共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro blood-brain barrier (BBB) models based on primary brain endothelial cells (BECs) cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER) and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs) in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP) and breast cancer related protein (BCRP), and the transferrin receptor). 相似文献
2.
Sudhir P. Deosarkar Balabhaskar Prabhakarpandian Bin Wang Joel B. Sheffield Barbara Krynska Mohammad F. Kiani 《PloS one》2015,10(11)
Studies of neonatal neural pathologies and development of appropriate therapeutics are hampered by a lack of relevant in vitro models of neonatal blood-brain barrier (BBB). To establish such a model, we have developed a novel blood-brain barrier on a chip (B3C) that comprises a tissue compartment and vascular channels placed side-by-side mimicking the three-dimensional morphology, size and flow characteristics of microvessels in vivo. Rat brain endothelial cells (RBEC) isolated from neonatal rats were seeded in the vascular channels of B3C and maintained under shear flow conditions, while neonatal rat astrocytes were cultured under static conditions in the tissue compartment of the B3C. RBEC formed continuous endothelial lining with a central lumen along the length of the vascular channels of B3C and exhibited tight junction formation, as measured by the expression of zonula occludens-1 (ZO-1). ZO-1 expression significantly increased with shear flow in the vascular channels and with the presence of astrocyte conditioned medium (ACM) or astrocytes cultured in the tissue compartment. Consistent with in vivo BBB, B3C allowed endfeet-like astrocyte-endothelial cell interactions through a porous interface that separates the tissue compartment containing cultured astrocytes from the cultured RBEC in the vascular channels. The permeability of fluorescent 40 kDa dextran from vascular channel to the tissue compartment significantly decreased when RBEC were cultured in the presence of astrocytes or ACM (from 41.0±0.9 x 10−6 cm/s to 2.9±1.0 x 10−6 cm/s or 1.1±0.4 x 10−6 cm/s, respectively). Measurement of electrical resistance in B3C further supports that the addition of ACM significantly improves the barrier function in neonatal RBEC. Moreover, B3C exhibits significantly improved barrier characteristics compared to the transwell model and B3C permeability was not significantly different from the in vivo BBB permeability in neonatal rats. In summary, we developed a first dynamic in vitro neonatal BBB on a chip (B3C) that closely mimics the in vivo microenvironment, offers the flexibility of real time analysis, and is suitable for studies of BBB function as well as screening of novel therapeutics. 相似文献
3.
Mohammad Bonakdar Elisa?M. Wasson Yong?W. Lee Rafael?V. Davalos 《Biophysical journal》2016,110(2):503-513
The blood-brain barrier, mainly composed of brain microvascular endothelial cells, poses an obstacle to drug delivery to the brain. Controlled permeabilization of the constituent brain endothelial cells can result in overcoming this barrier and increasing transcellular transport across it. Electroporation is a biophysical phenomenon that has shown potential in permeabilizing and overcoming this barrier. In this study we developed a microengineered in vitro model to characterize the permeabilization of adhered brain endothelial cells to large molecules in response to applied pulsed electric fields. We found the distribution of affected cells by reversible and irreversible electroporation, and quantified the uptaken amount of naturally impermeable molecules into the cells as a result of applied pulse magnitude and number of pulses. We achieved 81 ± 1.7% (N = 6) electroporated cells with 17 ± 8% (N = 5) cell death using an electric-field magnitude of ∼580 V/cm and 10 pulses. Our results provide the proper range for applied electric-field intensity and number of pulses for safe permeabilization without significantly compromising cell viability. Our results demonstrate that it is possible to permeabilize the endothelial cells of the BBB in a controlled manner, therefore lending to the feasibility of using pulsed electric fields to increase drug transport across the BBB through the transcellular pathway. 相似文献
4.
The number of HIV-1 positive individuals developing some form of HIV-associated neurocognitive disorder (HAND) is increasing. In these individuals, the integrity of the blood-brain barrier (BBB) is compromised due to an increase in exposure to pro-inflammatory mediators, viral proteins, and virus released from infected cells. It has been shown that soluble CD40L (sCD40L) is released upon platelet activation and is an important mediator of the pathogenesis of HAND but the underlying mechanisms are unclear, emphasizing the need of an effective animal model. Here, we have utilized a novel animal model in which wild-type (WT) mice were infected with EcoHIV; a derivative of HIV-1 that contains a substitution of envelope protein gp120 with that of gp80 derived from murine leukemia virus-1 (MuLV-1). As early as two-weeks post-infection, EcoHIV led to increased permeability of the BBB associated with decreased expression of tight junction protein claudin-5, in CD40L and platelet activation-dependent manner. Treatment with an antiplatelet drug, eptifibatide, in EcoHIV-infected mice normalized BBB function, sCD40L release and platelet activity, thus implicating platelet activation and platelet-derived CD40L in virally induced BBB dysfunction. Our results also validate and underscore the importance of EcoHIV infection mouse model as a tool to explore therapeutic targets for HAND. 相似文献
5.
Fang Li Yueyun Wang Lan Yu Shengbo Cao Ke Wang Jiaolong Yuan Chong Wang Kunlun Wang Min Cui Zhen F. Fu 《Journal of virology》2015,89(10):5602-5614
6.
Central nervous system (CNS) disorders such as ischemic stroke, multiple sclerosis (MS) or Alzheimeŕs disease are characterized by the loss of blood-brain barrier (BBB) integrity. Here we demonstrate that the small tyrosine kinase inhibitor imatinib enhances BBB integrity in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis (MS). Treatment was accompanied by decreased CNS inflammation and demyelination and especially reduced T-cell recruitment. This was supported by downregulation of the chemokine receptor (CCR) 2 in CNS and lymph nodes, and by modulation of the peripheral immune response towards an anti-inflammatory phenotype. Interestingly, imatinib ameliorated neuroinflammation, even when the treatment was initiated after the clinical manifestation of the disease. We have previously shown that imatinib reduces BBB disruption and stroke volume after experimentally induced ischemic stroke by targeting platelet-derived growth factor receptor -α (PDGFR-α) signaling. Here we demonstrate that PDGFR-α signaling is a central regulator of BBB integrity during neuroinflammation and therefore imatinib should be considered as a potentially effective treatment for MS. 相似文献
7.
Olga Huber Alexander Brunner Patrick Maier Rainer Kaufmann Pierre-Olivier Couraud Christoph Cremer Gert Fricker 《PloS one》2012,7(9)
P-glycoprotein (Pgp; also known as MDR1, ABCB1) is the most important and best studied efflux transporter at the blood-brain barrier (BBB); however, the organization of Pgp is unknown. The aim of this study was to employ the recently developed super-resolution fluorescence microscopy method spectral precision distance microscopy/spectral position determination microscopy (SPDM) to investigate the spatial distribution of Pgp in the luminal plasma membrane of brain capillary endothelial cells. Potential disturbing effects of cell membrane curvatures on the distribution analysis are addressed with computer simulations. Immortalized human cerebral microvascular endothelial cells (hCMEC/D3) served as a model of human BBB. hCMEC/D3 cells were transduced with a Pgp-green fluorescent protein (GFP) fusion protein incorporated in a lentivirus-derived vector. The expression and localization of the Pgp-GFP fusion protein was visualized by SPDM. The limited resolution of SPDM in the z-direction leads to a projection during the imaging process affecting the appeared spatial distribution of fluorescence molecules in the super-resolution images. Therefore, simulations of molecule distributions on differently curved cell membranes were performed and their projected spatial distribution was investigated. Function of the fusion protein was confirmed by FACS analysis after incubation of cells with the fluorescent probe eFluxx-ID Gold in absence and presence of verapamil. More than 112,000 single Pgp-GFP molecules (corresponding to approximately 5,600 Pgp-GFP molecules per cell) were detected by SPDM with an averaged spatial resolution of approximately 40 nm in hCMEC/D3 cells. We found that Pgp-GFP is distributed in clustered formations in hCMEC/D3 cells while the influence of present random cell membrane curvatures can be excluded based on the simulation results. Individual formations are distributed randomly over the cell membrane. 相似文献
8.
9.
Restricted Transport of Vitamin D and A Derivatives Through the Rat Blood-Brain Barrier 总被引:1,自引:0,他引:1
William M. Pardridge Roland Sakiyama William A. Coty 《Journal of neurochemistry》1985,44(4):1138-1141
The present studies measure the transport of retinol, retinoic acid, 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], and 25-hydroxyvitamin D3 [25-(OH)D3] through the rat brain capillary endothelial wall, i.e., the blood-brain barrier (BBB). The vitamin A and D derivatives bind both to albumin and to specific high-affinity binding proteins in plasma. In the presence of physiologic concentrations of plasma proteins, the extraction by brain of all four compounds was 5% or less. 相似文献
10.
Ahmed A. Saeed Guillem Genové Tian Li Dieter Lütjohann Maria Olin Natalia Mast Irina A. Pikuleva Peter Crick Yuqin Wang William Griffiths Christer Betsholtz Ingemar Bj?rkhem 《The Journal of biological chemistry》2014,289(34):23712-23722
The presence of the blood-brain barrier (BBB) is critical for cholesterol metabolism in the brain, preventing uptake of lipoprotein-bound cholesterol from the circulation. The metabolic consequences of a leaking BBB for cholesterol metabolism have not been studied previously. Here we used a pericyte-deficient mouse model, Pdgfbret/ret, shown to have increased permeability of the BBB to a range of low-molecular mass and high-molecular mass tracers. There was a significant accumulation of plant sterols in the brains of the Pdgfbret/ret mice. By dietary treatment with 0.3% deuterium-labeled cholesterol, we could demonstrate a significant flux of cholesterol from the circulation into the brains of the mutant mice roughly corresponding to about half of the measured turnover of cholesterol in the brain. We expected the cholesterol flux into the brain to cause a down-regulation of cholesterol synthesis. Instead, cholesterol synthesis was increased by about 60%. The levels of 24(S)-hydroxycholesterol (24S-OHC) were significantly reduced in the brains of the pericyte-deficient mice but increased in the circulation. After treatment with 1% cholesterol in diet, the difference in cholesterol synthesis between mutants and controls disappeared. The findings are consistent with increased leakage of 24S-OHC from the brain into the circulation in the pericyte-deficient mice. This oxysterol is an efficient suppressor of cholesterol synthesis, and the results are consistent with a regulatory role of 24S-OHC in the brain. To our knowledge, this is the first demonstration that a defective BBB may lead to increased flux of a lipophilic compound out from the brain. The relevance of the findings for the human situation is discussed. 相似文献
11.
Aurore Drolez Elodie Vandenhaute Sylvain Julien Fabien Gosselet Joy Burchell Roméo Cecchelli Philippe Delannoy Marie-Pierre Dehouck Caroline Mysiorek 《PloS one》2016,11(3)
Around 7–17% of metastatic breast cancer patients will develop brain metastases, associated with a poor prognosis. To reach the brain parenchyma, cancer cells need to cross the highly restrictive endothelium of the Blood-Brain Barrier (BBB). As treatments for brain metastases are mostly inefficient, preventing cancer cells to reach the brain could provide a relevant and important strategy. For that purpose an in vitro approach is required to identify cellular and molecular interaction mechanisms between breast cancer cells and BBB endothelium, notably at the early steps of the interaction. However, while numerous studies are performed with in vitro models, the heterogeneity and the quality of BBB models used is a limitation to the extrapolation of the obtained results to in vivo context, showing that the choice of a model that fulfills the biological BBB characteristics is essential. Therefore, we compared pre-established and currently used in vitro models from different origins (bovine, mice, human) in order to define the most appropriate tool to study interactions between breast cancer cells and the BBB. On each model, the BBB properties and the adhesion capacities of breast cancer cell lines were evaluated. As endothelial cells represent the physical restriction site of the BBB, all the models consisted of endothelial cells from animal or human origins. Among these models, only the in vitro BBB model derived from human stem cells both displayed BBB properties and allowed measurement of meaningful different interaction capacities of the cancer cell lines. Importantly, the measured adhesion and transmigration were found to be in accordance with the cancer cell lines molecular subtypes. In addition, at a molecular level, the inhibition of ganglioside biosynthesis highlights the potential role of glycosylation in breast cancer cells adhesion capacities. 相似文献
12.
The blood-brain barrier (BBB) comprises impermeable but adaptable brain capillaries which tightly control the brain environment. Failure of the BBB has been implied in the etiology of many brain pathologies, creating a need for development of human in vitro BBB models to assist in clinically-relevant research. Among the numerous BBB models thus far described, a static (without flow), contact BBB model, where astrocytes and brain endothelial cells (BECs) are cocultured on the opposite sides of a porous membrane, emerged as a simplified yet authentic system to simulate the BBB with high throughput screening capacity. Nevertheless the generation of such model presents few technical challenges. Here, we describe a protocol for preparation of a contact human BBB model utilizing a novel combination of primary human BECs and immortalized human astrocytes. Specifically, we detail an innovative method for cell-seeding on inverted inserts as well as specify insert staining techniques and exemplify how we use our model for BBB-related research. 相似文献
13.
Lucineia Gainski Danielski Amanda Della Giustina Marwa Badawy Tatiana Barichello Fabrícia Petronilho 《Molecular neurobiology》2018,55(2):1045-1053
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) are important for the maintenance of brain homeostasis. During sepsis, peripheral production of proinflammatory cytokines and reactive oxygen species are responsible for structural alterations in those brain barriers. Thus, an increasing permeability of these barriers can lead to the activation of glial cells such as microglia and the production of cytotoxic mediators which in turn act on the brain barriers, damaging them further. Thereby, in this review, we try to highlight how the brain barrier’s permeability is not only a cause but a consequence of brain injury in sepsis. 相似文献
14.
Kiem Vu Babette Weksler Ignacio Romero Pierre-Olivier Couraud Angie Gelli 《Eukaryotic cell》2009,8(11):1803-1807
15.
The effect of chronic hyperglycemia on the glucose transporter moiety of the blood-brain barrier and cerebral cortex was studied in rats 3 weeks after the administration of a single intravenous dose of streptozotocin (60 mg/kg), using specific [3H]cytochalasin B binding methods. Streptozotocin-treated rats developed hyperglycemia, as well as polydipsia and polyuria, and failed to gain weight. The density of D-glucose-displaceable cytochalasin B binding sites in the brain microvessels of streptozotocin-treated hyperglycemic rats was increased by about 30% compared with those of control rats, without change in the affinity of binding. Chronic hyperglycemia had no effect on the density or affinity of specific binding of cytochalasin B to cerebral cortical membranes. These findings do not support the hypothesis that glucose transporters in brain microvessels comprising the blood-brain barrier are "down-regulated" in chronic hyperglycemia. 相似文献
16.
17.
Background
Secondary metabolites produced by Fusarium fungi frequently contaminate food and feed and have adverse effects on human and animal health. Fusarium mycotoxins exhibit a wide structural and biosynthetic diversity leading to different toxicokinetics and toxicodynamics. Several studies investigated the toxicity of mycotoxins, focusing on very specific targets, like the brain. However, it still remains unclear how fast mycotoxins reach the brain and if they impair the integrity of the blood-brain barrier. This study investigated and compared the effects of the Fusarium mycotoxins deoxynivalenol, 3-acetyldeoxynivalenol and moniliformin on the blood-brain barrier. Furthermore, the transfer properties to the brain were analyzed, which are required for risk assessment, including potential neurotoxic effects.Methods
Primary porcine brain capillary endothelial cells were cultivated to study the effects of the examined mycotoxins on the blood-brain barrier in vitro. The barrier integrity was monitored by cellular impedance spectroscopy and 14C radiolabeled sucrose permeability measurements. The distribution of the applied toxins between blood and brain compartments of the cell monolayer was analyzed by high performance liquid chromatography-mass spectrometry to calculate transfer rates and permeability coefficients.Results
Deoxynivalenol reduced the barrier integrity and caused cytotoxic effects at 10 μM concentrations. Slight alterations of the barrier integrity were also detected for 3-acetyldeoxynivalenol. The latter was transferred very quickly across the barrier and additionally cleaved to deoxynivalenol. The transfer of deoxynivalenol and moniliformin was slower, but clearly exceeded the permeability of the negative control. None of the compounds was enriched in one of the compartments, indicating that no efflux transport protein is involved in their transport. 相似文献18.
Isolation and Partial Characterization of a 56,000-Dalton Phosphoprotein Phosphatase from the Blood-Brain Barrier 总被引:2,自引:2,他引:0
Abstract: A 56,000-dalton protein with inherent phospho-protein phosphatase activity was isolated from porcine brain capillaries. The enzyme is not activated by divalent metal ions but strongly inhibited by zinc ions. As phosphatase inhibitor 2 readily inhibits the enzymatic activity, the protein can be classified as a type I phosphatase. The protein is stable toward protease treatment. Limited digestion with trypsin does not convert the enzyme into an active form of lower molecular weight. The physical and enzymatical properties of the phosphatase exhibit considerable similarities to those of another 56,000-dalton phosphatase derived from rabbit reticulocytes. 相似文献
19.
20.
Shashank Gupta Regine Utoft Henrik Hasseldam Anja Schmidt-Christensen Tine Dahlbaek Hannibal Lisbeth Hansen Nina Fransén-Pettersson Noopur Agarwal-Gupta Bj?rn Rozell ?sa Andersson Dan Holmberg 《PloS one》2013,8(10)
Multiple Sclerosis (MS) is a progressive autoimmune inflammatory and demyelinating disease of the central nervous system (CNS). T cells play a key role in the progression of neuroinflammation in MS and also in the experimental autoimmune encephalomyelitis (EAE) animal models for the disease. A technology for quantitative and 3 dimensional (3D) spatial assessment of inflammation in this and other CNS inflammatory conditions is much needed. Here we present a procedure for 3D spatial assessment and global quantification of the development of neuroinflammation based on Optical Projection Tomography (OPT). Applying this approach to the analysis of rodent models of MS, we provide global quantitative data of the major inflammatory component as a function of the clinical course. Our data demonstrates a strong correlation between the development and progression of neuroinflammation and clinical disease in several mouse and a rat model of MS refining the information regarding the spatial dynamics of the inflammatory component in EAE. This method provides a powerful tool to investigate the effect of environmental and genetic forces and for assessing the therapeutic effects of drug therapy in animal models of MS and other neuroinflammatory/neurodegenerative disorders. 相似文献