首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The objective of this study was to measure the efficacy of two organic acid treatments, formic acid (FA) and oxalic acid (OA) for the spring control of Varroa destructor (Anderson and Trueman) in honey bee (Apis mellifera L.) colonies. Forty-eight varroa-infested colonies were randomly distributed amongst six experimental groups (n = 8 colonies per group): one control group (G1); two groups tested applications of different dosages of a 40 g OA/l sugar solution 1:1 trickled on bees (G2 and G3); three groups tested different applications of FA: 35 ml of 65% FA in an absorbent Dri-Loc? pad (G4); 35 ml of 65% FA poured directly on the hive bottom board (G5) and MiteAwayII™ (G6). The efficacy of treatments (varroa drop), colony development, honey yield and hive survival were monitored from May until September. Five honey bee queens died during this research, all of which were in the FA treated colonies (G4, G5 and G6). G6 colonies had significantly lower brood build-up during the beekeeping season. Brood populations at the end of summer were significantly higher in G2 colonies. Spring honey yield per colony was significantly lower in G6 and higher in G1. Summer honey flow was significantly lower in G6 and higher in G3 and G5. During the treatment period, there was an increase of mite drop in all the treated colonies. Varroa daily drop at the end of the beekeeping season (September) was significantly higher in G1 and significantly lower in G6. The average number of dead bees found in front of hives during treatment was significantly lower in G1, G2 and G3 versus G4, G5 and G6. Results suggest that varroa control is obtained from all spring treatment options. However, all groups treated with FA showed slower summer hive population build-up resulting in reduced honey flow and weaker hives at the end of summer. FA had an immediate toxic effect on bees that resulted in queen death in five colonies. The OA treatments that were tested have minimal toxic impacts on the honey bee colonies.  相似文献   

2.
Controlling populations of varroa mites is crucial for the survival of the beekeeping industry. Many treatments exist, and all are designed to kill mites on adult bees. Because the majority of mites are found under capped brood, most treatments are designed to deliver active ingredients over an extended period to control mites on adult bees, as developing bees and mites emerge. In this study, a 17-h application of 50% formic acid effectively killed mites in capped worker brood and on adult bees without harming queens or uncapped brood. Neither acetic acid nor a combined treatment of formic and acetic acids applied to the West Virginia formic acid fumigator was as effective as formic acid alone in controlling varroa mites. In addition, none of the treatments tested in late summer had an effect on the late-season prevalence of deformed wing virus. The short-term formic acid treatment killed > 60% of varroa mites in capped worker brood; thus, it is a promising tool for beekeepers, especially when such treatments are necessary during the nectar flow.  相似文献   

3.
Mites in the genus Varroa are the primary parasites of honey bees on several continents. Genetic analyses based on Varroa mitochondrial DNA have played a central role in establishing Varroa taxonomy and dispersal. Here we present the complete mitochondrial sequence of the important honey bee pest Varroa destructor. This species has a relatively compact mitochondrial genome (15,218 bp). The order of genes encoding proteins is identical to that of most arthropods. Ten of 22 transfer RNAs are in different locations relative to hard ticks, and the 12S ribosomal RNA subunit is inverted and separated from the 16S rRNA by a novel non-coding region, a trait not yet seen in other arthropods. We describe a dispersed set of 45 oligonucleotide primers that can be used to address genetic questions in Varroa. A subset of these primers should be useful for taxonomic and phylogenetic studies in other mites and ticks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The proportion of Varroa jacobsoni Oudemans that were alive and mobile when they fell from honey bees, Apis mellifera L., in hives was measured during a 20-wk period to determine the potential use of systems that prevent these mites from returning to the bees. Traps designed to discriminate between the live, fallen mites and those that are dead or immobile were used on hive bottom boards. A large fraction of the fallen mites was alive when acaricide was not in use and also when fluvalinate or coumaphos treatments were in the hives. The live proportion of mitefall increased during very hot weather. The proportion of mitefall that was alive was higher at the rear and sides of the hive compared with that falling from center frames near the hive entrance. More sclerotized than callow mites were alive when they fell. A screen-covered trap that covers the entire hive bottom board requires a sticky barrier to retain all live mites. This trap or another method that prevents fallen, viable mites from returning to the hive is recommended as a part of an integrated control program. It also may slow the development of acaricide resistance in V. jacobsoni and allow the substitution of less hazardous chemicals for the acaricides currently in use.  相似文献   

5.
A laboratory bioassay was developed to evaluate miticides to control Varroa jacobsoni (Oudemans), an important parasite of the honey bee, Apis mellifera L. Bees and mites were exposed to applications of essential oil constituents in petri dishes (60 by 20 mm). The registered mite control agents tau-fluvalinate (Apistan) and formic acid also were evaluated as positive controls. Treatments that caused high mite mortality (> 70%) at doses that produced low bee mortality (< 30%) were considered mite selective. The six most selective of the 22 treatments tested (clove oil, benzyl acetate, thymol, carvacrol, methyl salicylate, and Magic3) were further evaluated to estimate LD50 values and selectivity ratios (A. mellifera LD50/V. jacobsoni LD50) at 24, 43, and 67 h after exposure. Tau-fluvalinate was the most selective treatment, but thymol, clove oil, Magic3, and methyl salicylate demonstrated selectivity equal to or greater than formic acid. The effect of mode of application (complete exposure versus vapor only) on bee and mite mortality was assessed for thymol, clove oil, and Magic3 by using a 2-chambered dish design. Estimated V. jacobsoni LD50 values were significantly lower for complete exposure applications of thymol and Magic3, suggesting that both vapor and topical exposure influenced mite mortality, whereas estimated values for clove oil suggested that topical exposure had little or no influence on mite mortality. These results indicate that essential oil constituents alone may not be selective enough to control Varroa under all conditions, but could be a useful component of an integrated pest management approach to parasitic mite management in honey bee colonies.  相似文献   

6.
Honey bee (Apis mellifera L.) colonies bred for hygienic behavior were tested in a large field trial to determine if they were able to resist the parasitic mite Varroa destructor better than unselected colonies of"Starline" stock. Colonies bred for hygienic behavior are able to detect, uncap, and remove experimentally infested brood from the nest, although the extent to which the behavior actually reduces the overall mite-load in untreated, naturally infested colonies needed further verification. The results indicate that hygienic colonies with queens mated naturally to unselected drones had significantly fewer mites on adult bees and within worker brood cells than Starline colonies for up to 1 yr without treatment in a commercial, migratory beekeeping operation. Hygienic colonies actively defended themselves against the mites when mite levels were relatively low. At high mite infestations (>15% of worker brood and of adult bees), the majority of hygienic colonies required treatment to prevent collapse. Overall, the hygienic colonies had similar adult populations and brood areas, produced as much honey, and had less brood disease than the Starline colonies. Thus, honey bees bred for hygienic behavior performed as well if not better than other commercial lines of bees and maintained lower mite loads for up to one year without treatment.  相似文献   

7.
The ectoparasitic mite Varroa destructor is a major honey bee pest, and its control using pathogen-based biopesticides would resolve many of the problems, such as contamination and pesticide resistance, experienced with chemical control. A biopesticide, formulated with commercially-prepared conidia of a strain of Beauveria bassiana isolated from V. destructor was tested against the mites in bee colonies in southern France. The impact of treatment on hive survivorship, weight and mite infestation levels were very different from those of previous experiments using laboratory-prepared conidia: bee hives treated with the biopesticide died at a higher rate, lost more weight, and had higher mite densities at the end of the study than control hives. The biopesticide was subsequently found to be contaminated with bacteria. Two strains of bacteria were identified, by biotyping and sequencing data of the 16S rRNA and rpoB regions, and while the strains were distinct both were Pseudomonas sp. belonging to the P. fluorescens group. In dual cultures B. bassiana growth was slowed or suppressed when bacterial cfu density was about equal or greater than that of B. bassiana. Experiments using caged adult bees showed that bees ingesting diet and sugar solution treated with B. bassiana and kept at 30 °C had significantly lower survival times than those treated with one of the bacterial strains, but the opposite was true at 33 °C. Because one arthropod (honey bees) was treated for infestation by another (V. destructor), the impact of bacterial contamination was likely more noticeable than in most uses of biopesticides, such as treating plants against phytophagous insects. To reduce such risk in biopesticide development, a systematic screening for bacterial contamination prior to field application is recommended.  相似文献   

8.
Applied Entomology and Zoology - Varroa destructor Anderson and Trueman (Acari: Varroidae) are ectoparasitic mites found in the western honeybee Apis mellifera Linnaeus (Hymenoptera: Apidae)....  相似文献   

9.
Varroa (Varroa destuctor Anderson and Trueman) populations in honey bee (Apis mellifera L.) colonies might be kept at low levels by well-timed miticide applications. HopGuard® (HG) that contains beta plant acids as the active ingredient was used to reduce mite populations. Schedules for applications of the miticide that could maintain low mite levels were tested in hives started from either package bees or splits of larger colonies. The schedules were developed based on defined parameters for efficacy of the miticide and predictions of varroa population growth generated from a mathematical model of honey bee colony–varroa population dynamics. Colonies started from package bees and treated with HG in the package only or with subsequent HG treatments in the summer had 1.2–2.1 mites per 100 bees in August. Untreated controls averaged significantly more mites than treated colonies (3.3 mites per 100 bees). By October, mite populations ranged from 6.3 to 15.0 mites per 100 bees with the lowest mite numbers in colonies treated with HG in August. HG applications in colonies started from splits in April reduced mite populations to 0.12 mites per 100 bees. In September, the treated colonies had significantly fewer mites than the untreated controls. Subsequent HG applications in September that lasted for 3 weeks reduced mite populations to levels in November that were significantly lower than in colonies that were untreated or had an HG treatment that lasted for 1 week. The model accurately predicted colony population growth and varroa levels until the fall when varroa populations measured in colonies established from package bees or splits were much greater than predicted. Possible explanations for the differences between actual and predicted mite populations are discussed.  相似文献   

10.
A high proportion of nonreproductive (NR) Varroa destructor Anderson & Trueman (Mesostigmata: Varroidae), is commonly observed in honey bee colonies displaying the varroa sensitive hygienic trait (VSH). This study was conducted to determine the influence of brood removal and subsequent host reinvasion of varroa mites on mite reproduction. We collected foundress mites from stages of brood (newly sealed larvae, prepupae, white-eyed pupae, and pink-eyed pupae) and phoretic mites from adult bees. We then inoculated these mites into cells containing newly sealed larvae. Successful reproduction (foundress laid both a mature male and female) was low (13%) but most common in mites coming from sealed larvae. Unsuccessful reproductive attempts (foundress failed to produce both a mature male and female) were most common in mites from sealed larvae (22%) and prepupae (61%). Lack of any progeny was most common for mites from white-eyed (83%) and pink-eyed pupae (92%). We also collected foundress mites from sealed larvae and transferred them to cells containing newly sealed larvae, prepupae, white-eyed pupae, or pink-eyed pupae. Successful reproduction only occurred in the transfers to sealed larvae (26%). Unsuccessful reproductive attempts were most common in transfers to newly sealed larvae (40%) and to prepupae (25%). Unsuccessful attempts involved the production of immature progeny (60%), the production of only mature daughters (26%) or the production of only a mature male (14%). Generally, lack of progeny was not associated with mites having a lack of stored sperm. Our results suggest that mites exposed to the removal of prepupae or older brood due to hygiene are unlikely to produce viable mites if they invade new hosts soon after brood removal. Asynchrony between the reproductive status of reinvading mites and the developmental stage of their reinvasion hosts may be a primary cause of NR mites in hygienic colonies. Even if reinvading mites use hosts having the proper age for infestation, only a minority of them will reproduce.  相似文献   

11.
Experimental and Applied Acarology - The honey bee ectoparasite Varroa destructor is considered the major threat to apiculture, as untreated colonies of Apis mellifera usually collapse within a few...  相似文献   

12.
The potential for Metarhizium anisopliae (Metschinkoff) to control the parasitic mite, Varroa destructor (Anderson and Trueman) in honey bee colonies was evaluated in field trials against the miticide, tau-fluvalinate (Apistan). Peak mortality of V. destructor occurred 3-4 d after the conidia were applied; however, the mites were still infected 42 d posttreatments. Two application methods were tested: dusts and strips coated with the fungal conidia, and both methods resulted in successful control of mite populations. The fungal treatments were as effective as the Apistan, at the end of the 42-d period of the experiment. The data suggested that optimum mite control could be achieved when no brood is being produced, or when brood production is low, such as in the early spring or late fall. M. anisopliae was harmless to the honey bees (adult bees, or brood) and colony development was not affected. Mite mortality was highly correlated with mycosis in dead mites collected from sticky traps, indicating that the fungus was infecting and killing the mites. Because workers and drones drift between hives, the adult bees were able to spread the fungus between honey bee colonies in the apiary, a situation that could be beneficial to beekeepers.  相似文献   

13.
14.
This study demonstrated (1) that honey bees, Apis mellifera L, can express a high level of resistance to Varroa destructor Anderson & Trueman when bees were selected for only one resistant trait (suppression of mite reproduction); and (2) that a significant level of mite-resistance was retained when these queens were free-mated with unselected drones. The test compared the growth of mite populations in colonies of bees that each received one of the following queens: (1) resistant--queens selected for suppression of mite reproduction and artificially inseminated in Baton Rouge with drones from similarly selected stocks; (2) resistant x control--resistant queens, as above, produced and free-mated to unselected drones by one of four commercial queen producers; and (3) control--commercial queens chosen by the same four queen producers and free-mated as above. All colonies started the test with approximately 0.9 kg of bees that were naturally infested with approximately 650 mites. Colonies with resistant x control queens ended the 115-d test period with significantly fewer mites than did colonies with control queens. This suggests that beekeepers can derive immediate benefit from mite-resistant queens that have been free-mated to unselected drones. Moreover, the production and distribution of these free-mated queens from many commercial sources may be an effective way to insert beneficial genes into our commercial population of honey bees without losing the genetic diversity and the useful beekeeping characteristics of this population.  相似文献   

15.
Abstract. Varroa destructor is a parasitic mite of the honey bee species Apis cerana Fabr . and A. mellifera L. Mature females reproduce on the immature stages of their hosts, producing more viable female offspring on drone hosts than on worker hosts. Thus, immature drones are more likely to be infested with mites than immature workers. To investigate the hypothesis that differences in host chemistries underlie the biased distribution of mites between worker and drone brood, the arrestment responses of mites to solvent extracts of a number of stimuli normally encountered by a mite during its life cycle were measured. Mites were arrested by cuticular extracts of worker and drone larvae obtained at 0, 24 and 48 h prior to the time when cell capping is completed. Mites were also arrested by extracts of worker and drone, brood food and cocoons, and by a blend of synthetic fatty acid esters previously shown to be active in the host acquisition process. In a wind tunnel bioassay, mites were attracted to odours from living fifth-instar worker and drone larvae, but not to volatiles from cocoons, brood food or a blend of fatty acid esters. The sex of the host was not an important factor affecting the behavioural responses of the mites in any assay. We conclude that host kairomones play a role in the host acquisition process, but we found no evidence to support the hypothesis that mites use these substances to differentiate between worker and drone brood.  相似文献   

16.
Two major parasitic pests threaten honey bee populations, the external mite Varroa destructor and the internal mite Acarapis woodi (Rennie). Varroa are beginning to develop resistance to the main chemical defense fluvalinate, and alternative control methods are being pursued. Previous studies have shown that botanical oils, especially thymol, can be effective. Six release devices for either thymol or a blend of botanical oils known as Magic 3 were tested in beehives. The release devices were as follows: (1) low density polyethylene (LDPE) sleeves filled with Magic 3, (2) Magic 3-infused florist blocks, (3) thymol infused florist blocks, (4) a canola oil and thymol mixture wick release, (5) a plastic strip coated with calcium carbonate and Magic 3, and (6) an untreated control. There were significant decreases in varroa levels with the use of Magic 3 sleeves, but brood levels also decreased. Tracheal mite levels significantly decreased with the Magic 3 sleeve treatment, the Magic 3 florist block treatment, and the thymol canola wick treatment. A second experiment showed that changing the location of Magic 3 sleeves in the colony did not detrimentally effect brood levels, but also did not effectively control varroa mites.  相似文献   

17.
Laboratory bioassays were performed to characterize the acute contact toxicity of oxalic acid (OA) to Varroa destructor (Anderson and Trueman) and their honey bee hosts (Apis mellifera L.). Specifically, glass-vial residual bioassays were conducted to determine the lethal concentration of OA for V. destructor, and topical applications of OA in acetone were conducted to determine the lethal dose for honey bees. The results indicate that OA has a low acute toxicity to honey bees and a high acute toxicity to mites. The toxicity data will help guide scientists in delivering optimum dosages of OA to the parasite and its host, and will be useful in making treatment recommendations. The data will also facilitate future comparisons of toxicity if mite resistance to OA becomes evident.  相似文献   

18.
Neem oil, neem extract (neem-aza), and canola oil were evaluated for the management of the honey bee mite parasites Varroa jacobsoni (Oudemans) and Acarapis woodi (Rennie) in field experiments. Spraying neem oil on bees was more effective at controlling V. jacobsoni than feeding oil in a sucrose-based matrix (patty), feeding neem-aza in syrup, or spraying canola oil. Neem oil sprays also protected susceptible bees from A. woodi infestation. Only neem oil provided V. jacobsoni control comparable to the known varroacide formic acid, but it was not as effective as the synthetic product Apistan (tau-fluvalinate). Neem oil was effective only when sprayed six times at 4-d intervals and not when applied three times at 8-d intervals. Neem oil spray treatments had no effect on adult honey bee populations, but treatments reduced the amount of sealed brood in colonies by 50% and caused queen loss at higher doses. Taken together, the results suggest that neem and canola oil show some promise for managing honey bee parasitic mites, but the negative effects of treatments to colonies and the lower efficacy against V. jacobsoni compared with synthetic acaricides may limit their usefulness to beekeepers.  相似文献   

19.
Seven treatments for the control of Varroa destructor (Anderson & Trueman) were tested to determine the optimum timing of miticide application. Threshold mite levels indicating miticide application were determined for three possible treatment dates: April, August, and October. The treatments were as follows: (1) fluvalinate in April, (2) fluvalinate in August, (3) fluvalinate in October, (4) fluvalinate in April and October, (5) fluvalinate applied continuously (except during honey flow) with replacement every 42 d, (6) control (no treatment), and (7) coumaphos in April. The number of miticide applications in a season had no effect on brood area or colony bee population a year after initiating the experiment. However, the absence of any treatment significantly reduced brood area and colony bee population and significantly increased colony mite population. Date of treatment had significant effects on colony mortality rates, mite levels, and brood area the following spring. When coupled with sampling and threshold recommendations, a single, late-season application of fluvalinate is as effective for the control of V. destructor as semiannual or continuous miticide applications. Treatment thresholds were recommended for ether roll and 48-h sticky board sampling methods in April (three and 24 mites, respectively) and August (14 and 46 mites, respectively) and for ether rolls in October (three mites) in cold climates.  相似文献   

20.
Strips coated with conidia of Metarhizium anisopliae (Metschinkoff; Deuteromycetes: Hyphomycetes) to control the parasitic mite, Varroa destructor (Anderson and Trueman) in colonies of honey bees, Apis mellifera (Hymenoptera: Apidae) were compared against the miticide, tau-fluvalinate (Apistan) in field trials in Texas and Florida (USA). Apistan and the fungal treatments resulted in successful control of mite populations in both locations. At the end of the 42-day period of the experiment in Texas, the number of mites per bee was reduced by 69-fold in bee hives treated with Apistan and 25-fold in hives treated with the fungus; however mite infestations increased by 1.3-fold in the control bee hives. Similarly, the number of mites in sealed brood was 13-fold and 3.6-fold higher in the control bee hives than in those treated with Apistan and with the fungus, respectively. Like the miticide Apistan, the fungal treatments provided a significant reduction of mite populations at the end of the experimental period. The data from the broodless colonies treated with the fungus indicated that optimum mite control could be achieved when no brood is being produced, or when brood production is low, such as in the early spring or late fall. In established colonies in Florida, honey bee colony development did not increase under either Apistan or fungal treatments at the end of the experimental period, suggesting that other factors (queen health, food source, food availability) play some major role in the growth of bee colonies. Overall, microbial control of Varroa mites with fungal pathogens could be a useful component of an integrated pest management program for the honey bee industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号