首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 920 毫秒
1.
Alterations in the immunogenic properties of tumor cells frequently accompany selection for multipledrug-resistant (MDR) variants. Therefore, studies were performed to examine the hypothesis that overexpression of membrane P-glycoprotein, commonly observed in MDR tumor cells, is associated with enhanced immunogenic properties. Immunogenicity was determined by (a) the ability of drug-sensitive parental UV2237M fibrosarcoma cells and drug-resistant UV2237M variant cells to immunize normal mice against rechallenge with parental tumor cells and (b) the ability of normal syngeneic mice to reject cell inocula that caused progressive tumor growth in immunocompromised mice. Variant UV2237M cell lines included subpopulations selected for a six- to ten-fold increase in mRNA for P-glycoprotein and expression of the MDR phenotype (resistance to doxorubicin) and cells sensitive to doxorubicin (and no expression of MDR properties) but resistant to ouabain. All UV2237M drug-resistant cells were highly immunogenic in immunocompetent mice, regardless of their MDR phenotype. Additional studies showed that CT-26 murine adenocarcinoma cells, sensitive or resistant to doxorubicin (expressing high levels of P-glycoprotein), injected into normal syngeneic Balb/c mice produced rapidly growing tumors. The data do not demonstrate a correlation between the immunogenic properties of drug-resistant tumor cells and the expression of P-glycoprotein.Supported in part by core grant CA-16672 R35-CA42 107 from the National Cancer Institute, and postdoctoral fellowship grant PF-3446 from the American Cancer Society (R. R.)  相似文献   

2.
One of the underlying mechanisms of multidrug resistance (MDR) is cellular overproduction of P-glycoprotein (P-gp), which acts as an efflux pump for various anti-cancer drugs. P-gp is encoded by a group of related genes termed MDR; only MDR1 is known to confer the drug resistance, and its overexpression in cancer cells has been a therapeutic target to circumvent the resistance. To overcome P-gp-mediated drug resistance, we have developed six anti-MDR1 hammerhead ribozymes and delivered them to P-gp-overproducing human leukemia cell line by a retroviral vector containing RNA polymerase III promoter. These ribozyme-transduced cells became vincristine-sensitive, concomitant with the decreases in MDR1 expression, P-gp amount and efflux pump function. Among the ribozymes tested, the anti-MDR1 ribozyme against the translation-initiation site exhibited the highest efficacy. The retrovirus-mediated transfer of this most potent anti-MDR1 ribozyme into a human lymphoma cell line, which was made resistant by infection of pHaMDR1/A retroviral vector and thus possessed a low degree of MDR due to P-gp expression relevant to clinical MDR, resulted in a complete reversal of MDR phenotype. In addition to retrovirus-mediated transfer of ribozymes, we evaluated the efficacy of cationic liposome-mediated transfer of ribozyme. Treatment of a P-gp-producing human breast cancer cell line with the liposome-ribozyme complex resulted in reversal of resistance, concomitant with the decreases in both MDR1 expression and P-gp amount. Confocal microscopic imaging of the cells after treatment with liposome/FITC-dextran showed cytoplasmic fluorescence that was abolished by cytochalasin B, indicating a high endocytotic activity in these cells. The endocytotic activity was well correlated with the success of cationic liposome-mediated transfer of MDR1 ribozyme. These distinct approaches using either retrovirus- or liposome-mediated transfer of anti-MDR1 ribozyme may be selectively applicable to the treatment of MDR cells with different properties such as endocytotic activity as a specific means to reverse resistance.  相似文献   

3.
Vector-based RNAi was used to establish a stable Caco-2 cell line with a persistent knockdown of multidrug resistant gene 1 (MDR1) and P-glycoprotein (P-gp). Several positive clones were collected, many of which showed significantly reduced levels of MDR1 mRNA and P-gp compared to wt Caco-2 cells. Selected clones were sub-cultivated for six passages and real-time PCR showed that MDR1 expression remained significantly reduced (up to 96%) over this period of time. RNAi-MDR1 clones frozen long term also kept their low MDR1 expression levels when re-cultured. Permeability studies were performed across RNAi-MDR1 clone cell monolayers, and the efflux of cyclosporine A, digoxin, vinblastine, and vincristine showed 58%, 61%, 91%, and 78% decrease in active transport, respectively, compared to wt Caco-2 cells. This stably modified Caco-2 cell line provides a novel tool for studies on MDR1 and other ABC transporter protein gene cellular functions.  相似文献   

4.
BACKGROUND: Chloromethyl-X-rosamine (CMXRos) and MitoTracker Green (MTG) have proved to be useful dyes with which to measure mitochondrial function. CMXRos is a lipophilic cationic fluorescent dye that is concentrated inside mitochondria by their negative mitochondrial membrane potential (MMP). MTG fluorescence has been used as a measure of mitochondrial mass independent of MMP. The fluorescence ratio of the two dyes is a relative measure of the MMP independent of mitochondrial mass. Because MTG was recently reported to be sensitive to MMP, we have reevaluated the effects of loss of MMP on MTG and CMXRos fluorescence, using both flow cytometry and laser scanning confocal microscopy (LSCM). METHODS: Using flow cytometry, the relative fluorescence of CMXRos, R123, and MTG was determined in human lymphoblastoid cell lines (LCLs) with or without carbonyl cyanide p-trifluoromethoxylphenyl-hydrazone (FCCP), used to collapse the MMP. LSCM analysis was also used to evaluate the effect of FCCP on MTG and CMXRos fluorescence of mouse cells and viable lenses in culture. The cytotoxicity of the dyes was determined using flow analysis of endogenous NADH fluorescence. The sensitivity of MTG fluorescence to H(2)O(2) was also evaluated using flow cytometry. RESULTS: CMXRos fluorescence was dependent on MMP, whereas MTG fluorescence was not affected by MMP, using either flow or LSCM. Specific staining of mitochondria was seen with both dyes in all cell types tested, without evidence of cytotoxicity, as determined by NADH levels. H(2)O(2) damage slightly increased MTG staining of cells. CONCLUSIONS: Our results indicate that CMXRos is a nontoxic sensitive indicator of relative changes in MMP, whereas MTG is relatively insensitive to MMP and oxidative stress, using both flow and LSCM analyses, provided optimal staining conditions are used. In addition, these dyes can be useful for the study of mitochondrial morphology and function in whole tissues, using LSCM.  相似文献   

5.
BackgroundMultidrug resistance (MDR) is a serious impediment to cancer treatment, with overexpression of drug efflux pumps such as P-glycoprotein (P-gp) playing a significant role. In spite of being a major clinical challenge, to date there is no simple, minimally invasive and clinically validated method for diagnosis of the MDR phenotype using non-tumour biological samples. Recently, P-gp has been found in extracellular vesicles (EVs) shed by MDR cancer cells. This study aimed to compare the EVs shed by MDR cells and their drug-sensitive cellular counterparts, in order to identify biomarkers of MDR.MethodsTwo pairs of MDR and drug-sensitive counterpart tumour cell lines were studied as models. EVs were characterized in terms of size and molecular markers and their protein content was investigated by proteomic analysis and Western blot.ResultsWe found that MDR cells produced more microvesicle-like EVs and less exosomes than their drug-sensitive counterpart. EVs from MDR cells contained P-gp and presented a different content of proteins known to be involved in the biogenesis of EVs, particularly in the biogenesis of exosomes.ConclusionsThe determination of the size and of this particular protein content of EVs shed by tumour cells may allow the development of a minimally-invasive simple method of detecting and predicting MDR.General significanceThis work describes for the first time that cancer multidrug resistant cells shed more microvesicle-like EVs and less exosomes than their drug-sensitive counterpart cells, carrying a specific content of proteins involved in EV biogenesis that could be further studied as biomarkers of MDR.  相似文献   

6.
Cells that acquire multidrug resistance (MDR) are characterized by a decreased accumulation of a variety of drugs. In addition, sequestration of drugs in intracellular vesicles has often been associated with MDR. However, the nature and role of intracellular vesicles in MDR are unclear. We addressed the relationship between MDR and vesicular anthracycline accumulation in the erythroleukemia cell line K562 and a drug-resistant counterpart K562/ADR that overexpresses P-glycoprotein. We used four anthracyclines (all of which are P-glycoprotein substrates): daunorubicin and idarubicin, which have good affinity for DNA and as weak bases can accumulate inside acidic compartments; hydroxyrubicin, which binds to DNA but is uncharged at physiological or acidic pH and thus cannot accumulate in acidic compartments; and WP900, an enantiomer of daunorubicin, which is a weak DNA binder but has the same pKa and lipophilicity as daunorubicin. The intrinsic fluorescence of anthracyclines allowed us to use macro- and micro-spectrofluorescence, flow cytometry, and confocal microscopy to characterize their nuclear or intravesicular accumulation in living cells. We found that vesicular accumulation of daunorubicin, WP900 and idarubicin, containing a basic 3'-amine was predominantly restricted to lysosomes in both cell lines, that pH regulation of acidic compartments was not defective in human K562 cells, and that vesicular drug accumulation was much more pronounced in the parental tumor cell line than in the multidrug-resistant cells. These results indicate that vesicular anthracycline sequestration does not contribute to the diminished sensitivity to anthracyclines in multidrug-resistant K562 cells.  相似文献   

7.
8.
C C Chao  C M Ma  S Lin-Chao 《FEBS letters》1991,291(2):214-218
The human P-glycoprotein gene family contains the mdr1 and the mdr3 gene. The mdr1 P-glycoprotein is over-expressed in multidrug resistant (MDR) tumor cells and is believed to play a role in the elimination of certain cytotoxic drugs used in the chemotherapy of cancer. The mdr3 gene has not been found to be amplified or over-expressed in MDR cells. In this study, gene-specific mdr gene probes were developed for the detection of the gene and the total mRNA level. Southern and Northern hybridization analyses showed that the mdr genes and the mRNA levels were increased 30--40-fold in a MDR human colon cancer cell line. In addition, this MDR cell line had an altered growth rate and morphology and detectable double minute chromosomes.  相似文献   

9.
Studies on low-level MDR cells   总被引:3,自引:0,他引:3  
Acquired or spontaneous resistance is a major clinical problem in the treatment of cancer. Low levels of MDR gene expression or P-glycoprotein have been correlated with a high level of drug resistance in vitro and a poor response to chemotherapy in some tumors. A strong correlation between MDR mRNA, P-glycoprotein levels and degree of drug resistance has not been found in several resistant model tumor cell lines. In some cell lines at low and high level of resistance different mechanisms seem to be involved.  相似文献   

10.
11.
Efflux of chemotherapy agents by P-glycoprotein at the plasma membrane is thought to be a major cause of cancer multidrug-resistance (MDR). However, the mechanism underlying the cellular accumulation and distribution of cytotoxic drugs is still poorly defined. We have recently found that P-glycoprotein is expressed also in the nucleus of MDR cell lines selected in doxorubicin (DXR), suggesting the possible involvement of this protein in the direct extrusion of the drug from the nucleus of resistant cells. In this study, we analyzed the subcellular localization of P-glycoprotein, in a series of U-2 OS osteosarcoma cell clones transfected with MDR1 gene in order to verify whether the nucleus is a constant site for the localization and functional activity of P-glycoprotein, and in which way some aspects of cell morphology related to MDR depend on the subcellular P-glycoprotein localization rather than on the exposure to the selective drug. Our results indicate that to achieve a subcellular drug distribution prevailing in the cytoplasm but not in the nucleus, a significant increase in the expression of P-glycoprotein at the different cellular compartments, including the plasma membrane, the cytoplasm, and the nucleus, is needed, although the in vitro drug resistance appears to be mainly dependent on the expression of P-glycoprotein at the cell surface. With regard to the morphological characteristics of MDR cells involving the cell surface and the chromatin arrangement, the influence of DXR appears to be prevalent, although P-glycoprotein overexpression cannot be excluded.  相似文献   

12.
The P-glycoprotein (P-gp) is thought to be involved in the regulation of volume-sensitive chloride channels. In this study, the possible coupling between P-gp and swelling-activated chloride channels has been examined in MCF7 cells with sensitive (MDR-), resistant (MDR+), and reversed resistant (MDR(REV)) phenotypes. Western blot analysis showed that incubation of cells with doxorubicin induced P-gp expression in a reversible manner. Exposure of MDR+ cells to hypotonicity resulted in an inhibition of P-gp activity while hypotonic challenges induced swelling-activated chloride currents (I(Cl-swell)) in MDR-, MDR+, and MDR(REV) MCF7 cells. While verapamil inhibited I(Cl-swell) in all cell types, doxorubicin and vincristine rapidly and reversibly inhibited I(Cl-swell) uniquely in MDR+. Intracellular dialysis of MDR+ cells with C219 anti-P-gp antibody abolished the sensitivity of I(Cl-swell) to doxorubicin and led to a response pattern very close to that of MDR- cells. Taken together, these results strongly suggest that the P-glycoprotein regulates I(Cl-swell) in resistant MCF7.  相似文献   

13.
Multidrug-resistant (MDR) cells demonstrate the increased activity of the membrane transport system performing efflux of diverse lipophylic drugs and fluorescent dyes from the cells. In order to detect MDR cells we have developed a simple test consisting of three steps: staining of the cells with fluorescent dye rhodamine 123, incubation in the dye-free medium and, finally, detection by fluorescence microscopy of the cells that have lost accumulated dye. The experiments with B-lymphoma cell lines with different degrees of MDR have shown that the cell fluorescence after the poststaining incubation is indeed inversely proportional to the degree of resistance. Application of this testing procedure to normal human or mouse leukocytes revealed the presence of the cells rapidly losing the dye in these populations. Cell fractionation experiments have shown that there are T-lymphocytes (most T-killers/suppressors and a part of T-helpers) that demonstrate rapid efflux of rhodamine 123. This characteristic was detected also in T-killer clones and cell line and in some T-lymphomas. The inhibitors of the MDR transport system, reserpine and verapamil, blocked the efflux of the dye from these cells. Rhodamine-losing T-lymphoma contained large amounts of the mRNA coding P-glycoprotein, the MDR efflux pump, and demonstrated increased resistance to rhodamine 123, gramicidin D, colchicine, and vincristine, the drugs belonging to the cross-resistance group for the MDR cells. The role of the increased activity of the MDR membrane transport system in T-lymphocytes is discussed.  相似文献   

14.
15.
研究证实,多药转运体与难治性癫痫耐药机制密切相关,P-糖蛋白在其中起重要作用.主要研究P-糖蛋白拮抗剂维拉帕米对P-糖蛋白过表达的K562细胞耐药性及细胞内苯妥英纳与卡马西平浓度的影响.首先建立了P-糖蛋白高表达的K562/Dox(阿霉素诱导)耐药细胞株,比较耐药细胞株和P-糖蛋白表达阴性的K562细胞株对苯妥英纳和卡马西平的耐药性,并观察给予维拉帕米后,耐药细胞内抗癫痫药物的浓度变化.结果发现,苯妥英纳和卡马西平对K562/Dox细胞株的半数抑制浓度(IC50)明显高于K562细胞株,加入维拉帕米后,苯妥英纳和卡马西平对K562/Dox 细胞的IC50明显下降,逆转倍数分别为2.5和1.5.进一步研究发现,K562/Dox细胞内苯妥英纳和卡马西平的浓度均显著少于其药敏K562细胞,仅分别为正常K562细胞的23.6%和32.2%.当加入维拉帕米后,K562/Dox细胞内抗癫痫药物浓度明显升高(P < 0.05).由此证明,高表达的P-糖蛋白参与了细胞的药物转运,在难治性癫痫的耐药机制中扮演重要角色.  相似文献   

16.
The human colon carcinoma cell line HT29-D4, which constitutively expresses a very low level of the MDR1 gene product, was made multidrug resistant by transfection with a human MDR1 cDNA from the pHaMDR1/A expression vector and selection by colchicine. Resistant clones were 3- to 15-fold resistant to colchicine and were cross-resistant to doxorubicin (3- to 4-fold). MDR1 gene expression was associated with the expression of functional P-glycoprotein (gp-170); the function was reversed by verapamil and cyclosporin A. HT29-D4 cells are able to differentiate in vitro by replacement of glucose by galactose in the culture medium and also to release the carcinoembryonic antigen (CEA). Under these culture conditions, MDR1 mRNA and gp-170 were always expressed and the protein remained functional. Upon galactose treatment, resistant clones were less differentiated since they showed a heterogeneous monolayer organization accompanied by heterogeneous staining of cell-surface CEA and a high decrease (60-90%) of CEA release.  相似文献   

17.
While P-glycoprotein (Pgp) is the most studied protein involved in resistance to anti-cancer drugs, its mechanism of action is still under debate. Studies of Pgp have used cell lines selected with chemotherapeutics which may have developed many mechanisms of resistance. To eliminate the confounding effects of drug selection on understanding the action of Pgp, we studied cells transiently transfected with a Pgp-green fluorescent protein (GFP) fusion protein. This method generated a mixed population of unselected cells with a wide range of Pgp-GFP expression levels and allowed simultaneous measurements of Pgp level and drug accumulation in living cells. The results showed that Pgp-GFP expression was inversely related to the accumulation of chemotherapeutic drugs. The reduction in drug concentration was reversed by agents that block multiple drug resistance (MDR) and by the UIC2 anti-Pgp antibody. Quantitative analysis revealed an inverse linear relationship between the fluorescence of Pgp-GFP and MDR dyes. This suggests that Pgp levels alone limit drug accumulation by active efflux; cooperativity between enzyme, substrate, or inhibitor molecules is not required. Additionally, Pgp-GFP expression did not change cellular pH. Our study demonstrates the value of using GFP fusion proteins for quantitative biochemistry in living cells.  相似文献   

18.
19.
The multidrug-resistant (MDR) phenotype is multifactorial, and cell lines presenting multiple resistance mechanisms might be good models to understand the importance of the various pathways involved. The present work characterized a MDR chronic myeloid leukemia cell line, derived from K562 through a selective process using daunorubicin. This MDR cell line was shown to be resistant to vincristine, daunorubicin, and partially resistant to imatinib. It showed a slower duplication rate. Overexpression of ABCB1 and ABCC1 was observed at the protein and functional levels and the expression of CD95, a molecule related to cell death, was reduced in the MDR cell line. Conversely, no differences were observed related to the anti-apoptotic molecule Bcl-2 or p53 expression. The activation antigen CD69 was reduced in the MDR cell line and treatment with imatinib further decreased the expressed levels. Furthermore, secretion of IL-8 was diminished in the MDR cell line. When daunorubicin-selected cells were compared to another MDR cell line, Lucena 1, derived from the same parental line K562, and selected with vincristine, a different profile was observed in relation to most aspects studied. When both cell lines were silenced for ABCB1, differences in CD69 and CD95 were maintained, despite resistance reversal. These results reinforce the idea that cell lines selected in vitro may display multiple resistance strategies that may vary with the selective agent used as well as during different steps of the selection process.  相似文献   

20.
P—gp和细胞容积调节   总被引:1,自引:0,他引:1  
本实验用基因阻抑技术阻抑牛眼睫状体非色素上皮(NPE)细胞MDR1基因表达,在激光共聚焦显微镜下检测细胞MDRI基因产物P-gp免疫荧光,研究MDRI基因及P-gp与细胞容积调节的关系。结果表明:NPE细胞表达MDR1基因,存在P-gp蛋白。人反义MDR1特异性阻抑NPE细胞MDR1基因表达,剂量依赖性抑制P-gp免疫荧光(r=0.95,P<0.01),减少P-gp合成,导致细胞容积调节减弱,鼠反义MDR1对NPE细胞MDR1基因表达及容积调节没有影响。结果提示P-gp在细胞容积调节中起重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号