首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lo YH  Liu SW  Sun YJ  Li HW  Hsiao CD 《PloS one》2011,6(12):e29016
Replicative helicases are essential molecular machines that utilize energy derived from NTP hydrolysis to move along nucleic acids and to unwind double-stranded DNA (dsDNA). Our earlier crystal structure of the hexameric helicase from Geobacillus kaustophilus HTA426 (GkDnaC) in complex with single-stranded DNA (ssDNA) suggested several key residues responsible for DNA binding that likely play a role in DNA translocation during the unwinding process. Here, we demonstrated that the unwinding activities of mutants with substitutions at these key residues in GkDnaC are 2-4-fold higher than that of wild-type protein. We also observed the faster unwinding velocities in these mutants using single-molecule experiments. A partial loss in the interaction of helicase with ssDNA leads to an enhancement in helicase efficiency, while their ATPase activities remain unchanged. In strong contrast, adding accessory proteins (DnaG or DnaI) to GkDnaC helicase alters the ATPase, unwinding efficiency and the unwinding velocity of the helicase. It suggests that the unwinding velocity of helicase could be modulated by two different pathways, the efficiency of ATP hydrolysis or protein-DNA interaction.  相似文献   

2.
RecQ家族解旋酶是DNA解旋酶中高度保守的一个重要家族,在维持染色体的稳定性中起着重要的作用.人类RecQ家族解旋酶突变会导致几种与癌症有关的疾病.本研究旨在诱导大肠杆菌RecQ解旋酶体外表达,并应用生物化学和生物物理学技术研究大肠杆菌RecQ解旋酶的生物学活性. 体外诱导表达获得纯度达90% 以上并具有高活性的大肠杆菌重组RecQ解旋酶,其可溶性好;经生物学活性分析显示具有DNA结合活性、ATP依赖的DNA解链活性、DNA依赖的ATP酶活性. 较之双链DNA(dsDNA),大肠杆菌RecQ解旋酶更容易与单链DNA(ssDNA)结合( P<0.01 ),但与长度不同的dsDNA的结合特性有差异(P<0.01)而与ssDNA没有差异(P>0.05);大肠杆菌RecQ解旋酶对3种dsDNA的解链速率不同(P<0.05);大肠杆菌RecQ解旋酶的ATP酶活性与辅助因子ssDNA长度也呈正相关(P<0.01). 这些研究结果将有助于阐明大肠杆菌RecQ解旋酶的分子作用机制,并为研究RecQ解旋酶家族其它成员的结构与功能提供帮助.  相似文献   

3.
The RecQ helicases belong to an important family of highly conserved DNA helicases that play a key role in chromosomal maintenance, and their defects have been shown to lead to several disorders and cancer in humans. In this work, the conformational and functional properties of the Escherichia coli RecQ helicase have been determined using a wide array of biochemical and biophysical techniques. The results obtained clearly indicate that E. coli RecQ helicase is monomeric in solution up to a concentration of 20 microM and in a temperature range between 4 and 37 degrees C. Furthermore, these properties are not affected by the presence of ATP, which is strictly required for the unwinding and translocating activity of the protein, or by its nonhydrolyzable analogue 5'-adenylyl-beta,gamma-imidodiphosphate. Consistent with the structural properties, functional analysis shows that both DNA unwinding activity and single-stranded DNA-stimulated ATPase specific activity were independent of RecQ concentration. The monomeric state was further confirmed by the ATPase-deficient mutants of RecQ protein. The rate of unwinding was unchanged when the wild type RecQ helicase was mixed with the ATPase-deficient mutants, indicating that nonprotein-protein interactions were involved in the unwinding processes. Taken together, these results indicate that RecQ helicase functions as a monomer and provide new data on the structural and functional properties of RecQ helicase that may help elucidate its mechanism action.  相似文献   

4.
We describe an assay to measure the extent of enzymatic unwinding of DNA by a DNA helicase. This assay takes advantage of the quenching of the intrinsic protein fluorescence of Escherichia coli SSB protein upon binding to ssDNA and is used to characterize the DNA unwinding activity of recBCD enzyme. Unwinding in this assay is dependent on the presence of recBCD enzyme and linear dsDNA, is consistent with the known properties of recBCD enzyme, and closely parallels other methods for measuring recBCD enzyme helicase activity. The effects of varying temperature, substrate concentrations, enzyme concentration, and mono- and divalent salt concentrations on the helicase activity of recBCD enzyme were characterized. The apparent Km values for recBCD enzyme helicase activity on linear M13 dsDNA molecules at 25 degrees C are 0.6 nM dsDNA molecules and 130 microM ATP, respectively. The apparent turnover number for unwinding is approximately 15 microM base pairs s-1 (microM recBCD enzyme)-1. When this rate is corrected for the observed stoichiometry of recBCD enzyme binding to dsDNA, kcat for helicase activity corresponds to an unwinding rate of approximately 250 base pairs of DNA s-1 (functional recBCD complex)-1 at 25 degrees C. At 37 degrees C, the apparent Km value for dsDNA molecules was the same as that at 25 degrees C, but the apparent turnover number became 56 microM base pairs s-1 (microM recBCD enzyme)-1 [or 930 base pairs s-1 (functional recBCD complex)-1 when corrected for observed stoichiometry]. With increasing NaCl concentration, kcat peaks at 100 mM, and the apparent Km value for dsDNA increases by 3-fold at 200 mM NaCl. In the presence of 5 mM calcium acetate, the apparent Km value is increased by 3-fold, and kcat decreased by 20-30%. We have also shown that recBCD enzyme molecules are able to catalytically unwind additional dsDNA substrates subsequent to initiation, unwinding, and dissociation from a previous dsDNA molecule.  相似文献   

5.
The Escherichia coli UvrD protein is a 3' to 5' SF1 DNA helicase involved in methyl-directed mismatch repair and nucleotide excision repair of DNA. We have characterized in vitro UvrD-catalyzed unwinding of a series of 18 bp duplex DNA substrates with 3' single-stranded DNA (ssDNA) tails ranging in length from two to 40 nt. Single turnover DNA-unwinding experiments were performed using chemical quenched flow methods, as a function of both [UvrD] and [DNA] under conditions such that UvrD-DNA binding is stoichiometric. Although a single UvrD monomer binds tightly to the single-stranded/double-stranded DNA (dsDNA) junction if the 3' ssDNA tail is at least four nt, no unwinding was observed for DNA substrates with tail-lengths /=12 nt, and the unwinding amplitude displays a sigmoidal dependence on [UvrD(tot)]/[DNA(tot)]. Quantitative analysis of these data indicates that a single UvrD monomer bound at the ssDNA/dsDNA junction of any DNA substrate, independent of 3' ssDNA tail length, is not competent to fully unwind even a short 18 bp duplex DNA, and that two UvrD monomers must bind the DNA substrate in order to form a complex that is able to unwind short DNA substrates in vitro. Other proteins, including a mutant UvrD with no ATPase activity as well as a monomer of the structurally homologous E.coli Rep helicase, cannot substitute for the second UvrD monomer, suggesting a specific interaction between two UvrD monomers and that both must be able to hydrolyze ATP. Initiation of DNA unwinding in vitro appears to require a dimeric UvrD complex in which one subunit is bound to the ssDNA/dsDNA junction, while the second subunit is bound to the 3' ssDNA tail.  相似文献   

6.
Loss of the RecQ helicase WRN protein causes the cancer-prone progeroid disorder Werner syndrome (WS). WS cells exhibit defects in DNA replication and telomere preservation. The telomeric single-stranded binding protein POT1 stimulates WRN helicase to unwind longer telomeric duplexes that are otherwise poorly unwound. We reasoned that stimulation might occur by POT1 recruiting and retaining WRN on telomeric substrates during unwinding and/or by POT1 loading on partially unwound ssDNA strands to prevent strand re-annealing. To test these possibilities, we used substrates with POT1-binding sequences in the single-stranded tail, duplex or both. POT1 binding to ssDNA tails did not alter WRN activity on nontelomeric duplexes or recruit WRN to telomeric ssDNA. However, POT1 bound tails inhibited WRN activity on telomeric duplexes with a single 3'-ssDNA tail, which mimic telomeric ends in the open conformation. In contrast, POT1 bound tails stimulated WRN unwinding of forked telomeric duplexes. This indicates that POT1 interaction with the ssDNA/dsDNA junction regulates WRN activity. Furthermore, POT1 did not enhance retention of WRN on telomeric forks during unwinding. Collectively, these data suggest POT1 promotes the apparent processivity of WRN helicase by maintaining partially unwound strands in a melted state, rather than preventing WRN dissociation from the substrate.  相似文献   

7.
Rad B  Kowalczykowski SC 《Biochemistry》2012,51(13):2921-2929
A member of the SF2 family of helicases, Escherichia coli RecQ, is involved in the recombination and repair of double-stranded DNA breaks and single-stranded DNA (ssDNA) gaps. Although the unwinding activity of this helicase has been studied biochemically, the mechanism of translocation remains unclear. To this end, using ssDNA of varying lengths, the steady-state ATP hydrolysis activity of RecQ was analyzed. We find that the rate of ATP hydrolysis increases with DNA length, reaching a maximum specific activity of 38 ± 2 ATP/RecQ/s. Analysis of the rate of ATP hydrolysis as a function of DNA length implies that the helicase has a processivity of 19 ± 6 nucleotides on ssDNA and that RecQ requires a minimal translocation site size of 10 ± 1 nucleotides. Using the T4 phage encoded gene 32 protein (G32P), which binds ssDNA cooperatively, to decrease the lengths of ssDNA gaps available for translocation, we observe a decrease in the rate of ATP hydrolysis activity that is related to lattice occupancy. Analysis of the activity in terms of the average gap sizes available to RecQ on the ssDNA coated with G32P indicates that RecQ translocates on ssDNA on average 46 ± 11 nucleotides before dissociating. Moreover, when bound to ssDNA, RecQ hydrolyzes ATP in a cooperative fashion, with a Hill coefficient of 2.1 ± 0.6, suggesting that at least a dimer is required for translocation on ssDNA. We present a kinetic model for translocation by RecQ on ssDNA based on this characterization.  相似文献   

8.
The modulation of enzymatic activities of Escherichia coli DnaB helicase by homologous and heterologous single-stranded DNA-binding proteins (SSBs) and its DNA substrates were analyzed. Although DnaB helicase can unwind a variety of DNA substrates possessing different fork-like structures, the rate of DNA unwinding was significantly diminished with substrates lacking a 3′ fork. A 5 nt fork appeared to be adequate to attain the maximum rate of DNA unwinding. Efficient helicase action of DnaB requires the participation of SSBs. Studies involving heterologous SSBs demonstrated that they can stimulate the helicase activity of DnaB protein under certain conditions. However, this stimulation occurs in a manner distinctly different from that observed with cognate E.coli SSB. The E.coli SSB was found to stimulate the helicase activity over a wide range of SSB concentrations and was unique in its strong inhibition of single-stranded DNA-dependent ATPase activity when uncoupled from the DNA helicase activity. In the presence of a helicase substrate, the ATPase activity of DnaB helicase remained uninhibited. Thus, E.coli SSB appears to coordinate and couple the ATPase activity to the DNA helicase activity by suppressing unproductive ATP hydrolysis by DnaB helicase.  相似文献   

9.
RecQ家族解旋酶是DNA解旋酶中高度保守的一个重要家族,参与DNA复制、修复、重组、转录及维持端粒稳定等细胞代谢过程,在维持染色体稳定性与完整性中起着重要作用.甲磺酸培氟沙星(pefloxacin mesylate,PFM)是一种新型氟喹诺酮类抗菌药物,对一些革兰氏阴性菌具有明显的杀菌效果,临床上已广泛使用.本研究利用荧光偏振、自由磷检测技术研究PFM对大肠杆菌RecQ解旋酶的DNA结合活性、解链活性、ATPase活性的影响.结果表明,低浓度PFM可促进大肠杆菌RecQ解旋酶与ssDNA、dsDNA结合,达到一定量后PFM则抑制酶与DNA底物的结合,这种影响与DNA底物有关;PFM对RecQ解旋酶的DNA解链活性和ATP酶活性都具有抑制作用,但其抑制的效果有极显著差异(P<0.01):比较PFM对两种活性抑制的Ci值(对解链活性抑制的Ci值为(1.5±0.2) μmol/L,对ATP酶活性抑制的Ci值为(0.010±0.005) μmol/L)可知,PFM对大肠杆菌RecQ解旋酶ATPase活性的抑制强于其解链活性. 这些结果可为研究以DNA解旋酶为药物靶标的分子机理奠定相关理论基础.  相似文献   

10.
The formation and maintenance of single-stranded DNA (ssDNA) are essential parts of many processes involving DNA. For example, strand separation of double-stranded DNA (dsDNA) is catalyzed by helicases, and this exposure of the bases on the DNA allows further processing, such as replication, recombination, or repair. Assays of helicase activity and probes for their mechanism are essential for understanding related biological processes. Here we describe the development and use of a fluorescent probe to measure ssDNA formation specifically and in real time, with high sensitivity and time resolution. The reagentless biosensor is based on the ssDNA binding protein (SSB) from Escherichia coli, labeled at a specific site with a coumarin fluorophore. Its use in the study of DNA manipulations involving ssDNA intermediates is demonstrated in assays for DNA unwinding, catalyzed by DNA helicases.  相似文献   

11.
Bloom syndrome protein forms an oligomeric ring structure and belongs to a group of DNA helicases showing extensive homology to the Escherichia coli DNA helicase RecQ, a suppressor of illegitimate recombination. After over-production in E.coli, we have purified the RecQ core of BLM consisting of the DEAH, RecQ-Ct and HRDC domains (amino acid residues 642-1290). The BLM(642-1290) fragment could function as a DNA-stimulated ATPase and as a DNA helicase, displaying the same substrate specificity as the full-size protein. Gel-filtration experiments revealed that BLM(642-1290) exists as a monomer both in solution and in its single-stranded DNA-bound form, even in the presence of Mg(2+) and ATPgammaS. Rates of ATP hydrolysis and DNA unwinding by BLM(642-1290) showed a hyperbolic dependence on ATP concentration, excluding a co-operative interaction between ATP-binding sites. Using a lambda Spi(-) assay, we have found that the BLM(642-1290) fragment is able to partially substitute for the RecQ helicase in suppressing illegitimate recombination in E.coli. A deletion of 182 C-terminal amino acid residues of BLM(642-1290), including the HRDC domain, resulted in helicase and single-stranded DNA-binding defects, whereas kinetic parameters for ATP hydrolysis of this mutant were close to the BLM(642-1290) values. This confirms the prediction that the HRDC domain serves as an auxiliary DNA-binding domain. Mutations at several conserved residues within the RecQ-Ct domain of BLM reduced ATPase and helicase activities severely as well as single-stranded DNA-binding of the enzyme. Together, these data define a minimal helicase domain of BLM and demonstrate its ability to act as a suppressor of illegitimate recombination.  相似文献   

12.
Primosome assembly protein PriA functions in the assembly of the replisome at forked DNA structures. Whereas its N-terminal DNA binding domain (DBD) binds independently to DNA, the affinity of DBD protein for forked structures is relatively weak. Although the PriA helicase domain (HD) is required for high affinity fork binding, HD protein had very low affinity for DNA. It had only low levels of ATPase activity, and it hydrolyzed ATP when DNA was absent whereas PriA did not. HD catalyzed unwinding of a minimal substrate composed of a duplex with a 3' single-stranded tail. Single-strand binding protein (SSB) bound to the tail of this substrate inhibited this reaction by full-length PriA but enhanced the reaction by HD. SSB stabilized binding of PriA but not of DBD or HD to duplexes with a 5' or 3' single-stranded tail. On forked substrates SSB enhanced helicase action on the lagging-strand arm by PriA but not by HD. The results indicate that synergy of the DBD and HD allows stable binding at the interface between duplex and single-stranded DNA bound by SSB. This mode of binding may be analogous to fork binding, which orients the helicase to act on the lagging-strand side of the fork.  相似文献   

13.
We have described a novel essential replicative DNA helicase from Bacillus anthracis, the identification of its gene, and the elucidation of its enzymatic characteristics. Anthrax DnaB helicase (DnaBBA) is a 453-amino-acid, 50-kDa polypeptide with ATPase and DNA helicase activities. DnaBBA displayed distinct enzymatic and kinetic properties. DnaBBA has low single-stranded DNA (ssDNA)-dependent ATPase activity but possesses a strong 5′→3′ DNA helicase activity. The stimulation of ATPase activity appeared to be a function of the length of the ssDNA template rather than of ssDNA binding alone. The highest specific activity was observed with M13mp19 ssDNA. The results presented here indicated that the ATPase activity of DnaBBA was coupled to its migration on an ssDNA template rather than to DNA binding alone. It did not require nucleotide to bind ssDNA. DnaBBA demonstrated a strong DNA helicase activity that required ATP or dATP. Therefore, DnaBBA has an attenuated ATPase activity and a highly active DNA helicase activity. Based on the ratio of DNA helicase and ATPase activities, DnaBBA is highly efficient in DNA unwinding and its coupling to ATP consumption.  相似文献   

14.
A model is proposed for non-hexameric helicases translocating along single-stranded (ss) DNA and unwinding double-stranded (ds) DNA. The translocation of a monomeric helicase along ssDNA in weakly-ssDNA-bound state is driven by the Stokes force that is resulted from the conformational change following the transition of the nucleotide state. The unwinding of dsDNA is resulted mainly from the bending of ssDNA induced by the strong binding force of helicase with dsDNA. The interaction force between ssDNA and helicases in weakly-ssDNA-bound state determines whether monomeric helicases such as PcrA can unwind dsDNA or dimeric helicases such as Rep are required to unwind dsDNA.  相似文献   

15.
Rep protein and helicase IV, two DNA-dependent adenosine 5'-triphosphatases with helicase activity, have been purified from Escherichia coli and characterized. Both enzymes exhibit a distributive interaction with single-stranded DNA as DNA-dependent ATPases in a reaction that is relatively resistant to increasing NaCl concentration and sensitive to the addition of E. coli single-stranded DNA binding protein (SSB). The helicase reaction catalyzed by each protein has been characterized using a direct unwinding assay and partial duplex DNA substrates. Both Rep protein and helicase IV catalyzed the unwinding of a duplex region 71 bp in length. However, unwinding of a 119-bp or 343-bp duplex region was substantially reduced compared to unwinding of the 71-bp substrate. At each concentration of protein examined, the number of base pairs unwound was greatest using the 71-bp substrate, intermediate with the 119-bp substrate and lowest using the 343-bp substrate. The addition of E. coli SSB did not increase the fraction of the 343-nucleotide fragment unwound by Rep protein. However, the addition of SSB did stimulate the unwinding reaction catalyzed by helicase IV approximately twofold. In addition, ionic strength conditions which stabilize duplex DNA (i.e. addition of MgCl2 or NaCl), markedly inhibited the helicase reaction catalyzed by either Rep protein or helicase IV while having little effect on the ATPase reaction. Thus, these two enzymes appear to share a common biochemical mechanism for unwinding duplex DNA which can be described as limited unwinding of duplex DNA. Taken together these data suggest that, in vitro, and in the absence of additional proteins, neither Rep protein nor helicase IV catalyzes a processive unwinding reaction.  相似文献   

16.
Johnson DS  Bai L  Smith BY  Patel SS  Wang MD 《Cell》2007,129(7):1299-1309
Helicases are molecular motors that separate DNA strands for efficient replication of genomes. We probed the kinetics of individual ring-shaped T7 helicase molecules as they unwound double-stranded DNA (dsDNA) or translocated on single-stranded DNA (ssDNA). A distinctive DNA sequence dependence was observed in the unwinding rate that correlated with the local DNA unzipping energy landscape. The unwinding rate increased approximately 10-fold (approaching the ssDNA translocation rate) when a destabilizing force on the DNA fork junction was increased from 5 to 11 pN. These observations reveal a fundamental difference between the mechanisms of ring-shaped and nonring-shaped helicases. The observed force-velocity and sequence dependence are not consistent with a simple passive unwinding model. However, an active unwinding model fully supports the data even though the helicase on its own does not unwind at its optimal rate. This work offers insights into possible ways helicase activity is enhanced by associated proteins.  相似文献   

17.
Bloom (BLM) and Werner (WRN) syndrome proteins are members of the RecQ family of SF2 DNA helicases. In this paper, we show that restricting the rotational DNA backbone flexibility, by introducing vinylphosphonate internucleotide linkages in the translocating DNA strand, inhibits efficient duplex unwinding by these enzymes. The human single-stranded DNA binding protein replication protein A (RPA) fully restores the unwinding activity of BLM and WRN on vinylphosphonate-containing substrates while the heterologous single-stranded DNA binding protein from Escherichia coli (SSB) restores the activity only partially. Both RPA and SSB fail to restore the unwinding activity of the SF1 PcrA helicase on modified substrates, implying specific interactions of RPA with the BLM and WRN helicases. Our data highlight subtle differences between SF1 and SF2 helicases and suggest that although RecQ helicases belong to the SF2 family, they are mechanistically more similar to the SF1 PcrA helicase than to other SF2 helicases that are not affected by vinylphosphonate modifications.  相似文献   

18.
We have examined the duplex DNA unwinding (helicase) properties of the Escherichia coli helicase II protein (uvrD gene product) over a wide range of protein concentrations and solution conditions using a variety of duplex DNA substrates including fully duplex blunt ended and nicked circular molecules. We find that helicase II protein is able to initiate on and completely unwind fully duplex DNA molecules without the requirement for a covalently attached 3' single-stranded DNA tail. This DNA unwinding activity is dependent upon Mg2+ and ATP and requires that the amount of protein be in excess of that needed to saturate the resulting single-stranded DNA. Unwinding experiments on fully duplex blunt ended DNA with lengths of 341, 849, 1625, and 2671 base pairs indicate that unwinding occurs at the same high ratios of helicase II protein/nucleotide, independent of DNA length (50% unwinding requires approximately 0.6 helicase II monomers/nucleotide in 2.5 mM MgCl2, 10% glycerol, pH 7.5, 37 degrees C). Helicase II protein is also able to unwind completely a nicked circular DNA molecule containing 2671 base pairs. At lower but still high molar ratios of helicase II protein to DNA, duplex DNA molecules containing a single-stranded (ss) region attached to a 3' end of the duplex are preferentially unwound in agreement with the results obtained by S. W. Matson [1986) J. Biol. Chem. 261, 10169-10175). This preferential unwinding of duplex DNA with an attached 3' ssDNA most likely reflects the availability of a high affinity site (ssDNA) with the proper orientation for initiation; however, this may not reflect the type of DNA molecule upon which helicase II protein initiates DNA unwinding in vivo. The effects of changes in NaCl, NaCH3COO, and MgCl2 concentration on the ability of helicase II protein to unwind fully duplex DNA and duplex DNA with a 3' ssDNA tail have also been examined. Although the unwinding of fully duplex and nicked circular DNA molecules reported here occurs at higher helicase II protein to DNA ratios than have been previously used in most studies of this protein in vitro, this activity is likely to be relevant to the function of this protein in vivo since very high levels of helicase II protein accumulate in E. coli during the SOS response to DNA damage (approximately 2-5 x 10(4) copies/cell).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Human DNA helicase V, a novel DNA unwinding enzyme from HeLa cells.   总被引:7,自引:4,他引:3       下载免费PDF全文
Using a strand-displacement assay with 32P labeled oligonucleotide annealed to M13 ssDNA we have purified to apparent homogeneity and characterized a novel DNA unwinding enzyme from HeLa cell nuclei, human DNA helicase V (HDH V). This is present in extremely low abundance in the cells and has the highest turnover rate among other human helicases. From 300 grams of cultured cells only 0.012 mg of pure protein was isolated which was free of DNA topoisomerase, ligase, nicking and nuclease activities. The enzyme also shows ATPase activity dependent on single-stranded DNA and has an apparent molecular weight of 92 kDa by SDS-polyacrylamide gel electrophoresis. Only ATP or dATP hydrolysis supports the unwinding activity. The helicase requires a divalent cation (Mg2+ > Mn2+) at an optimum concentration of 1.0 mM for activity; it unwinds DNA duplexes less than 25 bp long and having a ssDNA stretch as short as 49 nucleotides. A replication fork-like structure is not required to perform DNA unwinding. HDH V cannot unwind either blunt-ended duplex DNA or DNA-RNA hybrids; it unwinds DNA unidirectionally by moving in the 3' to 5' direction along the bound strand, a polarity similar to the previously described human DNA helicases I and III (Tuteja et al. Nucleic Acids Res. 18, 6785-6792, 1990; Tuteja et al. Nucleic Acid Res. 20, 5329-5337, 1992) and opposite to that of human DNA helicase IV (Tuteja et al. Nucleic Acid Res. 19, 3613-3618, 1991).  相似文献   

20.
The WRN gene, defective in the premature aging and genome instability disorder Werner syndrome, encodes a protein with DNA helicase and exonuclease activities. In this report, cofactor requirements for WRN catalytic activities were examined. WRN helicase performed optimally at an equimolar concentration (1 mm) of Mg(2+) and ATP with a K(m) of 140 microm for the ATP-Mg(2+) complex. The initial rate of WRN helicase activity displayed a hyperbolic dependence on ATP-Mg(2+) concentration. Mn(2+) and Ni(2+) substituted for Mg(2+) as a cofactor for WRN helicase, whereas Fe(2+) or Cu(2+) (10 microm) profoundly inhibited WRN unwinding in the presence of Mg(2+).Zn(2+) (100 microm) was preferred over Mg(2+) as a metal cofactor for WRN exonuclease activity and acts as a molecular switch, converting WRN from a helicase to an exonuclease. Zn(2+) strongly stimulated the exonuclease activity of a WRN exonuclease domain fragment, suggesting a Zn(2+) binding site in the WRN exonuclease domain. A fluorometric assay was used to study WRN helicase kinetics. The initial rate of unwinding increased with WRN concentration, indicating that excess enzyme over DNA substrate improved the ability of WRN to unwind the DNA substrate. Under presteady state conditions, the burst amplitude revealed a 1:1 ratio between WRN and DNA substrate, suggesting an active monomeric form of the helicase. These are the first reported kinetic parameters of a human RecQ unwinding reaction based on real time measurements, and they provide mechanistic insights into WRN-catalyzed DNA unwinding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号