 weeks from the second clinical intervention but 5 of 30 were negative at 24–72 hour of the last oil dose. Eradication rates were 10 and 11% by intention to treat and per protocol, respectively. It must also be noted that 13 subjects withdrew from the studies because of taste and nausea drawbacks. Conclusions: The administration of virgin olive oil showed moderate effectiveness in eradicating H. pylori. Further studies are needed to confirm these findings, especially with longer periods, different administration conditions, and several types of olive oils.  相似文献   

3.
Some biological actions of olive oil phenolics (inhibition of platelet aggregation, decrease of LDL-oxidation, inhibition of bacterial growth and hypertensive action) have been attributed to NOS stimulation in endothelial cells through an increase of cytosolic calcium, notwithstanding the scavenging activity of phenolics on NO and superoxide. In this paper, we determine the concentration of cytosolic calcium in human lymphomonocytes incubated with high concentrations of NO-donors (CysNO) and we evaluate the effects of olive oil phenolics on this parameter. CysNO induces a marked decrease of cytosolic calcium; both olive oil phenolics oppose this action of CysNO. The effects of phenolics and CysNO are independent and additive. (Mol Cell Biochem xxx: 181–184, 2005)  相似文献   

4.
Interest in the health-promoting effects of virgin olive oil, an important part of the "Mediterranean diet", prompted us to determine the antiinflammatory effects of erythrodiol, beta-sitosterol and squalene, identified as major components of the so-called "unsaponifiable fraction" of virgin olive oil, as well as of the phenolic compounds from the "polar fraction": oleuropein, tyrosol, hydroxytyrosol and caffeic acid. Their activities were compared to those of both, total unsaponifiable and polar fractions. This study was designed to analyse the antiinflammatory effect of these specific compounds from virgin olive oil on edema in mice induced by either arachidonic acid (AA) or 12-O-tetradecanoylphorbol acetate (TPA). The inhibition of the myeloperoxidase (MPO), marker enzyme of the accumulation of neutrophils in the inflamed tissue, was also investigated by the TPA model. The topical application of the olive oil compounds (0.5 mg/ear) produced a variable degree of antiinflammatory effect with both assays. In the auricular edema induced by TPA, beta-sitosterol and erythrodiol from the unsaponifiable fraction of the oil showed a potent antiedematous effect with a 61.4% and 82.1% of inhibition respectively, values not very different to that of the reference indomethacin (85.6%) at 0.5 mg/ear. The four phenolics exerted a similar range of inhibition (33-45%). All compounds strongly inhibited the enzyme myeloperoxidase, indicating a reduction of the neutrophil influx in the inflamed tissues. The strongest inhibitor of AA edema was the total unsaponifiable fraction which inhibition was 34%, similar to that obtained by the reference drug dexamethasone at 0.05 mg/ear. Among the phenolics, oleuropein also produced an inhibition of about 30% with the same dose, but all the other components were found less active in this assay. The anti-inflammatory effects exerted by both unsaponifiable and polar compounds might contribute to the potential biological properties reported for virgin olive oil against different pathological processes.  相似文献   

5.
The survival of four strains of yeast belonging to the speciesSaccharomyces cerevisiae, Candida wickerhamii, Candida boidinii andWilliopsis californica was studied in extra virgin olive oil flavoured with garlic, lemon, oregano and red chilli pepper. The ingredients used in the doses of 1%, 5% and 10% profoundly modified the habitat of the extra virgin olive oil, reducing drastically, in 90 days of storage, the survival of the yeasts by 20–50%, in the following decreasing order: lemon, garlic, oregano and red chilli pepper. Among the yeasts studied,W. californica strain 1639 was found to be one of the most sensitive, whileS. cerevisiae strain 1525 was one of the most tolerant regarding the ingredients present in the flavoured olive oil. The observations carried out with a scanning electron microscope (SEM) highlighted the presence of frequent lesions on the cellular wall ofC. wickerhamii 1532,C. boidinii 1638 andS. cerevisiae 1525 and only in a few rare cases inW. californica 1639. Nevertheless, since the survival ofW. californica 1639 in the flavoured olive oil was compromised to a greater extent in respect to the other species, it is plausible to deduct that the damage to the cellular wall represents only one of the causes responsible for the death of the yeasts in the flavoured olive oil.  相似文献   

6.
7.
Enzymatic synthesis of sn-1,3-diacylglycerols (sn-1,3-DAG) in two steps without isolation of the intermediates was investigated. Firstly ethanolysis of extra virgin olive oil (EVO) using immobilized non-regiospecific lipase from Candida antarctica (Novozym 435) was carried out to obtain glycerol (Gly) and fatty acid ethyl esters (FAEE). In the second step the ethanolysis products have been re-esterificated testing different sn-1,3-regiospecific lipases, both immobilized and non-immobilized, in different reaction media, that is in the presence of solvents or in a solvent-free system, for different times, at different temperatures (12, 25 and 40 °C). The lipase from Rhizomucor miehei (Lipozyme IM) has been the most effective among the sn-1,3-specific lipases screened.  相似文献   

8.
The Mediterranean diet is associated with a lower incidence of chronic degenerative diseases and higher life expectancy. These health benefits have been partially attributed to the dietary consumption of extra virgin olive oil (EVOO) by Mediterranean populations, and more specifically the phenolic compounds naturally present in EVOO. Studies involving humans and animals (in vivo and in vitro) have demonstrated that olive oil phenolic compounds have potentially beneficial biological effects resulting from their antimicrobial, antioxidant and anti-inflammatory activities. This paper summarizes current knowledge on the biological activities of specific olive oil phenolic compounds together with information on their concentration in EVOO, bioavailability and stability over time.  相似文献   

9.
10.
The effects of reactive oxygen species (superoxide anion radical--O(2)*-, hydrogen peroxide--H(2)O(2) and hydroxyl radical--*OH; the reaction products of xanthine plus xanthine oxidase system) and reactive nitrogen species [nitric oxide--NO*; from 1-hydroxyl-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene--NOC7 and peroxynitrite--ONOO(-)] on the activities of purified cyclooxygenase (COX)-1 and -2 were studied. Xanthine plus xanthine oxidase suppressed the COX-1 and -2 activities in a xanthine oxidase concentration-dependent fashion. This effect was reversed by addition of catalase to the reactive oxygen species-generating system but not by superoxide dismutase or mannitol, indicating that H(2)O(2) is the responsible metabolite. NOC7 activated the COX-1 activity but inhibited the COX-2 activity at concentrations ranging from 1 to 50 microM. Experiments utilizing a NO* antidote, carboxy-2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide revealed that the observed effects of NOC7 are caused by NO*.ONOO(-), a product of NO* and O(2)*-, both activated and inhibited the COX-1 and -2 activities, depending on ONOO(-) concentration. At a low concentration of ONOO(-) (5 microM) there was enhancement of the COX-1 and -2 activities, but with higher concentrations there was suppression of these two enzyme activities (COX-1, at 200 microM; COX-2, >50 microM). These results suggest that H(2)O(2), NO* and ONOO(-) can have different modulatory effects on the COX-1 and -2 activities.  相似文献   

11.
Molecular Biology Reports - Experimental evidence highlights the importance of dietetic factors on breast cancer. In this work we aimed to analyze the effects two oils, corn oil (rich in n-6...  相似文献   

12.
Nitrite is reduced to nitric oxide (NO) in the oral cavity. The NO generated can react with molecular oxygen producing reactive nitrogen species. In this study, reduction of nitrite to NO was observed in bacterial fractions of saliva and whole saliva. Formation of reactive nitrogen species from NO was detected by measuring the transformation of 4,5-diaminofluorescein (DAF-2) to triazolfluorescein (DAF-2T). The transformation was fast in bacterial fractions but slow in whole saliva. Salivary components such as ascorbate, glutathione, uric acid and thiocyanate inhibited the transformation of DAF-2 to DAF-2T in bacterial fractions without affecting nitrite-dependent NO production. The inhibition was deduced to be due to scavenging of reactive nitrogen species, which were formed from NO, by the above reagents. The transformation of DAF-2 to DAF-2T was faster in bacterial fractions and whole saliva which were prepared 1-4 h after tooth brushing than those prepared immediately after toothbrushing. Increase in the rate as a function of time after toothbrushing seemed to be due to the increase in population of bacteria which could reduce nitrite to NO. The results obtained in this study suggest that reactive nitrogen species derived from NO are continuously formed in the oral cavity and that the reactive nitrogen species are effectively scavenged by salivary redox components in saliva but the scavenging is not complete.  相似文献   

13.
The endothelium is involved in many of the processes related to the development of atherosclerosis, which is considered an inflammatory disease. Actually, traditional risk factors for atherosclerosis predispose to endothelial dysfunction, which is manifested as an increase in the expression of specific cytokines and adhesion molecules. There are firm evidence supporting the beneficial effects of olive oil, the most genuine component of the Mediterranean diet. Although the effects of olive oil and other oleic acid-rich dietary oils on atherosclerosis and plasma lipids are well known, the roles of minor components have been less investigated. Minor components constitute only 1-2% of virgin olive oil (VOO) and are composed of hydrocarbons, polyphenols, tocopherols, sterols, triterpenoids and other components usually found in traces. Despite their low concentration, non-fatty acid constituents may be of importance because studies comparing monounsaturated dietary oils have reported different effects on cardiovascular disease. Most of these compounds have demonstrated antioxidant, anti-inflammatory and hypolipidemic properties. In this review, we summarize current knowledge on the effects of these compounds contained in VOO on vascular dysfunction and the mechanisms by which they modulate endothelial activity. Such mechanisms involve the release of nitric oxide, eicosanoids (prostaglandins and leukotrienes) and adhesion molecules, in most cases by activation of nuclear factor kappaB by reactive oxygen species.  相似文献   

14.
As olive oil is the main source of calories in the Mediterranean diet, a great deal of research has been devoted to characterizing its role in atherosclerosis. Virgin olive oil is an oily matrix that contains hydrocarbons, mainly squalene; triterpenes such as uvaol, erythrodiol, oleanolic, and maslinic acid; phytosterols; and a wide range of phenolic compounds comprising simple phenols, flavonoids, secoiridoids, and lignans. In this review, we analyze the studies dealing with atherosclerosis and olive oil in several species. A protective role of virgin olive oil against atherosclerosis has been shown in ApoE-deficient mice and hamsters. In the former animal, sex, dose, and dietary cholesterol are modulators of the outcome. Contradictory findings have been reported for rabbits, a circumstance that could be due to the profusion of experimental designs, differing in terms of doses and animal strains, as well as sources of olive oils. This role has yet to be fully validated in humans. Minor components of olive oil have been shown to be involved in atherosclerosis protection. Nevertheless, evidence of the potential of isolated compounds or the right combination of them to achieve the antiatherosclerotic effect of virgin olive oil is inconclusive and will undoubtedly require further experimental support.  相似文献   

15.
有氧代谢不可避免产生活性氧(ROS),叶绿体的PSI和PSII反应中心均是ROS产生的主要位点。叶绿体产生的ROS主要有超氧阴离子(O2-)、过氧化氢(H2O2)、羟自由基(.OH)和单线氧(1O2),其中在PSI产生的O2-将进一步产生H2O2和.OH,而1O2产生在PSII。正常生理代谢条件下,叶绿体内抗氧化系统和光能吸收利用的调节保持活性氧产生和消灭的平衡,不会影响植物的正常生理功能。  相似文献   

16.
Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.  相似文献   

17.
18.
Biological aspects of reactive nitrogen species.   总被引:19,自引:0,他引:19  
Nitric oxide (NO) plays an important role as a cell-signalling molecule, anti-infective agent and, as most recently recognised, an antioxidant. The metabolic fate of NO gives rise to a further series of compounds, collectively known as the reactive nitrogen species (RNS), which possess their own unique characteristics. In this review we discuss this emerging aspect of the NO field in the context of the formation of the RNS and what is known about their effects on biological systems. While much of the insight into the RNS has been gained from the extensive chemical characterisation of these species, to reveal biological consequences this approach must be complemented by direct measures of physiological function. Although we do not know the consequences of many of the dominant chemical reactions of RNS an intriguing aspect is now emerging. This review will illustrate how, when specificity and amplification through cell signalling mechanisms are taken into account, the less significant reactions, in terms of yield or rates, can explain many of the biological responses of exposure of cells or physiological systems to RNS.  相似文献   

19.
Olive oil mill wastewaters (OOMW) cause a recurrent environmental pollution problem. The large concentration of phenolic compounds in the organic fraction of OOMW is principally responsible for the phytotoxicity and microbial growth inhibitory effects of the effluent. Candida boidinii, Geotrichum candidum, a Penicillium sp. and Aspergillus niger HA37 were isolated from OOMW. When cultivated directly on an undiluted OOMW-based medium containing 82 g l−1 COD, these strains removed only 4–8% of chemical oxygen demand (COD) and phenolics. In contrast, reduction values attaining respectively 40–73% for phenolics and 45–78% for COD removal in the undiluted OOMW-based medium were obtained when using the strains gradually acclimated to high concentration of OOMW by successive stepwise transfer from media containing COD of 20.5 up to 82 g l−1. Possibly, a sufficient production level of degradation and/or detoxification enzymes has to be attained to overcome the toxic effects of the phenolic fraction of concentrated OOMW. The present investigation calls attention to the necessity of acclimation for certain fungal and yeasts strains potentially useful for treating highly polluted effluents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号