首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acinetobacter baumannii, A. nosocomialis, and A. pittii have recently emerged as opportunistic human pathogens capable of causing severe human disease; however, the molecular mechanisms employed by Acinetobacter to cause disease remain poorly understood. Many pathogenic members of the genus Acinetobacter contain genes predicted to encode proteins required for the biogenesis of a type II secretion system (T2SS), which have been shown to mediate virulence in many Gram-negative organisms. Here we demonstrate that Acinetobacter nosocomialis strain M2 produces a functional T2SS, which is required for full virulence in both the Galleria mellonella and murine pulmonary infection models. Importantly, this is the first bona fide secretion system shown to be required for virulence in Acinetobacter. Using bioinformatics, proteomics, and mutational analyses, we show that Acinetobacter employs its T2SS to export multiple substrates, including the lipases LipA and LipH as well as the protease CpaA. Furthermore, the Acinetobacter T2SS, which is found scattered amongst five distinct loci, does not contain a dedicated pseudopilin peptidase, but instead relies on the type IV prepilin peptidase, reinforcing the common ancestry of these two systems. Lastly, two of the three secreted proteins characterized in this study require specific chaperones for secretion. These chaperones contain an N-terminal transmembrane domain, are encoded adjacently to their cognate effector, and their disruption abolishes type II secretion of their cognate effector. Bioinformatic analysis identified putative chaperones located adjacent to multiple previously known type II effectors from several Gram-negative bacteria, which suggests that T2SS chaperones constitute a separate class of membrane-associated chaperones mediating type II secretion.  相似文献   

2.
Two strains of the genus Acinetobacter, WCHAc060005T and WCHAc060007, were isolated from hospital sewage in China. The two strains showed different patterns of resistance to clinically important antibiotics and their taxonomic positions were investigated. Cells are Gram-negative, obligate aerobic, non-motile, catalase-positive and oxidase-negative coccobacilli. A preliminary analysis based on the 16S rRNA gene sequences indicated that the two strains had the highest similarity to Acinetobacter cumulans WCHAc060092T (99.02%). Whole-genome sequencing of the two strains and genus-wide phylogeny reconstruction based on a set of 107 Acinetobacter core genes indicated that they formed a separate and internally cohesive clade within the genus. The average nucleotide identity based on BLAST and in silico DNA–DNA hybridization values between the two new genomes were 99.77% and 98.7% respectively, whereas those between the two genomes and the known Acinetobacter species were <88.93% and <34.0%, respectively. A total of 7 different genes were found in the two genome sequences which encode resistance to five classes of antimicrobial agents, including clinically important carbapenems, oxyimino-cephalosporins, and quinolones. In addition, the combination of their ability to assimilate gentisate, but not l-glutamate and d,l-lactate could distinguish the two strains from all known Acinetobacter species. Based on these combined data, we concluded that the two strains represent a novel species of the genus Acinetobacter, for which the name Acinetobacter chengduensis sp. nov. is proposed. The type strain is WCHAc060005T (CCTCC AB 2019139 = GDMCC 1.1622 = JCM 33509).  相似文献   

3.
The genus Acinetobacter is comprised of a diverse group of species, several of which have raised interest due to potential applications in bioremediation and agricultural purposes. In this work, we show that many species within the genus Acinetobacter possess the genetic requirements to assemble a functional type VI secretion system (T6SS). This secretion system is widespread among Gram negative bacteria, and can be used for toxicity against other bacteria and eukaryotic cells. The most studied species within this genus is A. baumannii, an emerging nosocomial pathogen that has become a significant threat to healthcare systems worldwide. The ability of A. baumannii to develop multidrug resistance has severely reduced treatment options, and strains resistant to most clinically useful antibiotics are frequently being isolated. Despite the widespread dissemination of A. baumannii, little is known about the virulence factors this bacterium utilizes to cause infection. We determined that the T6SS is conserved and syntenic among A. baumannii strains, although expression and secretion of the hallmark protein Hcp varies between strains, and is dependent on TssM, a known structural protein required for T6SS function. Unlike other bacteria, A. baumannii ATCC 17978 does not appear to use its T6SS to kill Escherichia coli or other Acinetobacter species. Deletion of tssM does not affect virulence in several infection models, including mice, and did not alter biofilm formation. These results suggest that the T6SS fulfils an important but as-yet-unidentified role in the various lifestyles of the Acinetobacter spp.  相似文献   

4.
While much evidence supports the view that the total consumption of antimicrobials is the critical factor in selecting resistance, the possibility of resistant isolates and/or genes encoding resistance being transferred among different living communities has raised serious concerns. In the present study, Escherichia coli isolates recovered from faecal samples (n?=?34) of Iberian wolves (Canis lupus signatus) were characterized for their antimicrobial drug susceptibility. Nearly two thirds of the isolates carried resistance to one or more antimicrobial drugs (in a panel of 19 antibiotics), and resistance to tetracycline, ampicillin and streptomycin was most widespread. By screening a set of 20 multidrug-resistant E. coli for virulence genes, we found strains positive for cdt, chuA, cvaC, eaeA, paa and bfpA, which was the most common virulence trait. Phylogenetic analyses have shown that the majority of these E. coli strains fall into phylogenetic groups A and B1. In this study, the diversity of extended-spectrum β-lactamase-producing strains was expressed by both polymorphism of the pulsed-field gel electrophoresis patterns and the presence of various resistance and virulence genes profiles. Finding the specific implications of these multi-resistant bacteria (hosting several virulence factors) in wolf conservation is a challenging topic to be addressed in further investigations.  相似文献   

5.
Over the past decade, bacteria of the genus Acinetobacter have emerged as a leading cause of hospital-acquired infections. Outbreaks of Acinetobacter infections are considered to be caused exclusively by contamination and transmission in hospital environments. The natural habitats of clinically important multiresistant Acinetobacter spp. remain to be defined. In this paper, we report an incidental finding of a viable multidrug-resistant strain of Acinetobacter baumannii, related to clinical isolates, in acid paleosol from Croatia. The environmental isolate of A. baumannii showed 87% similarity to a clinical isolate originating from a hospital in this geographic area and was resistant to gentamicin, trimethoprim-sulfamethoxazole, ciprofloxacin, and levofloxacin. In paleosol, the isolate was able to survive a low pH (3.37), desiccation, and a high temperature (50°C). The probable source of A. baumannii in paleosol is illegally disposed waste of external origin situated in the abandoned quarry near the sampling site. The bacteria could have been leached from waste by storm water and thus infiltrated the paleosol.  相似文献   

6.
Multidrug-resistant Acinetobacter baumannii infections are increasing at alarming rates. Therefore, novel antibiotic-sparing treatments to combat these A. baumannii infections are urgently needed. The development of these interventions would benefit from a better understanding of this bacterium’s pathobiology, which remains poorly understood. A. baumannii is regarded as an extracellular opportunistic pathogen. However, research on Acinetobacter has largely focused on common lab strains, such as ATCC 19606, that have been isolated several decades ago. These strains exhibit reduced virulence when compared to recently isolated clinical strains. In this work, we demonstrate that, unlike ATCC 19606, several modern A. baumannii clinical isolates, including the recent clinical urinary isolate UPAB1, persist and replicate inside macrophages within spacious vacuoles. We show that intracellular replication of UPAB1 is dependent on a functional type I secretion system (T1SS) and pAB5, a large conjugative plasmid that controls the expression of several chromosomally-encoded genes. Finally, we show that UPAB1 escapes from the infected macrophages by a lytic process. To our knowledge, this is the first report of intracellular growth and replication of A. baumannii. We suggest that intracellular replication within macrophages may contribute to evasion of the immune response, dissemination, and antibiotic tolerance of A. baumannii.  相似文献   

7.
We investigated the taxonomic status of a phenetically unique group of 25 Acinetobacter strains which were isolated from multiple soil and water samples collected in natural ecosystems in the Czech Republic. Based on the comparative sequence analyses of the rpoB, gyrB, and 16S rRNA genes, the strains formed a coherent and well separated branch within the genus Acinetobacter. The genomic uniqueness of the group at the species level was supported by the low average nucleotide identity values (≤77.37%) between the whole genome sequences of strain ANC 3994T (NCBI accession no. APOH00000000) and the representatives of the known Acinetobacter species. Moreover, all 25 strains created a tight cluster clearly separated from all hitherto described species based on whole-cell protein profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and shared a unique combination of metabolic and physiological properties. The capacity to assimilate l-histidine and the inability to grow at 35 °C differentiated them from their phenotypically closest neighbor, Acinetobacter johnsonii. We conclude that the 25 strains represent a novel Acinetobacter species, for which the name Acinetobacter bohemicus sp. nov. is proposed. The type strain of A. bohemicus is ANC 3994T (=CIP 110496T = CCUG 63842T = CCM 8462T).  相似文献   

8.
Thirty-two strains of nonflocculating bacteria isolated from sewage-activated sludge were tested by a spectrophotometric assay for their ability to coaggregate with one other in two-membered systems. Among these strains, eight showed significant (74 to 99%) coaggregation with Acinetobacter johnsonii S35 while only four strains coaggregated, to a lesser extent (43 to 65%), with Acinetobacter junii S33. The extent and pattern of coaggregation as well as the aggregate size showed good correlation with cellular characteristics of the coaggregating partners. These strains were identified by sequencing of full-length 16S rRNA genes. A. johnsonii S35 could coaggregate with strains of several genera, such as Oligotropha carboxidovorans, Microbacterium esteraromaticum, and Xanthomonas spp. The role of Acinetobacter isolates as bridging organisms in multigeneric coaggregates is indicated. This investigation revealed the role of much-neglected nonflocculating bacteria in floc formation in activated sludge.  相似文献   

9.
Genotypic and phenotypic analyses were carried out to clarify the taxonomic position of the naturally transformable Acinetobacter sp. strain ADP1. Transfer tDNA-PCR fingerprinting, 16S rRNA gene sequence analysis, and selective restriction fragment amplification (amplified fragment length polymorphism analysis) indicate that strain ADP1 and a second transformable strain, designated 93A2, are members of the newly described species Acinetobacter baylyi. Transformation assays demonstrate that the A. baylyi type strain B2T and two other originally identified members of the species (C5 and A7) also have the ability to undergo natural transformation at high frequencies, confirming that these five strains belong to a separate species of the genus Acinetobacter, characterized by the high transformability of its strains that have been cultured thus far.  相似文献   

10.
This study aimed to define the taxonomic position and structure of a novel, taxonomically unique group of 26 Acinetobacter strains, provisionally designated Taxon 24 (T24). The strains were recovered from soil and freshwater ecosystems (n = 21) or animals (n = 5) in Czechia, Scotland, Germany, the Netherlands and Turkey between 1993 and 2015. They were non-glucose-acidifying, nonhemolytic, nonproteolytic, growing at 32 °C and on acetate and ethanol as single carbon sources, but not on 4-hydroxybenzoate and mostly not at 37 °C. Their whole-genome sequences were 3.0–3.7 Mb in size, with GC contents of 39.8–41.3%. Based on core genome phylogenetic analysis, the 26 strains formed a distinct clade within the genus Acinetobacter, with strongly supported subclades termed T24A (n = 11), T24B (n = 8), T24C (n = 2), T24D (n = 3) and T24E (n = 2). The internal genomic ANIb values for these subclades were >94.8%, while the ANIb values between them were <92.5%. The results of MALDI-TOF MS-based analyses agreed with this classification. The five subclades differed from each other in the results of one to six carbon source assimilation tests. Given the genomic and phenotypic distinctness, internal coherence, numbers of available strains and geographically diverse origin of T24A and T24B, we propose the names Acinetobacter terrae sp. nov. and Acinetobacter terrestris sp. nov. for these two taxa, respectively. The type strains are ANC 4282v (= CCM 8986T = CCUG 73811T = CNCTC 8082T) and ANC 4471T (= CCM 8985T = CCUG 73812T = CNCTC 8093T), respectively. We conclude that these two species together with the other T24 strains represent a widely dispersed Acinetobacter clade primarily associated with terrestrial ecosystems.  相似文献   

11.
Many Gram-negative bacteria use N-acyl-l-homoserine lactones (AHLs) as quorum-sensing signal molecules. We have reported that Acinetobacter strains isolated from activated sludge have AHL-degrading activity. In this study, we cloned the amiE gene as an AHL-degradative gene from the genomic library of Acinetobacter sp. strain Ooi24. High-performance liquid chromatography analysis revealed that AmiE functions as an AHL acylase, which hydrolyzes the amide bond of AHL. AmiE showed a high level of degrading activity against AHLs with long acyl chains but no activity against AHLs with acyl chains shorter than eight carbons. AmiE showed homology with a member of the amidases (EC 3.5.1.4) but not with any known AHL acylase enzymes. An amino acid sequence of AmiE from Ooi24 showed greater than 99% identities with uncharacterized proteins from Acinetobacter ursingii CIP 107286 and Acinetobacter sp. strain CIP 102129, but it was not found in the draft or complete genome sequences of other Acinetobacter strains. The presence of transposase-like genes around the amiE genes of these three Acinetobacter strains suggests that amiE is transferred by a putative transposon. Furthermore, the expression of AmiE in Pseudomonas aeruginosa PAO1 reduced AHL accumulation and elastase activity, which were regulated by AHL-mediated quorum sensing.  相似文献   

12.

Background

Acinetobacter baumannii is a significant hospital pathogen, particularly due to the dissemination of highly multidrug resistant isolates. Genome data have revealed that A. baumannii is highly genetically diverse, which correlates with major variations seen at the phenotypic level. Thus far, comparative genomic studies have been aimed at identifying resistance determinants in A. baumannii. In this study, we extend and expand on these analyses to gain greater insight into the virulence factors across eight A. baumannii strains which are clonally, temporally and geographically distinct, and includes an isolate considered non-pathogenic and a community-acquired A. baumannii.

Results

We have identified a large number of genes in the A. baumannii genomes that are known to play a role in virulence in other pathogens, such as the recently studied proline-alanine-alanine-arginine (PAAR)-repeat domains of the type VI secretion systems. Not surprising, many virulence candidates appear to be part of the A. baumannii core genome of virulent isolates but were often found to be insertionally disrupted in the avirulent A. baumannii strain SDF. Our study also reveals that many known or putative virulence determinants are restricted to specific clonal lineages, which suggests that these virulence determinants may be crucial for the success of these widespread common clones. It has previously been suggested that the high level of intrinsic and adaptive resistance has enabled the widespread presence of A. baumannii in the hospital environment. This appears to have facilitated the expansion of its repertoire of virulence traits, as in general, the nosocomial strains in this study possess more virulence genes compared to the community-acquired isolate.

Conclusions

Major genetic variation in known or putative virulence factors was seen across the eight strains included in this study, suggesting that virulence mechanisms are complex and multifaceted in A. baumannii. Overall, these analyses increase our understanding of A. baumannii pathogenicity and will assist in future studies determining the significance of virulence factors within clonal lineages and/or across the species.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1020) contains supplementary material, which is available to authorized users.  相似文献   

13.
To date, a number of bacteriophages (phages) infecting Acinetobacter species have been reported and characterized. However, Acinetobacter phages which infect A. soli have not been investigated yet. Here, we report the complete genome sequence of Acinetobacter phage phiAC-1, which belongs to the Myoviridae, infecting Acinetobacter soli strain KZ-1.  相似文献   

14.
Toxoplasma gondii has evolved a number of strategies to evade immune responses in its many hosts. Previous genetic mapping of crosses between clonal type 1, 2, and 3 strains of T. gondii, which are prevalent in Europe and North America, identified two rhoptry proteins, ROP5 and ROP18, that function together to block innate immune mechanisms activated by interferon gamma (IFNg) in murine hosts. However, the contribution of these and other virulence factors in more genetically divergent South American strains is unknown. Here we utilized a cross between the intermediately virulent North American type 2 ME49 strain and the highly virulent South American type 10 VAND strain to map the genetic basis for differences in virulence in the mouse. Quantitative trait locus (QTL) analysis of this new cross identified one peak that spanned the ROP5 locus on chromosome XII. CRISPR-Cas9 mediated deletion of all copies of ROP5 in the VAND strain rendered it avirulent and complementation confirmed that ROP5 is the major virulence factor accounting for differences between type 2 and type 10 strains. To extend these observations to other virulent South American strains representing distinct genetic populations, we knocked out ROP5 in type 8 TgCtBr5 and type 4 TgCtBr18 strains, resulting in complete loss of virulence in both backgrounds. Consistent with this, polymorphisms that show strong signatures of positive selection in ROP5 were shown to correspond to regions known to interface with host immunity factors. Because ROP5 and ROP18 function together to resist innate immune mechanisms, and a significant interaction between them was identified in a two-locus scan, we also assessed the role of ROP18 in the virulence of South American strains. Deletion of ROP18 in South American type 4, 8, and 10 strains resulted in complete attenuation in contrast to a partial loss of virulence seen for ROP18 knockouts in previously described type 1 parasites. These data show that ROP5 and ROP18 are conserved virulence factors in genetically diverse strains from North and South America, suggesting they evolved to resist innate immune defenses in ancestral T. gondii strains, and they have subsequently diversified under positive selection.  相似文献   

15.
In this study, the prevalence of virulence factors and antimicrobial resistance among 67 Acinetobacter spp. isolates, consisting of 21 Acinetobacter baumannii and 46 non‐baumannii Acinetobacter obtained from companion animals, was investigated. PCR analysis showed that the most prevalent virulence gene was afa/draBC (29.9%), followed by papC (22.4%) and cvaC (20.9%). Antimicrobial susceptibility testing revealed that resistance to gentamicin (14.9%) and ciprofloxacin (11.9%) was relatively prevalent. Five gentamicin‐ and/or ciprofloxacin‐resistant A. baumannii strains were assigned to ST25, ST149, ST164, ST203 and ST1198. All ciprofloxacin‐resistant isolates harbored point mutations in gyrA and/or parC. To the best of our knowledge, this is the first report of preliminary monitoring of animal‐origin Acinetobacter spp. in Japan.
  相似文献   

16.
Acinetobacter baumannii is an opportunistic pathogen that has emerged as a prevalent source of nosocomial infections, most frequently causing ventilator‐associated pneumonia. The emergence of pan‐drug resistant strains magnifies the problem by reducing viable treatment options and effectively increasing the mortality rate associated with Acinetobacter infections. In light of this rising threat, research on A. baumannii epidemiology, antibiotic resistance, and pathogenesis is accelerating. The recent development of both in vitro and in vivo models has enabled studies probing the host–Acinetobacter interface. Bacterial genetic screens and comparative genomic studies have led to the identification of several A. baumannii virulence factors. Additionally, investigations into host defence mechanisms using animal models or cell culture have provided insight into the innate immune response to infection. This review highlights some of the key attributes of A. baumannii virulence with an emphasis on bacterial interactions with the innate immune system.  相似文献   

17.
Gram-negative bacteria, such as Acinetobacter baumannii, are an increasing burden in hospitals worldwide with an alarming spread of multi-drug resistant (MDR) strains. Herein, we compared a type strain (ATCC17978), a non-clinical isolate (DSM30011) and MDR strains of A. baumannii implicated in hospital outbreaks (Ab242, Ab244 and Ab825), revealing distinct patterns of type VI secretion system (T6SS) functionality. The T6SS genomic locus is present and was actively transcribed in all of the above strains. However, only the A. baumannii DSM30011 strain was capable of killing Escherichia coli in a T6SS-dependent manner, unlike the clinical isolates, which failed to display an active T6SS in vitro. In addition, DSM30011 was able to outcompete ATCC17978 as well as Pseudomonas aeruginosa and Klebsiella pneumoniae, bacterial pathogens relevant in mixed nosocomial infections. Finally, we found that the T6SS of DSM30011 is required for host colonization of the model organism Galleria mellonella suggesting that this system could play an important role in A. baumannii virulence in a strain-specific manner.  相似文献   

18.
The number of fully active antibiotic options that treat nosocomial infections due to multidrug-resistant Acinetobacter baumannii (A. baumannii) is extremely limited. Magnolia officinalis, Mahonia bealei, Rabdosia rubescens, Rosa rugosa, Rubus chingii, Scutellaria baicalensis, and Terminalia chebula plant extracts were previously shown to have growth inhibitory activity against a multidrug-resistant clinical strain of A. baumannii. In this study, the compounds responsible for their antimicrobial activity were identified by fractionating each plant extract using high performance liquid chromatography, and determining the antimicrobial activity of each fraction against A. baumannii. The chemical structures of the fractions inhibiting >40% of the bacterial growth were elucidated by liquid chromatography/mass spectrometry analysis and nuclear magnetic resonance spectroscopy. The six most active compounds were identified as: ellagic acid in Rosa rugosa; norwogonin in Scutellaria baicalensis; and chebulagic acid, chebulinic acid, corilagin, and terchebulin in Terminalia chebula. The most potent compound was identified as norwogonin with a minimum inhibitory concentration of 128 µg/mL, and minimum bactericidal concentration of 256 µg/mL against clinically relevant strains of A. baumannii. Combination studies of norwogonin with ten anti-Gram negative bacterial agents demonstrated that norwogonin did not enhance the antimicrobial activity of the synthetic antibiotics chosen for this study. In conclusion, of all identified antimicrobial compounds, norwogonin was the most potent against multidrug-resistant A. baumannii strains. Further studies are warranted to ascertain the prophylactic and therapeutic potential of norwogonin for infections due to multidrug-resistant A. baumannii.  相似文献   

19.
Microarray Analysis of Microbial Virulence Factors   总被引:14,自引:6,他引:8       下载免费PDF全文
Hybridization with oligonucleotide microchips (microarrays) was used for discrimination among strains of Escherichia coli and other pathogenic enteric bacteria harboring various virulence factors. Oligonucleotide microchips are miniature arrays of gene-specific oligonucleotide probes immobilized on a glass surface. The combination of this technique with the amplification of genetic material by PCR is a powerful tool for the detection of and simultaneous discrimination among food-borne human pathogens. The presence of six genes (eaeA, slt-I, slt-II, fliC, rfbE, and ipaH) encoding bacterial antigenic determinants and virulence factors of bacterial strains was monitored by multiplex PCR followed by hybridization of the denatured PCR product to the gene-specific oligonucleotides on the microchip. The assay was able to detect these virulence factors in 15 Salmonella, Shigella, and E. coli strains. The results of the chip analysis were confirmed by hybridization of radiolabeled gene-specific probes to genomic DNA from bacterial colonies. In contrast, gel electrophoretic analysis of the multiplex PCR products used for the microarray analysis produced ambiguous results due to the presence of unexpected and uncharacterized bands. Our results suggest that microarray analysis of microbial virulence factors might be very useful for automated identification and characterization of bacterial pathogens.  相似文献   

20.
《Genomics》2020,112(4):2784-2793
Acinetobacter haemolyticus (A. haemolyticus) is a significant Acinetobacter pathogen, and the resistance of A. haemolyticus continues to rise due to abuse of antibiotics and the frequent gene exchange between bacteria in hospital. In this study, we performed complete genome sequencing of two A. haemolyticus strains TJR01 and TJS01 to improve our understanding of pathogenic and resistance of A. haemolyticus. Both TJR01 and TJS01 contain one chromosome and two plasmids. Compared to TJS01, more virulence factors (VFs) associated pathogenicity and resistant genes were predicted in TJR01 due to T4SS and integron associated with combination and transport. Antimicrobial susceptibility results were consistent with sequencing. We suppose TJS01 was a susceptive strain and TJR01 was an acquired multidrug resistance strain due to plasmid-mediated horizontal gene transfer. We hope these findings may be helpful for clinical treatment of A. haemolyticus infection and reduce the risk of potential outbreak infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号