首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased-branching mutants of garden pea (Pisum sativum; ramosus [rms]) and Arabidopsis (Arabidopsis thaliana; more axillary branches) were used to investigate control of cytokinin export from roots in relation to shoot branching. In particular, we tested the hypothesis that regulation of xylem sap cytokinin is dependent on a long-distance feedback signal moving from shoot to root. With the exception of rms2, branching mutants from both species had greatly reduced amounts of the major cytokinins zeatin riboside, zeatin, and isopentenyl adenosine in xylem sap compared with wild-type plants. Reciprocally grafted mutant and wild-type Arabidopsis plants gave similar results to those observed previously in pea, with xylem sap cytokinin down-regulated in all graft combinations possessing branched shoots, regardless of root genotype. This long-distance feedback mechanism thus appears to be conserved between pea and Arabidopsis. Experiments with grafted pea plants bearing two shoots of the same or different genotype revealed that regulation of root cytokinin export is probably mediated by an inhibitory signal. Moreover, the signaling mechanism appears independent of the number of growing axillary shoots because a suppressed axillary meristem mutation that prevents axillary meristem development at most nodes did not abolish long-distance regulation of root cytokinin export in rms4 plants. Based on double mutant and grafting experiments, we conclude that RMS2 is essential for long-distance feedback regulation of cytokinin export from roots. Finally, the startling disconnection between cytokinin content of xylem sap and shoot tissues of various rms mutants indicates that shoots possess powerful homeostatic mechanisms for regulation of cytokinin levels.  相似文献   

2.
Intact plants and stem-girdled plants of Phaseolus vulgaris grown hydroponically were exposed to 5 degrees C for up to 4 d; stem girdling was used to inhibit the phloem transport from the leaves to the roots. After initial water stress, stomatal closure and an amelioration of root water transport properties allowed the plants to rehydrate and regain turgor. Chilling augmented the concentration of abscisic acid (ABA) content in leaves, roots and xylem sap. In intact plants stomatal closure and leaf ABA accumulation were preceded by a slight alkalinization of xylem sap, but they occurred earlier than any increase in xylem ABA concentration could be detected. Stem girdling did not affect the influence of chilling on plant water relations and leaf ABA content, but it reduced slightly the alkalinization of xylem sap and, principally, prevented the massive ABA accumulation in root tissues and the associated transport in the xylem that was observed in non-girdled plants. When the plants were defoliated just prior to chilling or after 10 h at 5 degrees C, root and xylem sap ABA concentration remained unchanged throughout the whole stress period. When the plants were chilled under conditions preventing the occurrence of leaf water deficit (i.e. at 100% relative humidity), there were no significant variations in endogenous ABA levels. The increase in root hydraulic conductance in chilled plants was a response neither to root ABA accretion, nor to some leaf-borne chemical signal transported downwards in the phloem, nor to low temperature per se, as indicated by the results of the experiments with defoliated or girdled plants and with plants chilled at 100% relative humidity. It was concluded that the root system contributed substantially to the bean's ability to cope with chilling-induced water stress, but not in an ABA-dependent manner.  相似文献   

3.
Root cooling of 7-day-old wheat seedlings decreased root hydraulic conductivity causing a gradual loss of relative water content during 45 min (RWC). Subsequently (in 60 min), RWC became partially restored due to a decrease in transpiration linked to lower stomatal conductivity. The decrease in stomatal conductivity cannot be attributed to ABA-induced stomatal closure, since no increase in ABA content in the leaves or in the concentration in xylem sap or delivery of ABA from roots was found. However, decreased stomatal conductance was associated with a sharp decline in the content of cytokinins in shoots that was registered shortly after the start of root cooling and linked to increases in the activity of cytokinin-oxidase. This decrease in shoot cytokinin content may have been responsible for closing stomata, since this hormone is known to maintain stomatal opening when applied to plants. In support of this, pre-treatment with synthetic cytokinin benzyladenine was found to increase transpiration of wheat seedlings with cooled roots and bring about visible loss of turgor and wilting.  相似文献   

4.
The consequences of manipulating abscisic acid (ABA) biosynthesis rates on stomatal response to drought were analysed in wild‐type, a full‐deficient mutant and four under‐producing transgenic lines of N. plumbaginifolia. The roles of ABA, xylem sap pH and leaf water potential were investigated under four experimental conditions: feeding detached leaves with varying ABA concentration; injecting exogenous ABA into well‐watered plants; and withholding irrigation on pot‐grown plants, either intact or grafted onto tobacco. Changes in ABA synthesis abilities among lines did not affect stomatal sensitivity to ABA concentration in the leaf xylem sap ([ABA]xyl), as evidenced with exogenous ABA supplies and natural increases of [ABA]xyl in grafted plants subjected to drought. The ABA‐deficient mutant, which is uncultivable under normal evaporative demand, was grafted onto tobacco stock and then presented the same stomatal response to [ABA]xyl as wild‐type and other lines. This reinforces the dominant role of ABA in controlling stomatal response to drought in N. plumbaginifolia whereas roles of leaf water potential and xylem sap pH were excluded under all studied conditions. However, when plants were submitted to soil drying onto their own roots, stomatal response to [ABA]xyl slightly differed among lines. It is suggested, consistently with all the results, that an additional root signal of soil drying modulates stomatal response to [ABA]xyl.  相似文献   

5.
In higher plants, the xylem vessels functionally connect the roots with the above-ground organs. The xylem sap transports various organic compounds, such as proteins and amino acids. We examined drought and rewatering-inducible changes in the amino acid composition of root xylem sap collected from Cucurbita maxima roots. The major free amino acids in C . maxima root xylem sap were methylglycine (MeGly; sarcosine) and glutamine (Gln), but MeGly was not detected in the xylem sap of cucumber. MeGly is an intermediate compound in the metabolism of trimethylglycine (TMG; betaine), but its physiological effects in plants are unknown. Drought and rewatering treatment resulted in an increase in the concentration of MeGly in root xylem sap to 2.5 m M . After flowering, the MeGly concentration in the xylem sap dropped significantly, whereas the concentration of Gln decreased only after fruit ripening. One milli molar MeGly inhibited the formation of adventitious roots and their elongation in C . maxima , but glycine, dimethylglycine, or TMG had no effect. Similar effects and the inhibition of stem elongation were observed in shoot cuttings of cucumber and Phaseolus angularis . These observations seem to imply a possible involvement of xylem sap MeGly in the physiological responses of C . maxima plants to drought stress.  相似文献   

6.
When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. 'Two root-one shoot' grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Psisoil) during PRD. Although Psisoil of the irrigated pot determined the threshold Psisoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Psisoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Psisoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed.  相似文献   

7.
We address the question of how soil flooding closes stomata of tomato (Lycopersicon esculentum Mill. cv Ailsa Craig) plants within a few hours in the absence of leaf water deficits. Three hypotheses to explain this were tested, namely that (a) flooding increases abscisic acid (ABA) export in xylem sap from roots, (b) flooding increases ABA synthesis and export from older to younger leaves, and (c) flooding promotes accumulation of ABA within foliage because of reduced export. Hypothesis a was rejected because delivery of ABA from flooded roots in xylem sap decreased. Hypothesis b was rejected because older leaves neither supplied younger leaves with ABA nor influenced their stomata. Limited support was obtained for hypothesis c. Heat girdling of petioles inhibited phloem export and mimicked flooding by decreasing export of [14C]sucrose, increasing bulk ABA, and closing stomata without leaf water deficits. However, in flooded plants bulk leaf ABA did not increase until after stomata began to close. Later, ABA declined, even though stomata remained closed. Commelina communis L. epidermal strip bioassays showed that xylem sap from roots of flooded tomato plants contained an unknown factor that promoted stomatal closure, but it was not ABA. This may be a root-sourced positive message that closes stomata in flooded tomato plants.  相似文献   

8.
Pea plants (Pisum sativum L.) grown initially in nutrient solutions with adequate nitrogen supply (4 mM NO3-) were transferred to solutions containing salt (50 or 100 mM NaCl), ammonium (4 mM) or a low nitrogen supply (0.4 mM NO3-). No changes of abscisic acid (ABA) content were found in roots of stressed pea plants 9 d after the beginning of the treatments; however, accumulation of ABA in the leaves was observed. Old leaves accumulated ABA to a higher extent than young leaves. Accumulation of ABA in leaves of ammonium-fed plants and plants grown under low nitrogen supply occurred in the absence of both increased ABA xylem loading rate and enhanced aldehyde oxidase (AO, EC 1.2.3.1) activity in roots. Enhanced leaf AO activity was observed in all treatments, with the highest increase in old leaves. Among the three AO isoforms (AO-1, AO-2 and AO-3) detected in extracts of pea leaves, the lowest one AO-3 (highest mobility in the gel) correlated with ABA production and showed the highest increment in response to the treatments. The increase of AO activity detected in leaves after 2 weeks of stress application was less prominent than after 9 d, suggesting a transient enhancement of ABA production following the onset of stress. An increase of ABA xylem loading rate as well as AO root activity 4 d and 9 d after application of the treatments was observed only in salt-treated plants followed by a decrease after 14 d in 100 mM NaCl. Decreased cytokinin (trans-zeatin riboside) delivery rate into the xylem sap was observed in all treatments. The role of abscisic acid and cytokinins as positive and negative growth signals, as well as the involvement of root-generated ABA on ABA accumulation in leaves is discussed.  相似文献   

9.
This study examined the potential role of restricted phloem export, or import of substances from the roots in the leaf growth response to root hypoxia. In addition, the effects of root hypoxia on abscisic acid (ABA) and zeatin riboside (ZR) levels were measured and their effects on in vitro growth determined. Imposition of root hypoxia in the dark when transpirational water flux was minimal delayed the reduction in leaf growth until the following light period. Restriction of phloem transport by stem girdling did not eliminate the hypoxia-induced reduction in leaf growth. In vitro growth of leaf discs was inhibited in the presence of xylem sap collected from hypoxic roots, and also by millimolar ABA. Disc growth was promoted by sap from aerated roots and by 0.1 micromolar ZR. The flux of both ABA and ZR was reduced in xylem sap from hypoxic roots. Leaf ABA transiently increased twofold after 24 hours of hypoxia exposure but there were no changes in leaf cytokinin levels.  相似文献   

10.
D. T. Clarkson 《Planta》1976,132(3):297-304
Summary Roots of intact plants of rye and barley which had been growing at 20° were cooled for 12–72 h at 8–14° C while the shoots were kept at 20°. The roots were then excised and placed in solutions at temperatures ranging from 2.5–22.5° C. The rate of exudation of xylem sap and the chemical composition and osmotic potential of the sap were measured and compared with controls which had been kept at 20° C during the pretreatment period. Pre-cooling increased the fluxes of K+, Ca2+ and H2PO 4 - into the xylem sap of both species by factors of two to three; the total volume of exudate rose by larger factors. Thus the concentrations of these ions were lower in the sap exuding from cooled roots than in that from controls. Measurements of the osmotic potential of the sap from barley roots indicated that the osmotic driving force in cooled and control roots was similar even though flow in the former was much greater.The enhancement of exudation was shown to be dependent on the duration and the temperature experienced by the roots during pretreatment, and was lost rapidly when roots of intact plants were returned to 20°.Analysis of the temperature coefficients for exudation and Arrhenius plots revealed very distinct changes in the activation energy for exudation above and below a transition temperature. In control plants of barley and rye this temperature was around 10° C, but in cooled roots of rye there was a significant shift in the transition temperature to 5° C. Activation energies for exudation of control and cooled roots above or below the transition temperature were broadly similar, thus pre-cooling roots did not alter the temperature sensitivity of exudation but merely its rate at a given temperature.The results are discussed in relation to active ion transport, membrane fluidity and the resistance of the root to water flow.Abbreviation ABA abscisic acid  相似文献   

11.
Zeatin and zeatin riboside were identified by full-scan gas chromatography-mass spectrometry (GC-MS) in xylem sap of clonal apple rootstocks (M.27, M.9 and MM.106). These rootstocks exhibit a wide range of control over tree size when grafted to a common scion. The concentrations of zeatin and zeatin riboside were measured by GC-MS selected ion monitoring (SIM) in shoot xylem sap and root pressure exudate obtained from these rootstocks and from trees of Fiesta scion grafted onto the rootstocks. Zeatin was the predominant cytokinin in xylem sap from the dwarfing rootstocks, M.27 and M.9, while zeatin riboside was the predominant cytokinin in xylem sap from the more invigorating rootstock MM.106. Cytokinin concentrations (ng ml–1) in root pressure exudate and shoot xylem sap, (i.e. from above the graft union in composite trees), increased with increasing vigour of the rootstock, irrespective of whether the plants were non-grafted rootstocks, or were composite plants of Fiesta scion grafted onto the rootstocks. Cytokinin content (ng shoot–1) of shoot sap differed with rootstock; the more invigorating (MM.106) had greater amounts of cytokinins than the more dwarfing (M.9 and M.27) rootstocks. These results are discussed in relation to possible influences of roots on the growth of shoots via cytokinin supplies in the xylem sap.  相似文献   

12.
Antitranspirant Activity in Xylem Sap of Maize Plants   总被引:18,自引:1,他引:17  
Xylem sap from unwatered maize plants was collected and testedfor antitranspirant activity. Two assays were used. These werea transpiration assay with detached wheat leaves and a stomatalbio-assay involving the direct microscopic observation of epidermisof Commelina communis. The reduction in transpiration of detached wheat leaves promotedby xylem sap could be duplicated almost exactly by the applicationof solutions of ABA of equivalent concentration to that foundin the xylem sap. Removal of virtually all the ABA from thexylem sap, using an immunoaffinity column, removed virtuallyall the antitranspirant activity in both assays. These results are discussed in the context of other resultswhich suggest the presence of as-yet unidentified inhibitorsin the xylem sap of unwatered plants. We suggest that with maize plants at least, stomatal responsesto soil drying can be entirely explained by enhanced concentrationof ABA in the xylem stream. Key words: Antitranspirant activity, ABA, ABA bio-assay, xylem sap  相似文献   

13.
The rms4 mutant of pea ( Pisum sativum L.) was used in grafting studies and cytokinin analyses of the root xylem sap to provide evidence that, at least for pea, the shoot can modify the import of cytokinins from the root. The rms4 mutation, which confers a phenotype with increased branching in the shoot, causes a very substantial decrease (down to 40-fold less) in the concentration of zeatin riboside (ZR) in the xylem sap of the roots. Results from grafts between wild-type (WT) and rms4 plants indicate that the concentration of cytokinins in the xylem sap of the roots is determined almost entirely by the genotype of the shoot. WT scions normalize the cytokinin concentration in the sap of rms4 mutant roots, whereas mutant scions cause WT roots to behave like those of self-grafted mutant plants. The mechanism whereby rms4 shoots of pea cause a down-regulation in the export of cytokinins from the roots is unknown at this time. However, our data provide evidence that the shoot transmits a signal to the roots and thereby controls processes involved in the regulation of cytokinin biosynthesis in the root.  相似文献   

14.
Metabolomic and proteomic changes in the xylem sap of maize under drought   总被引:1,自引:0,他引:1  
Plants produce compounds in roots that are transported to shoots via the xylem sap. Some of these compounds are vital for signalling and adaptation to environmental stress such as drought. In this study, we screened the xylem sap using mass spectrometry to quantify the changes in new and previously identified sap constituents under extended drought. We detected and quantified the changes in the concentration of 31 compounds present in the xylem sap under progressively increasing drought stress. We found changes in the hormones abscisic acid (ABA) and cytokinin, and the presence of high concentrations of the aromatic cytokinin 6-benzylaminopurine (BAP). Several phenylpropanoid compounds (coumaric, caffeic and ferulic acids) were found in xylem sap. The concentrations of some of these phenylpropanoid compounds changed under drought. In parallel, an analysis of the xylem sap proteome was conducted. We found a higher abundance of cationic peroxidases, which with the increase in phenylpropanoids may lead to a reduction in lignin biosynthesis in the xylem vessels and could induce cell wall stiffening. The application of new methodologies provides insights into the range of compounds in sap and how alterations in composition may lead to changes in development and signalling during adaptation to drought.  相似文献   

15.
Collection of Xylem Sap at Flow Rate Similar to in vivo Transpiration Flux   总被引:3,自引:0,他引:3  
We have explored a method to collect xylem sap using a Scholanderpressure chamber for potted plants. Intact root system in potswhich fitted the pressure chamber was pressurised at a pneumaticpressure numerically equal to the absolute value of shoot waterpotential. The rate of xylem flow obtained from the stem stumpunder such pressure was found similar to the rate of transpirationbefore detopping. The rate of pressurised flow from detop-pedroots was linearly related to the pressure applied in both well-wateredand soil-dried plants. The osmotic concentration of the xylemsap was negatively related to the rate of volume flow, suggestingthe necessity to collect xylem sap at in vivo flow rate if originalsolute concentration is to be evaluated. The concentration ofABA in the xylem sap, however, did not show such a relationshipwith water flux. Both well-watered and soil-dried plants showedthe concentration of ABA in xylem sap largely stable with arange of volume flow rate, indicating a linear relationshipbetween the rate of ABA delivery through xylem and that of volumeflow. We also compared the concentrations of ABA in xylem sapsequentially collected from pressurised roots with that fromdetached shoots of the same plants. The concentration of ABAin the initial saps from shoots showed to be similar to thatfrom roots. However, a decrease in the concentration of ABAin the xylem sap collected from detached leaf or twig was observedwhen more volume of sap was collected, which might also be dependenton the plant species and the volume of xylem vessels concerned. (Received February 3, 1997; Accepted October 7, 1997)  相似文献   

16.
Changes in levels of abscisic acid (ABA) and cytokinin activity in the xylem sap of willow (Salix viminalis, L.) were followed throughout two growth cycles.  相似文献   

17.
Shoot cultures of cucumber were used to analyse the roles of root-derived substances in adventitious root formation on hypocotyl tissues. Xylem sap collected from the roots of squash had a strong inhibitory effect on the formation of hypocotyl adventitious roots. Double-solvent extraction followed by fractionation with both normal and reverse phase column chromatographies and analysis by liquid chromatography/tandem mass spectrometry identified trans-zeatin riboside (ZR) as the primary suppressor of adventitious root formation. ZR was the predominant cytokinin present in the xylem sap, occurring at a concentration of 2x10(-8 )M. Application of ZR at concentrations from 3.16x10(-9) M effected inhibition of adventitious root formation. These results suggest that ZR transported from roots via xylem sap may act as an endogenous suppressor of hypocotyl adventitious root formation in planta.  相似文献   

18.
To investigate the contribution of different parts of the root system to total sap flow and leaf xylem abscisic acid (ABA) concentration ([X-ABA]leaf), individual sunflower ( Helianthus annuus L.) shoots were grafted onto the root systems of two plants grown in separate pots and sap flow through each hypocotyl measured below the graft union. During deficit irrigation (DI), both pots received the same irrigation volumes, while during partial root zone drying (PRD) one pot ('wet') was watered and another ('dry') was not. During PRD, once soil water content ( θ ) decreased below a threshold, the fraction of sap flow from drying roots declined. As θ declined, root xylem ABA concentration increased in both irrigation treatments, and [X-ABA]leaf increased in DI plants, but [X-ABA]leaf of PRD plants actually decreased within a certain θ range. A simple model that weighted ABA contributions of wet and dry root systems to [X-ABA]leaf according to the sap flow from each, better predicted [X-ABA]leaf of PRD plants than either [X-ABA]dry, [X-ABA]wet or their mean. Model simulations revealed that [X-ABA]leaf during PRD exceeded that of DI with moderate soil drying, but continued soil drying (such that sap flow from roots in drying soil ceased) resulted in the opposite effect.  相似文献   

19.
Abscisic acid (ABA) moving from roots to shoots in the transpirationstream is a potential hormonal message integrating perceptionof a root stress with adaptive changes in the shoot. A twinroot system was used to study ways of estimating effects ofdroughting the upper roots of Ricinus communis L. on abscisicacid (ABA) transport to the shoot in the transpiration stream.Droughted plants transpired more slowly than controls. Droughtingalso increased concentrations of ABA up to I I-fold in sap inducedto flow from the roots of freshly decapitated plants at ratesof whole plant transpiration. However, because of dilution effectsarising from the different sap flows in control and droughtedplants, these changes in ABA concentration in the xylem sapdid not accurately reflect amounts of ABA transported. To overcomethis problem, delivery rates were calculated by multiplyingconcentration with sap flow rate to generate ABA delivery interms of µmol s–1 per plant. Droughting for 24 hor more increased ABA delivery from roots to shoots by 5-fold.Since droughting can alter the relative sizes of the roots andshoots and also the root:shoot ratio these delivery rates wererefined in several ways to reflect both the amount of root generatingthe ABA message and the size of the recipient shoot system. Key words: Abscisic acid, Ricinus communis L., soil drying, xylem sap  相似文献   

20.
Abstract: Samples of xylem sap from 5-week-old Ricinus corn-munis L. were obtained after severing a lamina, or shoot, from plants pressurized at the roots with air to raise hydrostatic xylem water potentials to atmospheric. In situ sap flow gauges, and mass flow measurements, showed that removing the lamina approximately doubted sap flow rate through the petiole stub that remained attached to the plant. This was a consequence of flow out of the roots being diverted along this low-resistance pathway and away from leaves higher in the canopy. Leaf and whole shoot excision temporarily released extra solutes in to sap as it discharged from the cut petiole or from the hypo-cotyl stump. This contamination prevented the use of sap extracted from detached lamina by overpressurizing in a Scholan-der bomb. To minimise distortions to sap flow and wound-induced contamination, estimates of in planta concentration and delivery (concentration × sap flow rate) of ABA and osmolality in xylem sap were made using sap flow rates measured before excision and concentrations in flowing sap collected approximately 30 mm after excision. At this time, effects of excision on solute contamination had subsided. The approach revealed that withholding water from upper roots increased ABA delivery from roots into the shoot base 3-fold. However, approximately half this ABA was lost en route to the youngest fully open leaf. This loss of ABA may explain the slow stomatal response to drying of upper roots shown by R. communis .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号