首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We have isolated mutations in the Drosophila melanogaster homologue of auxilin, a J-domain-containing protein known to cooperate with Hsc70 in the disassembly of clathrin coats from clathrin-coated vesicles in vitro. Consistent with this biochemical role, animals with reduced auxilin function exhibit genetic interactions with Hsc70 and clathrin. Interestingly, the auxilin mutations interact specifically with Notch and disrupt several Notch-mediated processes. Genetic evidence places auxilin function in the signal-sending cells, upstream of Notch receptor activation, suggesting that the relevant cargo for this auxilin-mediated endocytosis is the Notch ligand Delta. Indeed, the localization of Delta protein is disrupted in auxilin mutant tissues. Thus, our data suggest that auxilin is an integral component of the Notch signaling pathway, participating in the ubiquitin-dependent endocytosis of Delta. Furthermore, the fact that auxilin is required for Notch signaling suggests that ligand endocytosis in the signal-sending cells needs to proceed past coat disassembly to activate Notch.  相似文献   

2.
Eun SH  Lea K  Overstreet E  Stevens S  Lee JH  Fischer JA 《Genetics》2007,175(3):1163-1174
We have performed mutagenesis screens of the Drosophila X chromosome and the autosomes for dominant enhancers of the rough eye resulting from overexpression of liquid facets. The liquid facets gene encodes the homolog of vertebrate endocytic Epsin, an endocytic adapter protein. In Drosophila, Liquid facets is a core component of the Notch signaling pathway required in the signaling cells for ligand endocytosis and signaling. Why ligand internalization by the signaling cells is essential for signaling is a mystery. The requirement for Liquid facets is a hint at the answer, and the genes identified in this screen provide further clues. Mutant alleles of clathrin heavy chain, Rala, split ends, and auxilin were identified as enhancers. We describe the mutant alleles and mutant phenotypes of Rala and aux. We discuss the relevance of all of these genetic interactions to the function of Liquid facets in Notch signaling.  相似文献   

3.
The Notch signaling pathway plays essential roles in both animal development and human disease. Regulation of Notch receptor levels in membrane compartments has been shown to affect signaling in a variety of contexts. Here we used steady-state and pulse-labeling techniques to follow Notch receptors in sensory organ precursor cells in Drosophila. We find that the endosomal adaptor protein Numb regulates levels of Notch receptor trafficking to Rab7-labeled late endosomes but not early endosomes. Using an assay we developed that labels different pools of Notch receptors as they move through the endocytic system, we show that Numb specifically suppresses a recycled Notch receptor subpopulation and that excess Notch signaling in numb mutants requires the recycling endosome GTPase Rab11 activity. Our data therefore suggest that Numb controls the balance between Notch receptor recycling and receptor targeting to late endosomes to regulate signaling output after asymmetric cell division in Drosophila neural progenitors.  相似文献   

4.
Signaling through the transmembrane receptor Notch is widely used throughout animal development and is a major regulator of cell proliferation and differentiation. During canonical Notch signaling, internalization and recycling of Notch ligands controls signaling activity, but the involvement of endocytosis in activation of Notch itself is not well understood. To address this question, we systematically assessed Notch localization, processing, and signaling in a comprehensive set of Drosophila melanogaster mutants that block access of cargo to different endocytic compartments. We find that gamma-secretase cleavage and signaling of endogenous Notch is reduced in mutants that impair entry into the early endosome but is enhanced in mutants that increase endosomal retention. In mutants that block endosomal entry, we also uncover an alternative, low-efficiency Notch trafficking route that can contribute to signaling. Our data show that endosomal access of the Notch receptor is critical to achieve physiological levels of signaling and further suggest that altered residence in distinct endocytic compartments could underlie pathologies involving aberrant Notch pathway activation.  相似文献   

5.
Delta/Notch signalling is of major importance for embryonic development and adult life. While endocytosis is often viewed as a way to down-regulate biological signals, ligand and receptor internalization are essential for Notch activation. The development of Drosophila mecanosensory bristles is a powerful model to study Delta/Notch signalling. Following the asymmetric division of bristle precursor cells, Delta ligands and Notch receptors traffic differently in the two daughter cells, leading to directional signal activation. Recent evidence suggests that in addition to differential ligand endocytosis after division, a subpopulation of multivesicular endosomes ensures the directional transport of Delta/Notch already during asymmetric cell division. Biochemical analysis suggests that different phases of endocytic Delta trafficking exert complementary but distinct actions required for ligand recycling, ligand/receptor interaction and ligand-mediated receptor activation, respectively. Finally, novel data suggest that different endosomal compartments may act as Delta/Notch signalling platforms. In this review, we discuss the implications of these novel findings for our cell biological understanding of Delta/Notch signalling.  相似文献   

6.
Endocytosis regulates Notch signaling in both signaling and receiving cells. A puzzling observation is that endocytosis of transmembrane ligand by the signaling cells is required for Notch activation in adjacent receiving cells. A key to understanding why signaling depends on ligand endocytosis lies in identifying and understanding the functions of crucial endocytic proteins. One such protein is Epsin, an endocytic factor first identified in vertebrate cells. Here, we show in Drosophila that Auxilin, an endocytic factor that regulates Clathrin dynamics, is also essential for Notch signaling. Auxilin, a co-factor for the ATPase Hsc70, brings Hsc70 to Clathrin cages. Hsc70/Auxilin functions in vesicle scission and also in uncoating Clathrin-coated vesicles. We find that like Epsin, Auxilin is required in Notch signaling cells for ligand internalization and signaling. Results of several experiments suggest that the crucial role of Auxilin in signaling is, at least in part, the generation of free Clathrin. We discuss these observations in the light of current models for the role of Epsin in ligand endocytosis and the role of ligand endocytosis in Notch signaling.  相似文献   

7.
In the Drosophila wing, the Nedd4 ubiquitin ligases (E3s), dNedd4 and Su(dx), are important negative regulators of Notch signaling; they ubiquitinate Notch, promoting its endocytosis and turnover. Here, we show that Drosophila Nedd4 family interacting protein (dNdfip) interacts with the Drosophila Nedd4-like E3s. dNdfip expression dramatically enhances dNedd4 and Su(dx)-mediated wing phenotypes and further disrupts Notch signaling. dNdfip colocalizes with Notch in wing imaginal discs and with the late endosomal marker Rab7 in cultured cells. In addition, dNdfip expression in the wing leads to ectopic Notch signaling. Supporting this, expression of dNdfip suppressed Notch(+/-) wing phenotype and knockdown of dNdfip enhanced the Notch(+/-) wing phenotype. The increase in Notch activity by dNdfip is ligand independent as dNdfip expression also suppressed deltex RNAi and Serrate(+/-) wing phenotypes. The opposing effects of dNdfip expression on Notch signaling and its late endosomal localization support a model whereby dNdfip promotes localization of Notch to the limiting membrane of late endosomes allowing for activation, similar to the model previously shown with ectopic Deltex expression. When dNedd4 or Su(dx) are also present, dNdfip promotes their activity in Notch ubiquitination and internalization to the lysosomal lumen for degradation.  相似文献   

8.
In Drosophila melanogaster, external sensory organs develop from a single sensory organ precursor (SOP). The SOP divides asymmetrically to generate daughter cells, whose fates are governed by differential Notch activation. Here we show that the clathrin adaptor AP-1 complex, localized at the trans Golgi network and in recycling endosomes, acts as a negative regulator of Notch signaling. Inactivation of AP-1 causes ligand-dependent activation of Notch, leading to a fate transformation within sensory organs. Loss of AP-1 affects neither cell polarity nor the unequal segregation of the cell fate determinants Numb and Neuralized. Instead, it causes apical accumulation of the Notch activator Sanpodo and stabilization of both Sanpodo and Notch at the interface between SOP daughter cells, where DE-cadherin is localized. Endocytosis-recycling assays reveal that AP-1 acts in recycling endosomes to prevent internalized Spdo from recycling toward adherens junctions. Because AP-1 does not prevent endocytosis and recycling of the Notch ligand Delta, our data indicate that the DE-cadherin junctional domain may act as a launching pad through which endocytosed Notch ligand is trafficked for signaling.  相似文献   

9.
Agonist-induced endocytosis and processing of the G protein-coupled AT1 angiotensin II (Ang II) receptor (AT1R) was studied in HEK 293 cells expressing green fluorescent protein (GFP)- or hemagglutinin epitope-tagged forms of the receptor. After stimulation with Ang II, the receptor and its ligand colocalized with Rab5-GFP and Rab4-GFP in early endosomes, and subsequently with Rab11-GFP in pericentriolar recycling endosomes. Inhibition of phosphatidylinositol (PI) 3-kinase by wortmannin (WT) or LY294002 caused the formation of large endosomal vesicles of heterogeneous Rab composition, containing the ligand-receptor complex in their limiting membranes and in small associated vesicular structures. In contrast to Alexa(R)-transferrin, which was mainly found in small vesicles associated with the outside of large vesicles in WT-treated cells, rhodamine-Ang II was also segregated into small internal vesicles. In cells labeled with 125I-Ang II, WT treatment did not impair the rate of receptor endocytosis, but significantly reduced the initial phase of receptor recycling without affecting its slow component. Similarly, WT inhibited the early, but not the slow, component of the recovery of AT1R at the cell surface after termination of Ang II stimulation. These data indicate that internalized AT1 receptors are processed via vesicles that resemble multivesicular bodies, and recycle to the cell surface by a rapid PI 3-kinase-dependent recycling route, as well as by a slower pathway that is less sensitive to PI 3-kinase inhibitors.  相似文献   

10.
We have previously demonstrated that glycosphingolipids are internalized from the plasma membrane of human skin fibroblasts by a clathrin-independent, caveolar-related mechanism and are subsequently transported to the Golgi apparatus by a process that is dependent on microtubules, phosphatidylinositol 3-kinase, Rab7, and Rab9. Here we characterized the early steps of intracellular transport of a fluorescent glycosphingolipid analog, BODIPY-lactosylceramide (LacCer), and compared this to fluorescent transferrin (Tfn), a well established marker for the clathrin pathway. Although these two markers were initially internalized into separate vesicles by distinct mechanisms, they became co-localized in early endosomes within 5 min. These results demonstrate that glycosphingolipid-containing vesicles derived from caveolar-related endocytosis fuse with the classical endosomal system. However, in contrast to Tfn, internalization and trafficking of LacCer was independent of Rab5a, a key regulator of transport to early endosomes. By taking advantage of the monomer/excimer properties of the fluorescent lipid analog, we were also able to visualize LacCer segregation into distinct microdomains of high (red emission) and low (green emission) concentrations in the early endosomes of living cells. Interestingly, the high concentration "red" microdomains co-localized with fluorescent Tfn upon exit from early endosomes and passed through Rab11-positive "recycling endosomes" prior to being transported back to the plasma membrane. These results together with our previous studies suggest that glycosphingolipids internalized by caveolar endocytosis are rapidly delivered to early endosomes where they are fractionated into two major pools, one that is transported via late endosomes to the Golgi apparatus and the other that is returned to the plasma membrane via the recycling compartment.  相似文献   

11.
Recent studies have established that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR). FVIIa binding to EPCR may promote the endocytosis of this receptor/ligand complex. Rab GTPases are known to play a crucial role in the endocytic and exocytic pathways of receptors or receptor/ligand complexes. The present study was undertaken to investigate the role of Rab GTPases in the intracellular trafficking of EPCR and FVIIa. CHO-EPCR cells and human umbilical vein endothelial cells (HUVEC) were transduced with recombinant adenoviral vectors to express wild-type, constitutively active, or dominant negative mutant of various Rab GTPases. Cells were exposed to FVIIa conjugated with AF488 fluorescent probe (AF488-FVIIa), and intracellular trafficking of FVIIa, EPCR, and Rab proteins was evaluated by immunofluorescence confocal microscopy. In cells expressing wild-type or constitutively active Rab4A, internalized AF488-FVIIa accumulated in early/sorting endosomes and its entry into the recycling endosomal compartment (REC) was inhibited. Expression of constitutively active Rab5A induced large endosomal structures beneath the plasma membrane where EPCR and FVIIa accumulated. Dominant negative Rab5A inhibited the endocytosis of EPCR-FVIIa. Expression of constitutively active Rab11 resulted in retention of accumulated AF488-FVIIa in the REC, whereas expression of a dominant negative form of Rab11 led to accumulation of internalized FVIIa in the cytoplasm and prevented entry of internalized FVIIa into the REC. Expression of dominant negative Rab11 also inhibited the transport of FVIIa across the endothelium. Overall our data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR-FVIIa.  相似文献   

12.
Within tumor microenvironment, a lot of growth factors such as hepatocyte growth factor and epidermal growth factor may induce similar signal cascade downstream of receptor tyrosine kinase (RTK) and trigger tumor metastasis synergistically. In the past decades, the intimate relationship of RTK-mediated receptor endocytosis with signal transduction was well established. In general, most RTK undergoes clathrin-dependent endocytosis and/or clathrin-independent endocytosis. The internalized receptors may sustain the signaling within early endosome, recycling to plasma membrane for subsequent ligand engagement or sorting to late endosomes/lysosome for receptor degradation. Moreover, receptor endocytosis influences signal transduction in a temporal and spatial manner for periodical and polarized cellular processes such as cell migration. The endosomal signalings triggered by various metastatic factors are quite similar in some critical points, which are essential for triggering cell migration and tumor progression. There are common regulators for receptor endocytosis including dynamin, Rab4, Rab5, Rab11 and Cbl. Moreover, many critical regulators within the RTK signal pathway such as Grb2, p38, PKC and Src were also modulators of endocytosis. In the future, these may constitute a new category of targets for prevention of tumor metastasis.  相似文献   

13.
The large GTPase dynamin is required for budding of clathrin-coated vesicles from the plasma membrane, after which the clathrin coat is removed by the chaperone Hsc70 and its cochaperone auxilin. Recent evidence suggests that the GTP-bound form of dynamin may recruit factors that execute the fission reaction. Here, we show that dynamin:GTP binds to Hsc70 and auxilin. We mapped two domains within auxilin that interact with dynamin, and these domains inhibit endocytosis when overexpressed in HeLa cells or when added in a permeable cell assay. The inhibition is not due to impairment of clathrin uncoating or to altered clathrin distribution in cells. Thus, in addition to its requirement for clathrin uncoating, our results show that auxilin also acts during the early steps of clathrin-coated vesicle formation. The data suggest that dynamin regulates the action of molecular chaperones in vesicle budding during endocytosis.  相似文献   

14.
Asymmetric division of sensory organ precursors (SOPs) in Drosophila generates different cell types of the mature sensory organ. In a genetic screen designed to identify novel players in this process, we have isolated a mutation in Drosophila sec15, which encodes a component of the exocyst, an evolutionarily conserved complex implicated in intracellular vesicle transport. sec15(-) sensory organs contain extra neurons at the expense of support cells, a phenotype consistent with loss of Notch signaling. A vesicular compartment containing Notch, Sanpodo, and endocytosed Delta accumulates in basal areas of mutant SOPs. Based on the dynamic traffic of Sec15, its colocalization with the recycling endosomal marker Rab11, and the aberrant distribution of Rab11 in sec15 clones, we propose that a defect in Delta recycling causes cell fate transformation in sec15(-) sensory lineages. Our data indicate that Sec15 mediates a specific vesicle trafficking event to ensure proper neuronal fate specification in Drosophila.  相似文献   

15.
Drosophila sensory organ precursor (SOP) cells are a well-studied model system for asymmetric cell division. During SOP division, the determinants Numb and Neuralized segregate into the pIIb daughter cell and establish a distinct cell fate by regulating Notch/Delta signaling. Here, we describe a Numb- and Neuralized-independent mechanism that acts redundantly in cell-fate specification. We show that trafficking of the Notch ligand Delta is different in the two daughter cells. In pIIb, Delta passes through the recycling endosome which is marked by Rab 11. In pIIa, however, the recycling endosome does not form because the centrosome fails to recruit Nuclear fallout, a Rab 11 binding partner that is essential for recycling endosome formation. Using a mammalian cell culture system, we demonstrate that recycling endosomes are essential for Delta activity. Our results suggest that cells can regulate signaling pathways and influence their developmental fate by inhibiting the formation of individual endocytic compartments.  相似文献   

16.
Notch signaling is critical to animal development, and its dysregulation leads to human maladies ranging from birth defects to cancer. Although endocytosis is currently thought to promote signal activation by delivering activated Notch to endosome‐localized γ‐secretase, the data are controversial and the mechanisms that control Notch endocytosis remain poorly defined. Here, we investigated the relationship between Notch internalization and signaling. siRNA‐mediated depletion studies reveal that Notch endocytosis is clathrin‐dependent and requires epsin1, the adaptor protein complex (AP2) and Nedd4. Moreover, we show that epsin1 interaction with Notch is ubiquitin‐dependent. Contrary to the current model, we show that internalization defects lead to elevated γ‐secretase‐mediated Notch processing and downstream signaling. These results indicate that signal activation occurs independently of Notch endocytosis and that γ‐secretase cleaves Notch at the plasma membrane. These observations support a model where endocytosis serves to downregulate Notch in signal‐receiving cells.  相似文献   

17.
Rab11-FIP2 is a member of a newly identified family of Rab11-binding proteins that have been implicated in the function of recycling endosomes. Here we show that Rab11-FIP2 may also be involved with the process of receptor-mediated endocytosis. First we demonstrate that Rab11-FIP2 contains an NPF motif that allows it to bind Reps1, a member of a family of EH domain proteins involved in endocytosis. We also show that Rab11-FIP2 associates with the alpha-adaptin subunit of AP-2 complexes, which are known to recruit receptors into clathrin-coated vesicles. Finally, we find that overexpression of Rab11-FIP2 suppresses the internalization of epidermal growth factor receptors, but not transferrin receptors, through binding sites that promote complex formation with Rab11, Reps1, and alpha-adaptin. These findings suggest that Rab11-FIP2 may participate in the coupling of receptor-mediated endocytosis to the subsequent sorting of receptor-containing vesicles in endosomes.  相似文献   

18.
Endocytosis and intracellular sorting of transforming growth factor-β (TGF-β) receptors play an important regulatory role in TGF-β signaling. Two major endocytic pathways, clathrin- and caveolae-mediated endocytosis, have been reported to independently mediate the internalization of TGF-β receptors. In this study, we demonstrate that the clathrin- and caveolae-mediated endocytic pathways can converge during TGF-β receptor endocytic trafficking. By tracking the intracellular dynamics of fluorescently-labeled TGF-β type I receptor (TβRI), we found that after mediating TβRI internalization, certain clathrin-coated vesicles and caveolar vesicles are fused underneath the plasma membrane, forming a novel type of caveolin-1 and clathrin double-positive vesicles. Under the regulation of Rab5, the fused vesicles are targeted to early endosomes and thus deliver the internalized TβRI to the caveolin-1 and EEA1 double-positive early endosomes (caveolin-1-positive early endosomes). We further showed that the caveolin-1-positive early endosomes are positive for Smad3/SARA, Rab11 and Smad7/Smurf2, and may act as a multifunctional device for TGF-β signaling and TGF-β receptor recycling and degradation. Therefore, these findings uncover a novel scenario of endocytosis, the direct fusion of clathrin-coated and caveolae vesicles during TGF-β receptor endocytic trafficking, which leads to the formation of the multifunctional sorting device, caveolin-1-positive early endosomes, for TGF-β receptors.  相似文献   

19.
By screening for mutants exhibiting interactions with a dominant-negative dynamin, we have identified the Drosophila homologue of receptor-mediated endocytosis (Rme) 8, a J-domain-containing protein previously shown to be required for endocytosis in Caenorhabditis elegans. Analysis of Drosophila Rme-8 mutants showed that internalization of Bride of sevenless and the uptake of tracers were blocked. In addition, endosomal organization and the distribution of clathrin were greatly disrupted in Rme-8 cells, suggesting that Rme-8 participates in a clathrin-dependent process. The phenotypes of Rme-8 mutants bear a strong resemblance to those of Hsc70-4, suggesting that these two genes act in a common pathway. Indeed, biochemical and genetic data demonstrated that Rme-8 interacts specifically with Hsc70-4 via its J-domain. Thus, Rme-8 appears to function as an unexpected but critical cochaperone with Hsc70 in endocytosis. Because Hsc70 is known to act in clathrin uncoating along with auxilin, another J-protein, its interaction with Rme-8 indicates that Hsc70 can act with multiple cofactors, possibly explaining its pleiotropic effects on the endocytic pathway.  相似文献   

20.
The ghrelin receptor (GhrelinR) and its related orphan GPR39 each display constitutive signaling, but only GhrelinRs undergo basal internalization. Here we investigate these differences by considering the roles of the C tail receptor domains for constitutive internalization and activity. Furthermore the interaction between phosphorylated receptors and beta-arrestin adaptor proteins has been examined. Replacement of the FLAG-tagged GhrelinR C tail with the equivalent GPR39 domain (GhR-39 chimera) preserved G(q) signaling. However in contrast to the GhrelinR, GhR-39 receptors exhibited no basal and substantially decreased agonist-induced internalization in transiently transfected HEK293 cells. Internalized GhrelinR and GhR-39 were predominantly localized to recycling compartments, identified with transferrin and the monomeric G proteins Rab5 and Rab11. Both the inverse agonist [d-Arg(1), d-Phe(5), d-Trp(7,9), Leu(11)] substance P and a naturally occurring mutant GhrelinR (A204E) with eliminated constitutive activity inhibited basal GhrelinR internalization. Surprisingly, we found that noninternalizing GPR39 was highly phosphorylated and that basal and agonist-induced phosphorylation of the GhR-39 chimera was elevated compared with GhrelinRs. Moreover, basal GhrelinR endocytosis occurred without significant phosphorylation, and it was not prevented by cotransfection of a dominant-negative beta-arrestin1(319-418) fragment or by expression in beta-arrestin1/2 double-knockout mouse embryonic fibroblasts. In contrast, agonist-stimulated GhrelinRs recruited the clathrin adaptor green fluorescent protein-tagged beta-arrestin2 to endosomes, coincident with increased receptor phosphorylation. Thus, GhrelinR internalization to recycling compartments depends on C-terminal motifs and constitutive activity, but the high levels of GPR39 phosphorylation, and of the GhR-39 chimera, are not sufficient to drive endocytosis. In addition, basal GhrelinR internalization occurs independently of beta-arrestins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号