首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydroxytyrosol is one of the o-diphenolic compounds in extra virgin olive oil and has been suggested to be a potent antioxidant. The superoxide radical (O2*-) and nitric oxide (NO*) can react very rapidly to form peroxynitrite (ONOO ), a reactive tissue damaging species thought to be involved in the pathology of several chronic diseases. Hydroxytyrosol was highly protective against the peroxynitrite-dependent nitration of tyrosine and DNA damage by peroxynitrite in vitro. Given that extra virgin olive oil is consumed daily by many humans, hydroxytyrosol derived from this diet could conceivably provide a defense against damage by oxidants in vivo. The biological activity of hydroxytyrosol in vivo will depend on its intake, uptake and access to cellular compartments.  相似文献   

2.
Interest in the health-promoting effects of virgin olive oil, an important part of the "Mediterranean diet", prompted us to determine the antiinflammatory effects of erythrodiol, beta-sitosterol and squalene, identified as major components of the so-called "unsaponifiable fraction" of virgin olive oil, as well as of the phenolic compounds from the "polar fraction": oleuropein, tyrosol, hydroxytyrosol and caffeic acid. Their activities were compared to those of both, total unsaponifiable and polar fractions. This study was designed to analyse the antiinflammatory effect of these specific compounds from virgin olive oil on edema in mice induced by either arachidonic acid (AA) or 12-O-tetradecanoylphorbol acetate (TPA). The inhibition of the myeloperoxidase (MPO), marker enzyme of the accumulation of neutrophils in the inflamed tissue, was also investigated by the TPA model. The topical application of the olive oil compounds (0.5 mg/ear) produced a variable degree of antiinflammatory effect with both assays. In the auricular edema induced by TPA, beta-sitosterol and erythrodiol from the unsaponifiable fraction of the oil showed a potent antiedematous effect with a 61.4% and 82.1% of inhibition respectively, values not very different to that of the reference indomethacin (85.6%) at 0.5 mg/ear. The four phenolics exerted a similar range of inhibition (33-45%). All compounds strongly inhibited the enzyme myeloperoxidase, indicating a reduction of the neutrophil influx in the inflamed tissues. The strongest inhibitor of AA edema was the total unsaponifiable fraction which inhibition was 34%, similar to that obtained by the reference drug dexamethasone at 0.05 mg/ear. Among the phenolics, oleuropein also produced an inhibition of about 30% with the same dose, but all the other components were found less active in this assay. The anti-inflammatory effects exerted by both unsaponifiable and polar compounds might contribute to the potential biological properties reported for virgin olive oil against different pathological processes.  相似文献   

3.
Major phenolic compounds in olive oil: metabolism and health effects   总被引:1,自引:0,他引:1  
It has been postulated that the components in olive oil in the Mediterranean diet, a diet which is largely vegetarian in nature, can contribute to the lower incidence of coronary heart disease and prostate and colon cancers. The Mediterranean diet includes the consumption of large amounts of olive oil. Olive oil is a source of at least 30 phenolic compounds. The major phenolic compounds in olive oil are oleuropein, hydroxytyrosol and tyrosol. Recently there has been a surge in the number of publications that has investigated their biological properties. The phenolic compounds present in olive oil are strong antioxidants and radical scavengers. Olive "waste water" also possesses compounds which are strong antioxidant and radical scavengers. Typically, hydroxytyrosol is a superior antioxidant and radical scavenger to oleuropein and tyrosol. Hydroxytyrosol and oleuropein have antimicrobial activity against ATTC bacterial strains and clinical bacterial strains. Recent syntheses of labeled and unlabelled hydroxytyrosol coupled with superior analytical techniques have enabled its absorption and metabolism to be studied. It has recently been found that hydroxytyosol is renally excreted unchanged and as the following metabolites as its glucuronide conjugate, sulfate conjugate, homovanillic acid, homovanillic alcohol, 3,4-dihydroxyphenylacetic acid and 3,4-dihydroxyphenylacetaldehyde. Studies with tyrosol have shown that it is excreted unchanged and as its conjugates. This review summarizes the antioxidant abilities; the scavenging abilities and the biological fates of hydroxytyrosol, oleuropein and tyrosol which have been published in recent years.  相似文献   

4.
This study was undertaken to evaluate, in humans, the antioxidant activity of olive oil phenolics, namely hydroxytyrosol and oleuropein aglycone that share an orthodiphenolic (catecholic) structure. Human volunteers were administered olive oil samples containing increasing amounts of an olive oil phenolic extract that was characterized by gas-chromatography/mass spectrometry. The administration of phenol-rich oils was dose-dependently associated with a decreased urinary excretion of 8-iso-PGF(2alpha), a biomarker of oxidative stress. Also, a statistically significant negative correlation between homovanillyl alcohol (HValc, hydroxytyrosol's major metabolite, formed through the COMT system) and F(2)-isoprostanes excretion was found. Thus, the administration of oil samples with increasing, albeit low, concentrations of orthodiphenolic compounds, namely hydroxytyrosol and oleuropein aglycone, results in a dose-dependent reduction in the urinary excretion of 8-iso-PGF(2alpha). The statistically significant negative correlation between 8-iso-PGF(2alpha) and HValc urinary concentrations suggests that this metabolite better reflects the in vivo activities of hydroxytyrosol.  相似文献   

5.
The Mediterranean diet, which is abundant in antioxidants, is associated with a relatively low incidence of coronary heart disease. Olive oil and olives, which contain the antioxidants hydroxytyrosol, oleuropein, and tyrosol, are important components of this diet. In this study, the effects of oxidative stress on the nitric oxide radical (NO(*))-mediated relaxation of rat aorta and the protection by these antioxidants were determined. Cumene hydroperoxide (CHP) was used to mimic oxidative stress induced by lipid hydroperoxides, which is mediated by the formation of hydroxyl radicals (OH(*)). CHP (300 microM) impaired the NO(*)-mediated relaxation of rat aorta by the acetylcholine receptor agonist carbachol (P < 0.05). This was due to a reduction in NO(*) production. A diminished NO(*)-mediated relaxation disturbs the vascular tone and leads to a rise in blood pressure, which is a well-established risk factor for coronary heart disease. Hydroxytyrosol (10 microM) efficiently protected the aorta against the CHP-induced impairment of the NO(*)-mediated relaxation (P < 0.05). Oleuropein, tyrosol, and homovanillic alcohol, a major metabolite of hydroxytyrosol, did not show protection. Moreover, hydroxytyrosol was found to be a potent OH(*) scavenger, which can be attributed to its catechol moiety. Because of its amphiphilic characteristics (octanol-water partitioning coefficient = 1.1), hydroxytyrosol will readily cross membranes and provide protection in the cytosol and membranes, including the water-lipid interface. The present study provides a molecular basis for the contribution of hydroxytyrosol to the benefits of the Mediterranean diet.  相似文献   

6.
Olive oil intake has been shown to induce significant levels of apoptosis in various cancer cells. These anti-cancer properties are thought to be mediated by phenolic compounds present in olive. These beneficial health effects of olive have been attributed, at least in part, to the presence of oleuropein and hydroxytyrosol. In this study, oleuropein and hydroxytyrosol, major phenolic compound of olive oil, was studied for its effects on growth in MCF-7 human breast cancer cells using assays for proliferation (MTT assay), cell viability (Guava ViaCount assay), cell apoptosis, cellcycle (flow cytometry). Oleuropein or hydroxytyrosol decreased cell viability, inhibited cell proliferation, and induced cell apoptosis in MCF-7 cells. Result of MTT assay showed that 200 μg/mL of oleuropein or 50 μg/mL of hydroxytyrosol remarkably reduced cell viability of MCF-7 cells. Oleuropein or hydroxytyrosol decrease of the number of MCF-7 cells by inhibiting the rate of cell proliferation and inducing cell apoptosis. Also hydroxytyrosol and oleuropein exhibited statistically significant block of G1 to S phase transition manifested by the increase of cell number in G0/G1 phase.  相似文献   

7.
Hydroxytyrosol, tyrosol, and oleuropein, the main phenols present in extra virgin olive oil, have been reported to exert several biochemical and pharmacological effects.Here, we investigated the short-term effects of these compounds on lipid synthesis in primary-cultured rat-liver cells. Hydroxytyrosol, tyrosol and oleuropein inhibited both de novo fatty acid and cholesterol syntheses without an effect on cell viability. The inhibitory effect of individual compounds was already evident within 2 h of 25 μM phenol addition to the hepatocytes. The degree of cholesterogenesis reduction was similar for all phenol treatments (−25/30%), while fatty acid synthesis showed the following order of inhibition: hydroxytyrosol (−49%) = oleuropein (−48%) > tyrosol (−30%). A phenol-induced reduction of triglyceride synthesis was also detected.To clarify the lipid-lowering mechanism of these compounds, their influence on the activity of key enzymes of fatty acid biosynthesis (acetyl-CoA carboxylase and fatty acid synthase), triglyceride synthesis (diacylglycerol acyltransferase) and cholesterogenesis (3-hydroxy-3-methyl-glutaryl-CoA reductase) was investigated in situ by using digitonin-permeabilized hepatocytes. Acetyl-CoA carboxylase, diacylglycerol acyltransferase and 3-hydroxy-3-methyl-glutaryl-CoA reductase activities were reduced after 2 h of 25 μM phenol treatment. No change in fatty acid synthase activity was observed. Acetyl-CoA carboxylase inhibition (hydroxytyrosol, −41%, = oleuropein, −38%, > tyrosol, −17%) appears to be mediated by phosphorylation of AMP-activated protein kinase. These findings suggest that a decrease in hepatic lipid synthesis may represent a potential mechanism underlying the reported hypolipidemic effect of phenols of extra virgin olive oil.  相似文献   

8.
The aim of this work is to study the conversion of oleuropein-a polyphenol present in olives and olive oil by-products-into hydroxytyrosol, a polyphenol with antioxidant and antibacterial properties. The hydrolysis reaction is performed by lactic acid bacteria. Six bacterial strains (Lactobacillus plantarum 6907, Lactobacillus paracasei 9192, Lactobacillus casei, Bifidobacterium lactis BO, Enterococcus faecium 32, Lactobacillus LAFTI 10) were tested under aerobic and anaerobic conditions. The oleuropein degradation and hydroxytyrosol formation were monitored by HPLC. Results showed that oleuropein could be successfully converted into hydroxytyrosol. The most effective strain was Lactobacillus plantarum 6907, with a reaction yield of hydroxytyrosol of about 30 %. Different reaction mechanisms were observed for different microorganisms; a different yield was observed for Lactobacillus paracasei 9192 under aerobic or anaerobic conditions and an intermediate metabolite (oleuropein aglycone) was detected for Lactobacillus paracasei 9192 and Lactobacillus plantarum 6907 only. This study could have significant applications, as this reaction can be used to increase the value of olive oil by-products and/or to improve the taste of unripe olives.  相似文献   

9.
The antioxidant activity of hydroxytyrosol, hydroxytyrosol acetate, oleuropein, 3,4-dihydroxyphenylelenolic acid (3,4-DHPEA-EA) and 3,4-dihydroxyphenylelenolic acid dialdehyde (3,4-DHPEA-EDA) towards oxidation initiated by 2,2'-azobis(2-amidinopropane) hydrochloride in a soybean phospholipid liposome system was studied. The antioxidant activity of these olive oil phenols was similar and the duration of the lag phase was almost twice that of alpha-tocopherol. Trolox, a water-soluble analogue of alpha-tocopherol, showed the worst antioxidant activity. However, oxidation before the end of the lag phase was inhibited less effectively by the olive oil phenols than by alpha-tocopherol and Trolox. Synergistic effects (11-20% increase in lag phase) were observed in the antioxidant activity of combinations of alpha-tocopherol with olive oil phenols both with and without ascorbic acid. Fluorescence anisotropy of probes and fluorescence quenching studies showed that the olive oil phenols did not penetrate into the membrane, but their effectiveness as antioxidants showed they were associated with the surface of the phospholipid bilayer.  相似文献   

10.
Recent in vitro studies have demonstrated antioxidant properties of some virgin olive oil phenolic compounds. One of the prerequisites to extrapolate these data to an in vivo situation is the knowledge of their bioavailability in humans. In the present work we describe an analytical method which enables us to perform hydroxytyrosol and tyrosol quantitative determinations in human urine. This method was successfully used in bioavailability studies of both phenolic compounds after acute olive oil administration. Virgin olive oil was administered to healthy volunteers after a low phenolic diet. The dose administered of both phenolic compounds was estimated in reference to free forms of hydroxytyrosol and tyrosol present in virgin olive oil extracts before and after being submitted to hydrolytic conditions. These conditions mimic those occurring during digestion. Urine samples were collected before and after acute olive oil intake and analyzed by capillary gas chromatography-mass spectrometry. Hydroxytyrosol and tyrosol urinary recovery increased in response to olive oil administration, obtaining maximal values in the first 4 h. Our results further indicate that hydroxytyrosol and tyrosol are mainly excreted in conjugated form, since only 5.9 +/- 1.4% (hydroxytyrosol) and 13.8 +/- 5.4% (tyrosol) of the total amounts excreted in urine were in free form.  相似文献   

11.
The pentacyclic triterpene maslinic acid (MA) is a natural compound present in the non glyceride fraction of pomace olive oil, also called orujo olive oil. This compound has previously demonstrated antioxidant properties against lipid peroxidation in vitro, but its effects on reactive oxygen and nitrogen-derived species and pro-inflammatory cytokines generated by a cell system have not yet been investigated. In this study, we have tested the effect of MA upon oxidative stress and cytokine production using peritoneal murine macrophages. MA significantly inhibited the enhanced production of nitric oxide (NO) induced by lypopolysaccharide (LPS) when it was measured by the nitrite production with an inhibitory concentration 50% value (IC(50)) of 25.4 microM. This inhibiting effect seems to be consequence of an action at the level of the LPS-induction of the inducible nitric oxide synthethase (iNOS) gene enzyme expression rather than to a direct inhibitory action on enzyme activity. The secretion of the inflammatory cytokines interleukine-6 and TNF-a from LPS-stimulated murine macrophages was also significantly reduced (p < 0.05 and 0.01) by 50 and 100 microM of MA. In addition, reactive oxygen species were measured after stimulation with phorbol-12-myristate-13-acetate (PMA). Thus, pre-treatment with MA reduced the generation of hydrogen peroxide from stimulated macrophages in a dose-dependent manner (IC(50): 43.6 microM) as assayed by the oxidation of the peroxidase enzyme. However, no inhibitory effect on superoxide release, measured by the reduction of ferricytochrome c, was observed after the pretreatment with MA in the culture medium.These results suggest a potential biopharmaceutical use of this hydroxy-pentacyclic triterpene derivative, present in orujo olive oil, on preventing oxidative stress and pro-inflammatory cytokine generation.  相似文献   

12.
A central role in the oxidative development of atherosclerotic lesions has been ascribed to the peroxidation of plasma low-density lipoprotein (LDL). Dietary supplementation with virgin olive oils increases the total plasma antioxidant status and the resistance of low-density lipoprotein to ex vivo oxidation. We have studied the effects of some dietary non-flavonoid phenols from Olea europaea L., both in purified form or in complex mixtures obtained by biotransformation of olive leaf extracts, on the LDL oxidation induced by Cu2+ ions. Cu2+-Induced LDL oxidation is inhibited by oleuropein and hydroxytyrosol in the initiation phase of the reaction at concentrations of phenols higher than that of Cu2+ ions. Interestingly, at lower concentration, both phenols anticipated the initiation process of LDL oxidation, thus exerting prooxidant capacities. Although similar effects are already described for flavonoids, such as quercetin, rutin, and apigenin, it is the first time that a prooxidant effect of dietary non-flavonoid phenols, such as oleuropein and hydroxytyrosol, on the LDL oxidation is reported. Our results show that a net effect of oleuropein and hydroxytyrosol on Cu2+-induced LDL peroxidation is determined by a balance of their pro- and antioxidant capacities. It is worth to underline that, during Cu2+-induced LDL oxidation in the presence of bioreactor eluates, we have evidence of a synergistic effect among phenolic compounds that enhance their antioxidant capacities so avoiding the prooxidant effects.  相似文献   

13.
Oleuropein, the main glycoside present in olives, and hydroxytyrosol, the principal degradation product of oleuropein present in olive oil, have been linked to reduction of coronary heart disease and certain cancers. In the present study a direct and sensitive reversed-phase high-performance liquid chromatographic assay was developed for simultaneous quantification of both oleuropein and hydroxytyrosol. The plasma protein was precipitated with acetonitrile, samples were then centrifuged and supernatants were dried, and reconstituted with water prior to injection. The chromatographic analysis was carried out using a phenyl column and an isocratic elution of acidified water and acetonitrile with fluorescence detection at 281 and 316 nm for excitation and emission, respectively. The calibration curve was linear and limits of quantification were 30 ng/ml and 3 microg/ml for hydroxytyrosol and oleuropein, respectively. The method has been successfully applied to monitor oleuropein and hydroxytyrosol plasma levels in the rat.  相似文献   

14.
Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention.  相似文献   

15.
In search for compounds, able to protect nuclear DNA in cells exposed to oxidative stress, extracts from olive leaves, olive fruits, olive oil and olive mill waste water were tested by using the “single cell gel electrophoresis” methodology (comet assay). Jurkat cells in culture were exposed to continuously generated hydrogen peroxide (11.8±1.5 μM per min) by direct addition into the growth medium of the appropriate amount of the enzyme “glucose oxidase” in the presence or absence of the tested total extracts. The protective effects of the tested extracts or isolated compounds were evaluated from their ability to decrease hydrogen peroxide-induced formation of single strand breaks in the nuclear DNA, while the toxic effects were estimated from the increase of DNA damage when the extracts or isolated compounds were incubated directly with the cells. Significant protection was observed in extracts from olive oil and olive mill waste water. However, above a concentration of 100 μg/ml olive oil extracts exerted DNA damaging effects by themselves in the absence of any H2O2. Extracts from olive leaves and olive fruits although protective, were also able to induce DNA damage by themselves. Main compounds isolated from the above described total extracts, like oleuropein glucoside, tyrosol, hydroxytyrosol and caffeic acid, were tested in the same experimental system and found to exert cytotoxic (oleuropein glucoside), no effect (tyrosol) or protective effects (hydroxytyrosol and caffeic acid). In conclusion, cytoprotective as well as cytotoxic compounds with potential pharmaceutical properties were detected in extracts from olive oil related sources by using the comet assay methodology.  相似文献   

16.
《Phytomedicine》2014,21(11):1400-1405
The aim of this study was to determine whether hydroxytyrosol and oleuropein, the major phenols found in olives and olive oil, inhibit mast cell activation induced by immune and non-immune pathways. Purified peritoneal mast cells were preincubated in the presence of test compounds (hydroxytyrosol or oleuropein), before incubation with concanavalin A, compound 48/80 or calcium ionophore A23187. Dose–response and time-dependence studies were carried out. Comparative studies with sodium cromoglycate, a classical mast cell stabilizer, were also made. After incubation the supernatants and pellets were used to determine the β-hexosaminidase content by colorimetric reaction. The percentage of β-hexosaminidase release in each tube was calculated and taken as a measure of mast cell activation. Other samples of cell pellets were used for cell viability studies by the trypan blue dye exclusion test, or fixed for light and electron microscopy. Biochemical and morphological findings of the present study showed for the first time that hydroxytyrosol and oleuropein inhibit mast cell degranulation induced by both immune and non-immune pathways. These results suggest that olive phenols, particularly hydroxytyrosol and oleuropein, may provide insights into the development of useful tools for the prevention and treatment of mast cell-mediated disorders.  相似文献   

17.
18.
The skin is chronically exposed to pro-oxidant agents, leading to the generation of reactive oxygen species (ROS). To protect the skin against an over-load of oxidant species, we studied the chemoprotective effect of one new natural product: "date seed oil: DSO". This oil may serve as a potential source of natural antioxidants such as phenols and tocopherols. Here, the antioxidative potential of DSO was compared that of to extra virgin olive oil. Adult human skin was maintained in organ culture in the presence of the DSO and extra virgin olive oil before the addition of hydrogen peroxide (H2O2), in order to prevent the tissue from its oxidizing effects. Skin specimens were collected for histology and for melanin studies. In the investigated model system, DSO protects skin against oxidative injuries. It has a significant chemoprotective effect, by inhibition of damage caused by H_{2}O_{2} compared with specimens without such addition endowing with a radical scavenging ability. The various components from DSO were much more potent antioxidant and more free radical scavengers of the H2O2 than those of olive oil. Our study shows that topical DSO treatment of the skin stimulates events in the epidermis leading to repair skin damage possibly due to antioxidant synergisms.  相似文献   

19.
Tau isoforms constitute a family of microtubule-associated proteins that are mainly expressed in neurons of the central nervous system. They promote the assembly of tubulin monomers into microtubules and modulate their stability, thus playing a key structural role in the distal portion of axons. In Alzheimer's disease and related tauopathies, Tau aggregation into fibrillary tangles contributes to intraneuronal and glial lesions. We report herein the ability of three natural phenolic derivatives obtained from olives and derived food products to prevent such Tau fibrillization in vitro, namely hydroxytyrosol, oleuropein, and oleuropein aglycone. The latter was found to be more active than the reference Tau aggregation inhibitor methylene blue on both wild-type and P301L Tau proteins, inhibiting fibrillization at low micromolar concentrations. These findings might provide further experimental support for the beneficial nutritional properties of olives and olive oil as well as a chemical scaffold for the development of new drugs aiming at neurodegenerative tauopathies.  相似文献   

20.
The effects of oleuropein, a phenolic compound in extra virgin olive oil, on protein metabolism were investigated by measuring testicular testosterone and plasma corticosterone levels in rats fed diets with different protein levels. In Experiment 1, rats were fed experimental diets with different protein levels (40, 25 and 10 g/100 g casein) with or without 0.1 g/100 g oleuropein. After 28 days of feeding, the testosterone level in the testis was significantly higher and the plasma corticosterone level was significantly lower in rats fed the 40% casein diet with oleuropein than in those fed the same diet without oleuropein. The urinary noradrenaline level, nitrogen balance and hepatic arginase activity were significantly higher in rats fed the 40% casein diet with oleuropein supplementation than in those fed the 40% casein diet without oleuropein supplementation. In Experiment 2, the effects of oleuropein aglycone (a major phenolic compound in extra virgin olive oil and the absorbed form of oleuropein ingested in the gastrointestinal tracts) on the secretion of luteinizing hormone (LH) from the pituitary gland, which regulates testosterone production in the testis, were investigated in anesthetized rats. Plasma LH level increased dose dependently after the administration of oleuropein aglycone (P<.001, r= 0.691). These findings suggest that dietary supplementation with 0.1 g/100 g oleuropein alters the levels of hormones associated with protein anabolism by increasing urinary noradrenaline and testicular testosterone levels and decreasing plasma corticosterone level in rats fed a high-protein diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号