首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Endoribonuclease E, a key enzyme involved in RNA decay and processing in bacteria, organizes a protein complex called degradosome. In Escherichia coli, Rhodobacter capsulatus, and Streptomyces coelicolor, RNase E interacts with the phosphate-dependent exoribonuclease polynucleotide phosphorylase, DEAD-box helicase(s), and additional factors in an RNA-degrading complex. To characterize the degradosome of the psychrotrophic bacterium Pseudomonas syringae Lz4W, RNase E was enriched by cation exchange chromatography and fractionation in a glycerol density gradient. Most surprisingly, the hydrolytic exoribonuclease RNase R was found to co-purify with RNase E. Co-immunoprecipitation and Ni(2+)-affinity pull-down experiments confirmed the specific interaction between RNase R and RNase E. Additionally, the DEAD-box helicase RhlE was identified as part of this protein complex. Fractions comprising the three proteins showed RNase E and RNase R activity and efficiently degraded a synthetic stem-loop containing RNA in the presence of ATP. The unexpected association of RNase R with RNase E and RhlE in an RNA-degrading complex indicates that the cold-adapted P. syringae has a degradosome of novel structure. The identification of RNase R instead of polynucleotide phosphorylase in this complex underlines the importance of the interaction between endo- and exoribonucleases for the bacterial RNA metabolism. The physical association of RNase E with an exoribonuclease and an RNA helicase apparently is a common theme in the composition of bacterial RNA-degrading complexes.  相似文献   

3.
Tjalsma H  van Dijl JM 《Proteomics》2005,5(17):4472-4482
The availability of complete bacterial genome sequences allows proteome-wide predictions of exported proteins that are potentially retained in the cytoplasmic membranes of the corresponding organisms. In practice, however, major problems are encountered with the computer-assisted distinction between (Sec-type) signal peptides that direct exported proteins into the growth medium and lipoprotein signal peptides or amino-terminal membrane anchors that cause protein retention in the membrane. In the present studies, which were aimed at improving methods to predict protein retention in the bacterial cytoplasmic membrane, we have compared sets of membrane-attached and extracellular proteins of Bacillus subtilis that were recently identified through proteomics approaches. The results showed that three classes of membrane-attached proteins can be distinguished. Two classes include 43 lipoproteins and 48 proteins with an amino-terminal transmembrane segment, respectively. Remarkably, a third class includes 31 proteins that remain membrane-retained despite the presence of typical Sec-type signal peptides with consensus signal peptidase recognition sites. This unprecedented finding indicates that unknown mechanisms are involved in membrane retention of this class of proteins. A further novelty is a consensus sequence indicative for release of certain lipoproteins from the membrane by proteolytic shaving. Finally, using non-overlapping sets of secreted and membrane-retained proteins, the accuracy of different signal peptide prediction algorithms was assessed. Accuracy for the prediction of protein retention in the membrane was increased to 82% using a majority-vote approach. Our findings provide important leads for future identification of surface proteins from pathogenic bacteria, which are attractive candidate infection markers and potential targets for drugs or vaccines.  相似文献   

4.
Proteins of the inner mitochondrial membrane packed into submitochondrial particles (SMP) have been investigated. SMPs were treated with trypsin, and the peptides were separated from the so-called “shaved vesicles”. The “shaved vesicles” were disrupted, and the proteins and peptides obtained were subjected to cleavage by cyanogen bromide and trypsin. The two groups of tryptic peptides obtained were analyzed separately using proteomic methods, namely, chromatographic fractionation of peptides, mass spectrometric identification and a search in amino acid sequence databases. The possibility of non-specific fragmentation was also taken into account when identification of proteins of the inner mitochondrial membrane was performed. Reliable identification of 298 proteins allowed for a more precise estimation of their localization in the cell and analysis of their function.  相似文献   

5.
Many bacterial pathogens cause disease by injecting virulence proteins (effectors) into host cells via the specialized type III secretion system. Recently, exceptional progress in identifying effectors was made in the phytopathogen Pseudomonas syringae using a novel genetic screen and bioinformatic approach. These studies, along with localization experiments, suggest that most P. syringae effectors function by targeting the plasma membrane, chloroplasts or mitochondria of host cells. The type III secretome of P. syringae is highly variable and dynamic, a lesson gleaned from a comparative genomic analysis. Variation in the effector repertoire is likely to facilitate the adaptation of P. syringae to different hosts.  相似文献   

6.
7.
Harpin HrpZ of plant-pathogenic bacterium Pseudomonas syringae elicits a hypersensitive response (HR) in some nonhost plants, but its function in the pathogenesis process is still obscure. HrpZ-interacting proteins were identified by screening a phage-display library of random peptides. HrpZ of the bean pathogen P. syringae pv. phaseolicola (HrpZPph) shows affinity to peptides with a consensus amino acid motif W(L)ARWLL(G/L). To localize the peptide-binding site, the hrpZPph gene was mutagenized with randomly placed 15-bp insertions, and the mutant proteins were screened for the peptide-binding ability. Mutations that inhibited peptide-binding localized to the central region of hrpZPph, which is separate from the previously determined HR-inducing region. Antiserum raised against one of the hrpZPph-binding peptides recognized small proteins in bean, tomato, parsley, and Arabidopsis thaliana but none in tobacco. On native protein blots, hrpZPph bound to a bean protein with similar pI as the protein recognized by the peptide antiserum. The result suggests a protein-protein interaction between the harpin and a host plant protein, possibly involved in the bacterial pathogenesis.  相似文献   

8.
Distinction between Pseudomonas syringae pathovar (pv.) pisi (Ps. syr. pisi) , responsible for bacterial blight of pea ( Pisum sativum ), and pv. syringae (Ps. syr. syringae) , still requires strain inoculation onto peas. Patterns of enzymes including esterase (EST) and superoxide dismutase (SOD) were examined for diagnostic purposes. Profiles of 59 Ps. syr . pisi strains and 53 Ps. syr . syringae strains were compared. Pseudomonas syringae pisi was characterized by one unique zymotype for SOD and two slightly different zymotypes for EST. Pseudomonas syringae syringae zymotypes were very heterogeneous with 10 different zymotypes for SOD and 32 for EST. Twenty-four percent of the Ps. syr . syringae strains shared SOD zymotype 1 of Ps. syr . pisi , thus preventing the use of this enzymatic system for identification. In contrast, the two EST zymotypes of Ps. syr. pisi strains were specific to the pathovar and could be used for its identification. The two Ps. syr. pisi EST patterns were correlated to race structure of the pathovar, zymotype 1 corresponding to races 2, 3, 4 and 6, and zymotype 2 to races 1, 5 and 7. Esterase isozyme profiling was proposed as a new identification procedure for bacterial pea blight agent.  相似文献   

9.
Bartonella henselae, an infectious agent causing cat-scratch disease and vasculoproliferative disorders in humans, is a fastidious facultative intracellular pathogen. The outer membrane proteins of B. henselae are key molecules that play a primary role in host-cell interactions. We isolated B. henselae outer membrane proteins, using the ionic detergent N-lauroyl sarcosine sodium salt and sodium carbonate, purification by two-dimensional (2-D) gel electrophoresis, and protein identification using mass spectrometry. Treatment with buffers containing ASB-14 and ZWITTERGENT 3-10 increased solubilization of B. henselae proteins, particularly proteins with basic pI. Three hundred and sixty-eight spots were detected from the sarcosine-insoluble outer membrane fraction; 94 distinct protein species were identified from 176 spots. In the outer membrane fraction from carbonate incubation, 471 spots were calculated and 259 spots were identified, which included 139 protein entries. There were six outer membrane proteins in the sarcosine-insoluble outer membrane fraction compared with nine outer membrane proteins from samples subjected to carbonate incubation. We used bioinformatic analysis to identify 44 outer membrane proteins by prediction of their domains and tertiary structures and documented the potential virulence factors. We established the 2-D reference maps of the outer membrane subproteome of B. henselae using the two different extraction methods, which were partly complementary to each other. Sodium carbonate extraction isolated low-abundance and basic proteins better than the lauroyl sarcosine sodium salt extraction, which enriched high-abundance porins.  相似文献   

10.
BACKGROUND: The plant pathogen Pseudomonas syringae injects 20-40 different proteins called effectors into host plant cells, yet the functions and sites of action of these effectors in promoting pathogenesis are largely unknown. Plants in turn defend themselves against P. syringae by activating the salicylic acid (SA)-mediated signaling pathway. The P. syringae-specific HopI1 effector has a putative chloroplast-targeting sequence and a J domain. J domains function by activating 70 kDa heat-shock proteins (Hsp70). RESULTS: HopI1 is a ubiquitous P. syringae virulence effector that acts inside plant cells. When expressed in plants, HopI1 localizes to chloroplasts, the site of SA synthesis. HopI1 causes chloroplast thylakoid structure remodeling and suppresses SA accumulation. HopI1's C terminus has bona fide J domain activity that is necessary for HopI1-mediated virulence and thylakoid remodeling. Furthermore, HopI1-expressing plants have increased heat tolerance, establishing that HopI1 can engage the plant stress-response machinery. CONCLUSIONS: These results strongly suggest that chloroplast Hsp70 is targeted by the P. syringae HopI1 effector to promote bacterial virulence by suppressing plant defenses. The targeting of Hsp70 function through J domain proteins is known to occur in a mammalian virus, SV40. However, this is the first example of a bacterial pathogen exploiting a J domain protein to promote pathogenesis through alterations of chloroplast structure and function.  相似文献   

11.
12.
A simple method for preparation of D-rhamnose   总被引:1,自引:0,他引:1  
A rapid procedure for the preparation of D-rhamnose from bacterial lipopolysaccharide (LPS) has been developed. It involves purification of LPS from Pseudomonas syringae pv. phaseolicola by phenol extraction and hydrophobic interaction chromatography (HIC), followed by mild hydrolysis and cleavage of the O-antigen into D-fucose and D-rhamnose. The monosaccharides were separated by column chromatography, and D-rhamnose recovered after filtration over Sephadex-LH 20.  相似文献   

13.
Aims:  To design and evaluate a loop-mediated isothermal amplification (LAMP) protocol by combining comparative genomics and bioinformatics for characterization of Pseudomonas syringae pv. phaseolicola (PSP), the causal agent of halo blight disease of bean ( Phaseolus vulgaris L.).
Methods and Results:  Genomic sequences of Pseudomonas syringae pathovars, P. fluorescens and P. aeruginosa were analysed using multiple sequence alignment. A pathovar-specific region encoding pathogenicity-related secondary metabolites in the PSP genome was targeted for developing a LAMP assay. The final assay targeted a polyketide synthase gene, and readily differentiated PSP strains from other Pseudomonas syringae pathovars and other Pseudomonas species, as well as other plant pathogenic bacteria, e.g. species of Pectobacterium , Erwinia and Pantoea .
Conclusion:  A LAMP assay has been developed for rapid and specific characterization and identification of PSP from other pathovars of P. syringae and other plant-associated bacteria .
Significance and Impact of the Study:  This paper describes an approach combining a bioinformatic data mining strategy and comparative genomics with the LAMP technology for characterization and identification of a plant pathogenic bacterium. The LAMP assay could serve as a rapid protocol for microbial identification and detection with significant applications in agriculture and environmental sciences.  相似文献   

14.
A two-dimensional electrophoretic analysis of protein distribution followed by identification of selected proteins by mass spectrometry was performed on fresh bdellovibrio cultures containing attack phase cells of the predatory bacterium Bdellovibrio bacteriovorus strain 109J-1 and the remains of an Escherichia coli or a Pseudomonas syringae pv. tomato prey. Cleavage of the peptidoglycan-associated outer membrane proteins (OMPs) OmpA in E. coli and OprF in P. syringae occurred in both prey. The tryptic peptides obtained from the cleavage products of OmpA and OprF were all located within the 19-kDa pronase-resistant N-terminal parts of the corresponding proteins. The predator cell fraction was separated from the prey ghosts in fresh bdellovibrio cultures by centrifugation on a Percoll-sucrose cushion. Proteins from each fraction were separated by two-dimensional electrophoresis and identified by mass spectrometric analysis. As no prey OMP could be detected in the predator cell fraction, it was concluded that prey OMPs are not transferred to the predator, as had been suggested previously. However, a protein from the predator was found bound to ghost cell envelopes. This protein may correspond to a protein earlier suggested to be associated with the prey outer or cytoplasmic membranes. Along with recently described polypeptides from B. bacteriovorus strains 100 and 114, it forms a new family of putative outer membrane proteins.  相似文献   

15.
The 4'-phosphopantetheinyl transferases (PPTases) catalyze the transfer of a 4'-phosphopantetheine moiety from coenzyme A to phosphopantetheine-dependent carrier proteins. The carrier proteins (CPs) are required for the biosynthesis of peptides synthesized by nonribosomal peptide synthases and the biosynthesis of fatty acids and polyketides. A single PPTase (PcpS) is present in the pathogenic bacterium Pseudomonas aeruginosa. Several pathovars of Pseudomonas syringae produce the chlorosis-inducing phytotoxin coronatine. Structural genes for coronatine biosynthesis include two ACPs, two ACP domains, and one peptidyl carrier protein (PCP) domain. To gain insight into factors affecting coronatine biosynthesis, the PPTase of P. syringae pv. syringae FF5 has been investigated. A single PPTase gene (pspT) was amplified from this organism by PCR. The translation product PspT exhibited 62% identity to PcpS as well as higher levels of identity to other, uncharacterized Pseudomonad PPTases. PspT was overproduced in soluble form in Escherichia coli and its enzymatic properties were compared with those of PcpS. PspT exhibited broad substrate specificity, and it displayed the highest activity with a PCP domain. In contrast, the most efficient substrates for PcpS are CPs from primary metabolism. These results indicate phosphopantetheinyl transferases from different Pseudomonas sp. may vary significantly in their enzymatic properties.  相似文献   

16.
The majority of bacterial plant diseases are caused by members of three bacterial genera, Pseudomonas, Xanthomonas, and Erwinia. The identification and characterization of mutants that have lost the abilities to provoke disease symptoms on a compatible host and to induce a defensive hypersensitive reaction (HR) on an incompatible host have led to the discovery of clusters of hrp genes (hypersensitive reaction and pathogenicity) in phytopathogenic bacteria from each of these genera. Here, we report that predicted protein sequences of three hrp genes from Pseudomonas solanacearum show remarkable sequence similarity to key virulence determinants of animal pathogenic bacteria of the genus Yersinia. We also demonstrate DNA homologies between P. solanacearum hrp genes and hrp gene clusters of P. syringae pv. phaseolicola, Xanthomonas campestris pv. campestris, and Erwinia amylovora. By comparing the role of the Yersinia determinants in the control of the extracellular production of proteins required for pathogenicity, we propose that hrp genes code for an export system that might be conserved among many diverse bacterial pathogens of plants and animals but that is distinct from the general export pathway.  相似文献   

17.
应用SignalP 3.0 对植物病原细菌Pseudomonas syringae pv. tomato DC3000菌株基因组中的全部5 615个ORFs进行了分析,确定其中679个ORFs所编码蛋白质的N-端有信号肽序列,其中已经命名并有注释的有107个ORFs。信号肽的长度以19 ~31 个氨基酸居多,其中最多的是23 个氨基酸的信号肽。具有信号肽的ORFs编码蛋白的长度大多为101~400 个氨基酸之间。同时,对组成信号肽的氨基酸种类作了系统的分析,发现组成信号肽的氨基酸中非极性氨基酸占48.54%,极性氨基酸占18.67%,带负电荷氨基酸占24.54%,带正电荷氨基酸仅占8.00%,出现最多的3种氨基酸依次为亮氨酸、丙氨酸和丝氨酸,最少的氨基酸是异亮氨酸,在切割位点-1端的氨基酸中83.211%均为丙氨酸,在切割位点后3位的氨基酸中最多的氨基酸也是丙氨酸。通过分析确定628个分泌类信号肽,36个信号肽具有RR-motif的保守区段,15个脂蛋白类信号肽,未发现Prepilin-like 信号肽和Bacteriocin and Pheromone信号肽。  相似文献   

18.
Role of signal peptides in targeting of proteins in cyanobacteria.   总被引:3,自引:2,他引:3       下载免费PDF全文
Proteins of cyanobacteria may be transported across one of two membrane systems: the typical eubacterial cell envelope (consisting of an inner membrane, periplasmic space, and an outer membrane) and the photosynthetic thylakoids. To investigate the role of signal peptides in targeting in cyanobacteria, Synechococcus sp. strain PCC 7942 was transformed with vectors carrying the chloramphenicol acetyltransferase reporter gene fused to coding sequences for one of four different signal peptides. These included signal peptides of two proteins of periplasmic space origin (one from Escherichia coli and the other from Synechococcus sp. strain PCC 7942) and two other signal peptides of proteins located in the thylakoid lumen (one from a cyanobacterium and the other from a higher plant). The location of the gene fusion products expressed in Synechococcus sp. strain PCC 7942 was determined by a chloramphenicol acetyltransferase enzyme-linked immunosorbent assay of subcellular fractions. The distribution pattern for gene fusions with periplasmic signal peptides was different from that of gene fusions with thylakoid lumen signal peptides. Primary sequence analysis revealed conserved features in the thylakoid lumen signal peptides that were absent from the periplasmic signal peptides. These results suggest the importance of the signal peptide in protein targeting in cyanobacteria and point to the presence of signal peptide features conserved between chloroplasts and cyanobacteria for targeting of proteins to the thylakoid lumen.  相似文献   

19.
Systematic comparison of the current repertoire of virulence-associated genes for three Pseudomonas syringae strains with complete genome sequences, P. syringae pv. tomato DC3,000, P. syringae pv. phaseolicola 1448A, and P. syringae pv. syringae B728a, is prompted by recent advances in virulence factor identification in P. syringae and other bacteria. Among these are genes linked to epiphytic fitness, plant- and insect-active toxins, secretion pathways, and virulence regulators, all reflected in the recently updated DC3,000 genome annotation. Distribution of virulence genes in relation to P. syringae genome organization was analyzed to distinguish patterns of conservation among genomes and association between genes and mobile genetic elements. Variable regions were identified on the basis of deviation in sequence composition and gaps in syntenic alignment among the three genomes. Mapping gene location relative to the genome structure revealed strong segregation of the HrpL regulon with variable genome regions (VR), divergent distribution patterns for toxin genes depending on association with plant or insect pathogenesis, and patterns of distribution for other virulence genes that highlight potential sources of strain-to-strain differences in host interaction. Distribution of VR among other sequenced bacterial genomes was analyzed and future plans for characterization of this potential reservoir of virulence genes are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号