首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies on mammalian peroxidases and cytochrome P450 family 4 enzymes have shown that a carboxylic group positioned close to a methyl group of the prosthetic heme is required for the formation of a covalent link between a protein carboxylic acid side chain and the heme. To determine whether there are additional requirements for covalent bond formation in the P450 enzymes, a glutamic acid or an aspartic acid has been introduced into P450(cam) close to the heme 5-methyl group. Spectroscopic and kinetic studies of the resulting G248E and G248D mutants suggest that the carboxylate group coordinates with the heme iron atom, as reported for a comparable P450(BM3) mutant [Girvan, H. M., Marshall, K. R., Lawson, R. J., Leys, D., Joyce, M. G., Clarkson, J., Smith, W. E., Cheesman, M. R., and Munro, A. W. (2004) J. Biol. Chem. 279, 23274-23286]. The two P450(cam) mutants have low catalytic activity, but in contrast to the P450(BM3) mutant, incubation of the G248E (but not G248D) mutant with camphor, putidaredoxin, putidaredoxin reductase, and NADH results in partial covalent binding of the heme to the protein. No covalent attachment is observed in the absence of camphor or any of the other reaction components. Pronase digestion of the G248E P450(cam) mutant after covalent attachment of the heme releases 5-hydroxyheme, establishing that the heme is covalently attached through its 5-methyl group as predicted by in silico modeling. The results establish that a properly positioned carboxyl group is the sole requirement for autocatalytic formation of a heme-protein link in P450 enzymes, but also show that efficient covalent binding requires placement of the carboxyl close to the methyl but in a manner that prevents strong coordination to the iron atom.  相似文献   

2.
A two-step approach to the production of well-defined protein conjugates is described. In the first step, a linker group, carbohydrazide, having unique reactivity (a hydrazide group) is attached specifically to the carboxyl terminus by using enzyme-catalyzed reverse proteolysis. Since the hydrazide group exists nowhere else on the protein, specificity is assured in a subsequent chemical reaction (formation of a hydrazone bond) of the modified protein with a molecule (chelator, drug, or polypeptide) carrying an aldehyde or keto group. The product is sufficiently stable at neutral pH, no reduction of the hydrazone bond being necessary for the hydrazones described. Protein modification is thus restricted to the carboxyl terminus and a homogeneous product results. With insulin as a model, conditions are described for producing such well-defined conjugates in good yields. The use of other linker groups besides carbohydrazide, and applications of these techniques to antibody fragments, are discussed.  相似文献   

3.
Alginate is a heteropolysaccharide that consists of β-D-mannuronate (M) and α-L-guluronate (G). The Gram-negative bacterium Sphingomonas sp. A1 directly incorporates alginate into the cytoplasm through the periplasmic solute-binding protein (AlgQ1 and AlgQ2)-dependent ABC transporter (AlgM1-AlgM2/AlgS-AlgS). Two binding proteins with at least four subsites strongly recognize the nonreducing terminal residue of alginate at subsite 1. Here, we show the broad substrate preference of strain A1 solute-binding proteins for M and G present in alginate and demonstrate the structural determinants in binding proteins for heteropolysaccharide recognition through X-ray crystallography of four AlgQ1 structures in complex with saturated and unsaturated alginate oligosaccharides. Alginates with different M/G ratios were assimilated by strain A1 cells and bound to AlgQ1 and AlgQ2. Crystal structures of oligosaccharide-bound forms revealed that in addition to interaction between AlgQ1 and unsaturated oligosaccharides, the binding protein binds through hydrogen bonds to the C4 hydroxyl group of the saturated nonreducing terminal residue at subsite 1. The M residue of saturated oligosaccharides is predominantly accommodated at subsite 1 because of the strict binding of Ser-273 to the carboxyl group of the residue. In unsaturated trisaccharide (ΔGGG or ΔMMM)-bound AlgQ1, the protein interacts appropriately with substrate hydroxyl groups at subsites 2 and 3 to accommodate M or G, while substrate carboxyl groups are strictly recognized by the specific residues Tyr-129 at subsite 2 and Lys-22 at subsite 3. Because of this substrate recognition mechanism, strain A1 solute-binding proteins can bind heteropolysaccharide alginate with different M/G ratios.  相似文献   

4.
Difluorostatine- and difluorostatone-containing peptides have been evaluated as potent inhibitors of penicillopepsin, a member of the aspartic proteinase family of enzymes. Isovaleryl-Val-Val-StaF2NHCH3 [StaF2 = (S)-4-amino-2,2-difluoro-(R)-3-hydroxy-6-methylheptanoic acid] and isovaleryl-Val-Val-StoF2NHCH3 [StoF2 = (S)-4-amino-2,2-difluoro-3-oxo-6-methylheptanoic acid] have measured Ki's of 10 x 10(-9) and 1 x 10(-9) M, respectively, with this fungal proteinase. The StoF2-containing peptide binds 32-fold more tightly to the enzyme than the analogous peptide containing the non-fluorinated statine ethyl ester. Each compound was cocrystallized with penicillopepsin, intensity data were collected to 1.8-A resolution, and the atomic coordinates were refined to an R factor [formula: see text] of 0.131 for both complexes. The inhibitors bind in the active site of penicillopepsin in much the same fashion as do other statine-containing inhibitors of penicillopepsin analyzed earlier [James, M. N. G., Sielecki, A. Salituro, F., Rich, D. H., & Hofmann, T. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 6137-6141; James, M.N.G., Sielecki, A., & Hofmann, T. (1985) in Aspartic Proteinases and their Inhibitors (Kosta, V., Ed.) pp 163-177, Walter deGruyter, Berlin]. The (R)-3-hydroxyl group in StaF2 binds between the active site carboxyl groups of Asp33 and Asp213, making hydrogen-bonding contacts to each one. The ketone functional group of the StoF2 inhibitor is bound as a hydrated species, with the gem-diol situated between the two aspartic acid carboxyl groups in a manner similar to that predicted for the tetrahedral intermediate expected during the catalytic hydrolysis of a peptide bond [James, M. N. G., & Sielecki, A. (1985) Biochemistry 24, 3701-3713]. One hydrogen-bonding interaction from the "outer" hydroxyl group is made to O delta 1 of Asp33, and the "inner" hydroxyl group forms two hydrogen-bonding contacts, one to each of the carboxyl groups of Asp33 (O delta 2) and Asp213 (O delta 2). The only structural difference between the StaF2 and StoF2 inhibitors that accounts for the factor of 10 in their Ki's is the additional (R)-3-OH group on the tetrahedral sp3 carbon atom of the hydrated StoF2 inhibitor. The intermolecular interactions involving the fluorine atoms of each inhibitor are normal van der Waals contacts to one of the carboxyl oxygen atoms of Asp213 (F2-O delta 2 Asp213, 2.9 A). The observed stereochemistry of the bound StoF2 group in the active site of penicillopepsin has stimulated our reappraisal of the catalytic pathway for the aspartic proteinases.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
We have previously provided functional evidence for a role of carboxyl group(s) in the mechanism of coupling of Na+ and D-glucose fluxes by the small-intestinal cotransporter(s) (Kessler, M. and Semenza, G. (1983) J. Membrane Biol. 76, 27-56). We present here a study on the inactivation of the Na+-dependent transport systems, but not of the Na+-independent ones, in the small-intestinal brush-border membrane, by hydrophobic carbodiimides. Although marginal or insignificant protection by the substrates or by Na+ was observed, the parallelism between Na+-dependence and inactivation by these carbodiimides strongly indicates the role of carboxyl group(s) previously indicated. Contrary to the carboxyl group identified by Turner [1986) J. Biol. Chem. 261, 1041-1047) in the sugar binding site of the renal Na+/D-glucose cotransporter, the carboxyl group(s) studied here probably occur elsewhere in the cotransporter molecule.  相似文献   

6.
The chemical structure of the surface polysaccharide from Staphylococcus aureus M was investigated by a combination of methanolytic, hydrolytic, and chromatographic techniques. The repeating unit that was most consistent with the data was a hexasaccharide composed of N-acetyl-D-aminogalacturonic acid, N-acetyl-D-fucosamine, and taurine in molar ratios of 4:2:1. A disaccharide was isolated and characterized, by combined gas-liquid chromatography-mass spectrometry, as N-acetyl-D-aminogalacturonyl-(1 leads to 3)-N-acetyl-D-fucosamine. Taurine is linked to a carboxyl group of N-acetyl-D-aminogalacturonic acid via an amide bond.  相似文献   

7.
1. Seveal selective reagents were employed to identify the amino acid residues essential for the catalytic activity of sucrase-isomaltase. 2. Modification of histidine, lysine and carboxyl residues resulted in a partial inactivation of the enzyme. Substrates or competitive inhibitors provided protection against inactivation only in the reaction of carboxyl groups with carbodiimide (+lycine ethyl ester) or with diazoacetic ethyl ester. This indicated the occurrence of carboxyl groups at the two active centers of the enzyme complex. 3. Protection against inactivation of the enzyme by carbodiimide was provided also by the presence of alkali and alkaline earth metal ions, which are non-essential activators of sucrase-isomaltase. The presence of Na+ and Ba2+ protected approximately one carboxyl group per active center from reacting with carbodiimide plus glycine ethyl ester. 4. The carbodiimide-reactive groups were not identical with the two carboxylate groups recently found to react with conduritol-B-epoxide, an active-site-directed inhibitor of sucrase-isomaltase (Quaroni, A. and Semenza, G., 1976, J. Biol. Chem 251,3250--3253). A possible role for the carbodiimide-reactive carboxyl groups at the active centers of sucrase-isomaltase is discussed.  相似文献   

8.
Transcarboxylase (TC) from Propionibacterium shermanii, a biotin-dependent enzyme, catalyzes the transfer of a carboxyl group from methylmalonyl-CoA to pyruvate in two partial reactions. Within the multisubunit enzyme complex, the 1.3S subunit functions as the carboxyl group carrier. The 1.3S is a 123-amino acid polypeptide (12.6 kDa), to which biotin is covalently attached at Lys 89. We have expressed 1.3S in Escherichia coli with uniform 15N labeling. The backbone structure and dynamics of the protein have been characterized in aqueous solution by three-dimensional heteronuclear nuclear magnetic resonance (NMR) spectroscopy. The secondary structure elements in the protein were identified based on NOE information, secondary chemical shifts, homonuclear 3J(HNHalpha) coupling constants, and amide proton exchange data. The protein contains a predominantly disordered N-terminal half, while the C-terminal half is folded into a compact domain comprising eight beta-strands connected by short loops and turns. The topology of the C-terminal domain is consistent with the fold found in both carboxyl carrier and lipoyl domains, to which this domain has approximately 26-30% sequence similarity.  相似文献   

9.
Functionally important carboxyl groups in glucoamylase G2 from Aspergillus niger were identified using a differential labelling approach which involved modification of the acarbose-inhibited enzyme with 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)carbodiimide (EAC) and inactivation by [3H]EAC following removal of acarbose. Subsequent sequence localization of the substituted acidic residues was facilitated by specific phenylthiohydantoins. The acid cluster Asp176, Glu179 and Glu180 reacted exclusively with [3H]EAC, while Asp112, Asp153, Glu259 and Glu389 had incorporated both [3H]EAC and EAC. It is conceivable that one or two of the [3H]EAC-labelled side chains act in catalysis while the other fully protected residue(s) participates in substrate binding probably together with the partially protected ones. Twelve carboxyl groups that reacted with EAC in the enzyme-acarbose complex were also identified. Asp176, Glu179 and Glu180 are all invariant in fungal glucoamylases. Glu180 was tentatively identified as a catalytic group on the basis of sequence alignments to catalytic regions in isomaltase and alpha-amylase. The partially radiolabelled Asp112 corresponds in Taka-amylase A to Tyr75 situated in a substrate binding loop at a distance from the site of cleavage. A possible correlation between carbodiimide modification of an essential carboxyl group and its role in the glucoamylase catalysis is discussed.  相似文献   

10.
We have isolated a 417Da antibacterial molecule, named mygalin, from the hemocytes of the spider Acanthoscurria gomesiana. The structure of mygalin was elucidated by tandem mass spectrometry (MS/MS) and by two spectroscopic techniques, nuclear magnetic resonance (NMR) and ultraviolet (UV) spectroscopy. Mygalin was identified as bis-acylpolyamine N1,N8-bis(2,5-dihydroxybenzoyl)spermidine, in which the primary amino groups of the spermidine are acylated with the carboxyl group of the 2,5-dihydroxybenzoic acid. Mygalin was active against Escherichia coli at 85muM, being this activity inhibited completely by catalase. Therefore, the antibacterial activity of mygalin was attributed to its production of hydrogen peroxide (H(2)O(2)). The putative mechanisms of formation of H(2)O(2) from mygalin are discussed. To our knowledge this is the first report of one bis-acylpolyamine with antibacterial activity purified from animal source.  相似文献   

11.
The unique ability of Carbon-13 nuclear magnetic resonance analysis with cross polarization/magic angle spinning techniques to investigate chemical structures of solids is used to probe the chemical characteristics of several gallstone types. New pulse program techniques are used to distinguish various carbon atoms in studying the polymeric nature of the black bilirubinoid pigment of pigment gallstones. Evidence for the involvement of the carboxyl group and noninvolvement of vinyl groups of bilirubinoids in the polymeric bond formation is presented. Conjugated bilirubin structures are found to be present in some solid residues from pigment stones extracted with acidic methanol/chloroform.  相似文献   

12.
In order to investigate the application potential of branched CDs, the solubilizing ability and the stabilizing ability of G2-betaCD and GUG-betaCD were investigated by using twelve terpenes (d-limonene, myrcene, terpinolene, geraniol, l-menthol, nerol, alpha-terpineol, citral, d-citronellal, l-perillaldehyde, (R)-l-carvone, and menthone) as guest compounds. G2-betaCD and GUG-betaCD showed more solubilizing ability for these twelve terpenes than betaCD, and the ability of GUG-betaCD was almost the same as that of G2-betaCD. The stabilizing ability of terpene-GUG-betaCD complexes was different from that of G2-betaCD. GUG-betaCD was superior to G2-betaCD, especially in the solid state. This result may have been caused by the difference in structure of side chain, namely the hydroxymethyl group in G2-betaCD and the carboxyl group in GUG-betaCD.  相似文献   

13.
The three-dimensional structure of a modified human lysozyme (HL), Glu 53 HL, in which Asp 53 was replaced by Glu, has been determined at 1.77 A resolution by X-ray analysis. The backbone structure of Glu 53 HL is essentially the same as the structure of wild-type HL. The root mean square difference for the superposition of equivalent C alpha atoms is 0.141 A. Except for the Glu 53 residue, the structure of the active site region is largely conserved between Glu 53 HL and wild-type HL. However, the hydrogen bond network differs because of the small shift or rotation of side chain groups. The carboxyl group of Glu 53 points to the carboxyl group of Glu 35 with a distance of 4.7 A between the nearest carboxyl oxygen atoms. A water molecule links these carboxyl groups by a hydrogen bond bridge. The active site structure explains well the fact that the binding ability for substrates does not significantly differ between Glu 53 HL and wild-type HL. On the other hand, the positional and orientational change of the carboxyl group of the residue 53 caused by the mutation is considered to be responsible for the low catalytic activity (ca. 1%) of Glu 53 HL. The requirement of precise positioning for the carboxyl group suggests the possibility that the Glu 53 residue contributes more than a simple electrostatic stabilization of the intermediate in the catalysis reaction.  相似文献   

14.
The A2A adenosine receptor is a prototypical G(s)-coupled receptor, but it also signals, e.g. to mitogen-activated protein (MAP) kinase, via a pathway that is independent of heterotrimeric G proteins. Truncation of the carboxyl terminus affects the strength of the signal through these alternative pathways. In a yeast two-hybrid interaction hunt, we screened a human brain library for proteins that bound to the juxtamembrane portion of the carboxyl terminus of the A2A receptor. This approach identified ARNO/cytohesin-2, a nucleotide exchange factor for the small (monomeric) G proteins of the Arf (ADP-ribosylation factor) family, as a potential interaction partner. We confirmed a direct interaction by mutual pull down (of fusion proteins expressed in bacteria) and by immunoprecipitation of the proteins expressed in mammalian cells. To circumvent the long term toxicity associated with overexpression of ARNO/cytohesin-2, we created stable cell lines that stably expressed the A2A receptor and where ARNO/cytohesin-2 or the dominant negative version E156K-ARNO/cytohesin-2 was inducible by mifepristone. Cyclic AMP accumulation induced by an A2A-specific agonist was neither altered by ARNO/cytohesin-2 nor by the dominant negative version. This was also true for agonist-induced desensitization. In contrast, expression of dominant negative E156K-ARNO/cytohesin-2 and of dominant negative T27N-Arf6 abrogated the sustained phase of MAP kinase stimulation induced by the A2A receptor. We therefore conclude that ARNO/cytohesin-2 is required to support the alternative, heterotrimeric G protein-independent, signaling pathway of A2A receptor, which is stimulation of MAP kinase.  相似文献   

15.
Aggrecan, a major structural proteoglycan in cartilage, contains three globular domains, G1, G2, and G3, as well as sequences for glycosaminoglycan modification. A large number of proteases are implicated in aggrecan cleavage in normal metabolism, aging, and arthritis. These proteases are known to cleave at the IGD, KS, and CS domains. Here we report for the first time evidence of cleavage at a novel site, the carboxyl tail of aggrecan. Results from deletion mutants of the tail indicated that the likely cleavage sites were two consensus sequences, RRLXK and RSPR, present in the aggrecan analogs of many species. This was confirmed by site-directed mutagenesis. A construct containing two G3 domains (G3G3) was also found to cleave between the G3 duplicates. When G3 tail was linked to a glycosaminoglycan-modifying sequence, it was protected from cleavage. Furin inhibitor also reduced the levels of tail cleavage. The carboxyl tails of chicken and human versican were not cleaved, despite the presence of the consensus sequence. Our studies indicate that the basic amino acids present in the tail play an important role in cleavage, and this mechanism is specific to aggrecan.  相似文献   

16.
Allan Beveridge 《Proteins》1996,24(3):322-334
We have performed ab initio Hartree-Fock self-consistent field calculations on the active site of endothiapepsin. The active site was modeled as a formic acid/formate anion moiety (representing the catalytic aspartates, Asp-32 and -215) and a bound water molecule. Residues Gly-34, Ser-35, Gly-217, and Thr-218, which all form hydrogen bonds to the active site, were modeled using formamide and methanol molecules. The water molecule, which is generally believed to function as the attacking nucleophile in catalysis, was allowed to bind to the active site in four distinct configurations. The geometry of each configuration was optimized using two basis sets (4-31G and 4-31G*). The results indicate that in the native enzyme the nucleophilic water is bound in a catalytically inert configuration. However, by rotating the carboxyl group of Asp-32 by about 90° the water molecule can be reorientated to attack the scissile bond of the substrate. A model of the bound enzyme-substrate complex was constructed from the crystal structure of a difluorostatone inhibitor complexed with endothiapepsin. This model suggests that the substrate itself initiates the reorientation of the nucleophilic water immediately prior to catalysis by forcing the carboxyl group of Asp-32 to rotate. The theoretical results predict that the active site of endothiapepsin undergoes a large distortion during substrate binding and this observation has been used to explain some of the kinetics results which have been reported for mutant aspartic proteinases.  相似文献   

17.
Many animals are now known to have a magnetic sense which they use when moving from one place to another. Among insects, this sense has only been studied in any detail in the honey bee. A role for a magnetic compass sense in cross-country migration has not so far been demonstrated for any insect. On clear nights the large yellow underwing moth, Noctua pronuba, has been shown to orientate by both the moon and the stars. However, radar studies have shown moths to be well-oriented on overcast nights as well as clear nights. We report here that when large yellow underwings are placed in an orientation cage on overcast nights and the Earth's normal magnetic field is reversed, there is a corresponding reversal in the orientation of the moth. We conclude that this species makes use of the Earth's magnetic field in maintaining compass orientation on overcast nights. We also show that the preferred compass orientation to the Earth's magnetic field is the same as the compass direction that results from orientation to the moon and stars.  相似文献   

18.
The carboxyl terminus of the G protein alpha subunit plays a key role in interactions with G protein-coupled receptors. Previous studies that have incorporated covalently attached probes have demonstrated that the carboxyl terminus undergoes conformational changes upon G protein activation. To examine the conformational changes that occur at the carboxyl terminus of Galpha subunits upon G protein activation in a more native system, we generated a semisynthetic Galpha subunit, site-specifically labeled in its carboxyl terminus with 13C amino acids. Using expressed protein ligation, 9-mer peptides were ligated to recombinant Galpha(i1) subunits lacking the corresponding carboxyl-terminal residues. In a receptor-G protein reconstitution assay, the truncated Galpha(i1) subunit could not be activated by receptor; whereas the semisynthetic protein demonstrated functionality that was comparable with recombinant Galpha(i1). To study the conformation of the carboxyl terminus of the semisynthetic G protein, we applied high resolution solution NMR to Galpha subunits containing 13C labels at the corresponding sites in Galpha(i1): Leu-348 (uniform), Gly-352 (alpha carbon), and Phe-354 (ring). In the GDP-bound state, the spectra of the ligated carboxyl terminus appeared similar to the spectra obtained for 13C-labeled free peptide. Upon titration with increasing concentrations of AlF4-, the 13C resonances demonstrated a marked loss of signal intensity in the semisynthetic Galpha subunit but not in free peptide subjected to the same conditions. Because AlF4- complexes with GDP to stabilize an activated state of the Galpha subunit, these results suggest that the Galpha carboxyl terminus is highly mobile in its GDP-bound state but adopts an ordered conformation upon activation by AlF4-.  相似文献   

19.
The guanine nucleotide-binding protein G(o alpha) has been implicated in the regulation of Ca2+ channels in neural tissues. Covalent modification of G(o alpha) by pertussis toxin-catalyzed ADP-ribosylation of a cysteine (position 351) four amino acids from the carboxyl terminus decouples G(o alpha) from receptor. To define the structural requirements for ADP-ribosylation, preparations of recombinant G(o alpha) with mutations within the five amino acids at the carboxyl terminus were evaluated for their ability to serve as pertussis toxin substrates. As expected, the mutant in which cysteine 351 was replaced by glycine (C351G) was not a toxin substrate. Other inactive mutants were G352D and L353 delta/Y354 delta. Mutations that had no significant effect on toxin-catalyzed ADP-ribosylation included G350D, G350R, Y354 delta, and L353V/Y354 delta. Less active mutants were L353G/Y354 delta, L353A/Y354 delta, and L353G. ADP-ribosylation of the active mutants, like that of wild-type G(o alpha), was enhanced by the beta gamma subunits of bovine transducin. It appears that three of the four terminal amino acids critically influence pertussis toxin-catalyzed ADP-ribosylation of G(o alpha).  相似文献   

20.
The initial binding of Cu2+ ot L-lysine, L-histidine, glycyl-histidine and histidyl-glycine in aqueous solutions was examined by 13C nuclear magnetic resonance spectroscopy. The measurements were carried out in a substantially improved way employing the pulse Fourier transform technique. Spectra of both high quality and resolution were obtained. Cu2+ complex formation with L-lysine occurred with the alpha-amino and carboxyl group attributable to the well expressed broadening effect of the 13C signals of the alpha-carbon atom and the carboxyl atom. The epsilon-amino group was not involved. Measurements of the Cu chelates using L-histidine and glycyl-histidine and histidyl-glycine confirmed the ambidentate nature of the histidine residue. It was concluded that an equilibrium exists between two Cu-complex species designated as histamine-like and histamine-like/glycine-like species. In the homogeneous histamine-like Cu complex, the Cu2+ is exclusively bound with 4 nitrogens, while in the other species one oxygen of the glycyl carboxyl group is involved in the Cu2+ binding. Blocking of this carboxyl groups by peptide bonding as found in histidyl-glycine favoured the formation of a Cu complex where the imidazole carbons of the histidyl residue were the most influenced species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号