首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The BY-2 tobacco cell line was used to study the size and structure of replicating mitochondrial DNA (mtDNA). Approximately 70 to 90% of the newly synthesized mtDNA did not migrate during pulsed-field gel electrophoresis. Moving pictures of the fluorescently labeled molecules showed that most of the immobile well-bound DNA was in structures larger than the size of the BY-2 mitochondrial genome of ~270 kb. Most of the structures appeared as complex forms with multiple DNA fibers. The sizes of the circular molecules that were also observed ranged continuously from ~20 to 560 kb without prominent size classes. Pulse-chase and mung bean nuclease experiments showed that the well-bound DNA contained single-stranded regions and was converted to linear molecules of between 50 and 150 kb. MtDNA replication in plants may be initiated by recombination events that create branched structures of multigenomic concatemers that are then processed to 50- to 150-kb subgenomic fragments.  相似文献   

2.
Mitochondrial DNA of the malarial parasite Plasmodium falciparum comprises approximately 20 copies per cell of a 6 kb genome, arranged mainly as polydisperse linear concatemers. In synchronous blood cultures, initiation of mtDNA replication coincides with the start of the 4-5 doublings in nuclear DNA that mark the reproductive phase of the erythrocytic cycle. We show that mtDNA replication coincides with a recombination process reminiscent of the replication mechanism used by certain bacteriophages and plasmids. The few circular forms of mtDNA which are also present do not replicate by a theta mechanism, but are themselves the product of recombination, and we propose they undergo rolling circle activity to generate the linear concatemers.  相似文献   

3.
The structure of the mitochondrial genome in plants is unclear, but appears to consist of mostly linear DNA with some other structures, including branched molecules and subgenomic circles. Mitochondrial DNA (mtDNA) recombination was analyzed in Brassica campestris, which has one of the smallest mitochondrial genomes (218 kb) in higher plants. Field-inversion gel electrophoresis (FIGE) separated mtDNA into discrete populations that each represents the entire genome. Electron microscopy revealed large, mostly linear molecules trapped in the wells, slower migrating populations with mostly linear DNA and a low level of circular and networked mtDNA molecules of 10–140 kbp, and a fast migrating population of 10–50 kbp linear mtDNA. Some smaller than genome size circular molecules and circles with tails were observed, and may represent recombination or rolling circle replication intermediates. Hybridization of end-labeled mtDNA suggests there may be specific ends (or recombination hotspots) for some linear molecules. Analysis of mtDNA enriched by BND-cellulose and separated by two-dimensional agarose gel electrophoresis shows the presence of complex recombination structures and the presence of significant single-stranded regions in mtDNA. These findings provide further evidence that DNA recombination contributes to the complex structure of mtDNA in plants.  相似文献   

4.
Electron microscopic images of mitochondrial nucleoids isolated from mung bean seedlings revealed a relatively homogeneous population of particles, each consisting of a chromatin-like structure associated with a membrane component. Association of F-actin with mitochondrial nucleoids was also observed. The mitochondrial nucleoid structure identified in situ showed heterogeneous genomic organization. After pulsed-field gel electrophoresis (PFGE), a large proportion of the mitochondrial nucleoid DNA remained in the well, whereas the rest migrated as a 50–200 kb smear zone. This PFGE migration pattern was not affected by high salt, topoisomerase I or latrunculin B treatments; however, the mobility of a fraction of the fastmoving DNA decreased conspicuously following an in-gel ethidium-enhanced UV-irradiation treatment, suggesting that molecules with intricately compact structures were present in the 50-200 kb region. Approximately 70% of the mitochondrial nucleoid DNA molecules examined via electron microscopy were open circles, supercoils, complex forms, and linear molecules with interspersed sigma-shaped structures and/or loops. Increased sensitivity of mtDNA to DNase I was found after mitochondrial nucleoids were pretreated with high salt. This result indicates that some loosely bound or peripheral DNA binding proteins protected the mtDNA from DNase I degradation.  相似文献   

5.
Extrachromosomal DNA in the Apicomplexa.   总被引:8,自引:0,他引:8       下载免费PDF全文
Malaria and related apicomplexan parasites have two highly conserved organellar genomes: one is of plastid (pl) origin, and the other is mitochondrial (mt). The organization of both organellar DNA molecules from the human malaria parasite Plasmodium falciparum has been determined, and they have been shown to be tightly packed with genes. The 35-kb circular DNA is the smallest known vestigial plastid genome and is presumed to be functional. All but two of its recognized genes are involved with genetic expression: one of the two encodes a member of the clp family of molecular chaperones, and the other encodes a conserved protein of unknown function found both in algal plastids and in eubacterial genomes. The possible evolutionary source and intracellular location of the plDNA are discussed. The 6-kb tandemly repeated mt genome is the smallest known and codes for only three proteins (cytochrome b and two subunits of cytochrome oxidase) as well as two bizarrely fragmented rRNAs. The organization of the mt genome differs somewhat among genera. The mtDNA sequence provides information not otherwise available about the structure of apicomplexan cytochrome b as well as the unusually fragmented rRNAs. The malarial mtDNA has a phage-like replication mechanism and undergoes extensive recombination like the mtDNA of some other lower eukaryotes.  相似文献   

6.
The mitochondrial DNA (mtDNA) in animals is generally a circular molecule of approximately 15 kb, but there are many exceptions such as linear molecules and larger ones. RFLP studies indicated that the mtDNA in the terrestrial isopod Armadillidium vulgare varied from 20 to 42 kb. This variation depended on the restriction enzyme used, and on the restriction profile generated by a given enzyme. The DNA fragments had characteristic electrophoretic behaviors. Digestions with two endonucleases always generated fewer fragments than expected; denaturation of restriction profiles reduced the size of two bands by half; densitometry indicated that a number of small fragments were present in stoichiometry, which has approximately twice the expected concentration. Finally, hybridization to a 550-bp 16S rDNA probe often revealed two copies of this gene. These results cannot be due to the genetic rearrangements generally invoked to explain large mtDNA. We propose that the large A. vulgare mtDNA is produced by the tripling of a 14-kb monomer with a singular rearrangement: one monomer is linear and the other two form a circular dimer. Densitometry suggested that these two molecular structures were present in different proportions within a single individual. The absence of mutations within the dimers also suggests that replication occurs during the monomer phase.  相似文献   

7.
Bentzen P  Leggett WC  Brown GG 《Genetics》1988,118(3):509-518
Restriction endonuclease analysis was used to assess mitochondrial DNA (mtDNA) variation in American shad (Alosa sapidissima) collected from 14 rivers ranging from Florida to Quebec. Two types of heteroplasmy were observed, one involving a major length polymorphism and the other a single restriction site. Shad mtDNA occurred in two principal size classes, 18.3 and 19.8 kb. Of 244 shad examined, 30 were heteroplasmic and carried both size classes of mtDNA in varying proportions; the remainder were homoplasmic for the smaller size class of mtDNA. The large mtDNA variant occurred most frequently at the southern end of the range, and except for two individuals from Nova Scotia, was not detected among shad from rivers north of the Delaware. In contrast, ten shad heteroplasmic for a SalI restriction site originated from rivers ranging from South Carolina to Nova Scotia. DNA mapping and hybridization experiments indicated that the length polymorphism is in the D-loop-containing region and consists of a tandemly repeated 1.5-kb DNA sequence occurring in two and three copies, respectively, in the two major size classes of shad mtDNA. Continuous length variation up to approximately 40 bp occurs among copies of the repeat both within and among individuals. Restriction site data support the conclusion that both forms of heteroplasmy in shad mtDNA have originated more than once.  相似文献   

8.
We used a strategy based on long PCR (polymerase chain reaction) for detection and characterization of mitochondrial DNA (mtDNA) rearrangements in two patients with clinical signs suggesting Pearson syndrome and Kearns-Sayre syndrome (KSS), respectively, and one patient with myopathic symptoms of unidentified origin. Mitochondrial DNA rearrangements were detected by amplification of the complete mitochondrial genome (16.6 kb) using long PCR with primers located in essential regions of the mitochondrial genome and quantified by three-primer PCR. Long PCR with deletion-specific primers was used for identification and quantitative estimation of the different forms of rearranged molecules, such as deletions and duplications. We detected significant amounts of a common 7.4-kb deletion flanked by a 12-bp direct repeat in all tissues tested from the patient with Pearson syndrome. In skeletal muscle from the patient with clinical signs of KSS we found significant amounts of a novel 3.7-kb rearrangement flanked by a 4-bp inverted repeat that was present in the form of deletions as well as duplications. In the patient suffering from myopathic symptoms of unidentified origin we did not detect rearranged mtDNA in blood but found low levels of two rearranged mtDNA populations in skeletal muscle, a previously described 7-kb deletion flanked by a 7-bp direct repeat and a novel 6.6-kb deletion with no repeat. These two populations, however, were unlikely to be the cause of the myopathic symptoms as they were present at low levels (10–40 ppm). Using a strategy based on screening with long PCR we were able to detect and characterize high as well as low levels of mtDNA rearrangements in three patients. Received: 10 March 1997 / Accepted: 20 May 1997  相似文献   

9.
Most of the well-characterized mitochondrial genomes from diverse green algal lineages are circular mapping DNA molecules; however, Chlamydomonas reinhardtii has a linear 15.8 kb unit mitochondrial genome with 580 or 581 bp inverted repeat ends. In mitochondrial-enriched fractions prepared from Polytomella parva (=P. agilis), a colorless, naturally wall-less relative of C. reinhardtii, we have detected two linear mitochondrial DNA (mtDNA) components with sizes of 13.5 and 3.5 kb. Sequences spanning 97% and 86% of the 13.5- and 3.5-kb mtDNAs, respectively, reveal that these molecules contain long, at least 1.3 kb, homologous inverted repeat sequences at their termini. The 3.5-kb mtDNA has only one coding region (nad6), the functionality of which is supported by both the relative rate at which it has accumulated nonsynonymous nucleotide substitutions and its absence from the 13.5-kb mtDNA which encodes nine genes (i.e., large and small subunit rRNA [LSU and SSU rRNA] genes, one tRNA gene, and six protein-coding genes). On the basis of DNA sequence data, we propose that a variant start codon, GTG, is utilized by the P. parva 13.5-kb mtDNA-encoded gene, nad5. Using the relative rate test with Chlamydomonas moewusii (=C. eugametos) as the outgroup, we conclude that the nonsynonymous nucleotide substitution rate in the mitochondrial protein-coding genes of P. parva is on an average about 3.3 times that of the C. reinhardtii counterparts.  相似文献   

10.
Malarial parasites have two highly conserved cytoplasmic DNA molecules: a 6-kb tandemly arrayed DNA that has characteristics of a mitochondrial genome, and a 35-kb circular DNA that encodes functions commonly found in chloroplasts. We examined the inheritance pattern of these elements in two genetic crosses of Plasmodium falciparum clones. Parent-specific oligonucleotide probes and single-strand conformation polymorphism analysis identified single nucleotide changes that distinguished the parental 6- and 35-kb DNA molecules in the progeny. In all 16 independent recombinant progeny of a cross between a Central American clone, HB3, and a Southeast Asian clone, Dd2, the 6- and 35-kb DNAs were inherited from the Dd2 parent. In all nine independent recombinant progeny of a cross between clone HB3 and a likely African clone, 3D7, the 6-kb DNA was inherited from the 3D7 parent. Inheritance of cytoplasmic genomes of the Dd2 and 3D7 parents was, therefore, dominant over that of the HB3 parent. Cytoplasmic DNA molecules were found almost exclusively in the female gametes of malarial parasites; hence, clone HB3 did not appear to have served as a maternal parent for the progeny of two crosses. Defective differentiation into male gametes by clone Dd2 is likely to be a reason for the cytoplasmic inheritance pattern seen in the HB3 x Dd2 cross. However, incompetence of male or female gametes is unlikely to explain the uniparental dominance in recombinant progeny of the HB3 x 3D7 cross, since both parents readily self-fertilized and completed the malaria life cycle on their own. Instead, the data suggest unidirectional parental incompatibility in cross-fertilization of these malarial parasites, where a usually cosexual parental clone can participate only as a male or as a female. Such an incompatibility may be speculated as indicating an early phase of reproductive isolation of P. falciparum clones from different geographical regions.  相似文献   

11.
12.
Molecular variation is often used to infer the demographic history of species, but sometimes the complexity of species history can make such inference difficult. The willow warbler, Phylloscopus trochilus, shows substantially less geographical variation than the chiffchaff, Phylloscopus collybita, both in morphology and in mitochondrial DNA (mtDNA) divergence. We therefore predicted that the willow warbler should harbour less nuclear DNA diversity than the chiffchaff. We analysed sequence data obtained from multiple samples of willow warblers and chiffchaffs for the mtDNA cytochrome b gene and four nuclear genes. We confirmed that the mtDNA diversity among willow warblers is low (pi = 0.0021). Sequence data from three nuclear genes (CHD-Z, AFLP-WW1 and MC1R) not linked to the mitochondria demonstrated unexpectedly high nucleotide diversity (pi values of 0.0172, 0.0141 and 0.0038) in the willow warbler, on average higher than the nucleotide diversity for the chiffchaff (pi values of 0.0025, 0.0017 and 0.0139). In willow warblers, Tajima's D analyses showed that the mtDNA diversity, but not the nuclear DNA diversity, has been reduced relative to the neutral expectation of molecular evolution, suggesting the action of a selective sweep affecting the maternally inherited genes. The large nuclear diversity seen within willow warblers is not compatible with processes of neutral evolution occurring in a population with a constant population size, unless the long-term effective population size has been very large (N(e) > 10(6)). We suggest that the contrasting patterns of genetic diversity in the willow warbler may reflect a more complex evolutionary history, possibly including historical demographic fluctuations or historical male-biased introgression of nuclear genes from a differentiated population of Phylloscopus warblers.  相似文献   

13.
DAPI (4′6 Diamidino-2-phenylindole) staining of the large yeast Wickerhamia fluorescens revealed extensive cytoplasmic staining material attributable to mitochondrial DNA (mtDNA), often present in large network-like structures. The maintenance of this mtDNA appears to be insensitive to a variety of mitochondrial specific mutagens, suggesting that W. fluorescens may be classified as a petite negative yeast. Restriction enzyme analysis generated a unit genome size of 42(106) D for this mtDNA which, together with determinations of the average mtDNA per cell, allowed an estimate of the cellular copy number of mitochondrial genomes. A physical map of this mtDNA was also derived. These experiments suggested models which might reflect the cytological structures resolved by DAPI staining in W. fluorescens relative to other yeasts.  相似文献   

14.
Phase reversal in Sequoia sempervirens in relation to mtDNA   总被引:5,自引:0,他引:5  
Restriction fragment analysis revealed differences in mitochondrial DNA (mtDNA) between adult and juvenile coastal redwood, Sequoia sempervirens (D. Don) Endl. Thus, for example, juvenile shoots contained 4.0- and 3.6-kb Bam HI], restricted fragments that were absent in adult material. Rejuvenation by 5 repetitive graftings onto juvenile rootstocks resulted in the same 4.0- and 3.6-kb fragments as were present in the juvenile material. The similarities in mtDNA fragments of juvenile and rejuvenated. shoots, as well as their distinction from adult shoots, were confirmed by double digestion, Southern hybridization and DNA sequencing.  相似文献   

15.
The pond loach Misgurnus dabryanus is a freshwater fish with a distribution range spanning the eastern part of the Asian continent, the Korean Peninsula, and Taiwan. The pond loach was transplanted to the Japanese archipelago through the co-inclusion with dojo loach (Misgurnus anguillicaudatus species complex) populations, which were imported live from China for food materials, and it is currently distributed widely across Japan. A previous mitochondrial DNA (mtDNA) analysis revealed that a pond loach population in Ehime Prefecture (Shikoku Island, Japan) included two highly diverged mtDNA groups (Groups I and II). To examine the origin of these two distinct forms of mtDNA within the Japanese pond loach population, we performed phylogenetic analyses using sequences based on the mtDNA of cytochrome oxidase b (cyt b) and the nuclear DNA recombination activating gene 1 (RAG-1). We also conducted a random amplified polymorphic DNA (RAPD) analysis to examine the establishment of reproductive isolation between sympatric pond loaches with two different mtDNA groups. Our mtDNA phylogenetic results indicated that the two diverged pond loach mtDNA sequences showed polyphyletic relationships among Misgurnus species and its related genus Cobitis. In contrast, there were no clear divergence in nuclear DNA among the pond loaches irrespective of their mtDNA groups, and they all formed monomorphic clades in the phylogenetic relationships among the species. The discrepancy between the mtDNA and nuclear DNA genes support that the existence of two diverged forms of DNA within the pond loach population could be attributed to past mtDNA introgressions from other species rather than convergent evolution. Previous mtDNA phylogenetic studies among Cobitidae revealed that the dojo loach also consisted of two genetically diverged polyphyletic clades: an original Misgurnus mtDNA and an introgressed mtDNA from Cobitis species. In our mtDNA result, the Group II haplotype of the pond loach was included in the mtDNA from the introgressed dojo loach. This suggested that the Group II haplotype was derived from introgressed dojo loach mtDNA. The close relationships between the introgressed dojo loach and the pond loach mtDNA indicated that this secondary introgression had recently occurred via hybridization in a recent artificial aquaculture or transportation process. Common RAG-1 alleles and RAPD bands were shared between the sympatric pond loaches with original and introgressed mtDNAs. This indicates that the introgressed mtDNA haplotype is included as one of the polymorphic genotypes within the pond loach populations, and does not represent existence of different cryptic species.  相似文献   

16.
Mapping the 23-kb circular mitochondrial DNA from the yeast Kluyveromyces thermotolerans has shown that only one change occurs in the gene order in comparison to the 19-kb mtDNA of Candida (Torulopsis) glabrata. Sequence analysis of the mitochondrially encoded cytochrome oxidase subunit 2 gene reveals that despite their conserved gene order, the two small genomes are more distantly related than larger mtDNA molecules with multiple rearrangements. This result supports a previous observation that larger mitochondrial genomes are more prone to rearrange than smaller forms and suggests that the architecture of the two small molecules is likely to represent the structure of an ancestor.Correspondence to: G.D. Clark-Walker 0592  相似文献   

17.
Analysis of a 120-Kilobase Mitochondrial Chromosome in Maize   总被引:4,自引:2,他引:2       下载免费PDF全文
A. A. Levy  C. P. Andre    V. Walbot 《Genetics》1991,128(2):417-424
The organization of the mitochondrial genome in plants is not well understood. In maize mitochondrial DNA (mtDNA) several subgenomic circular molecules as well as an abundant fraction of linear molecules have been seen by electron microscopy. It has been hypothesized that the circular molecules are the genetic entities of the mitochondrial genome while the linear molecules correspond to randomly sheared mtDNA. A model has been proposed that explains the mechanism of generation of subgenomic circles (of a predictable size) by homologous recombination between pairs of large direct repeats found on a large (approximately 570 kb for the fertile (N) cytoplasm) master circle. So far the physical entities of the mitochondrial genome, as they exist in vivo, and the genes they carry, have not been identified. For this purpose, we used two gel systems (pulsed field gel electrophoresis and Eckhardt gels) designed to resolve large DNA. Large DNA was prepared from the Black Mexican Sweet (BMS) cultivar. We resolved several size classes of mtDNA circles and designate these as chromosomes. A 120 kb chromosome was mapped in detail. It is shown to contain the three ribosomal genes (rrn26, rrn18 and rrn5) plus two genes encoding subunits of cytochrome oxidase (Cox1 and Cox3); it appears to be colinear with the 570-kb master circle map of another fertile cytoplasm (B37N) except at the "breakpoints" required to form the 120-kb circle. The presence of the 120-kb chromosome could not have been predicted by homologous recombination through any of the known repetitive sequences nor is it a universal feature of normal maize mitochondria. It is present in mitochondria of BMS suspension cultures and seedlings, but is not detectable in seedlings of B37N. No master genome was detected in BMS.  相似文献   

18.
Many human mitochondrial diseases are associated with defects in the mitochondrial DNA (mtDNA). Mutated and wild-type forms of mtDNA often coexist in the same cell in a state called heteroplasmy. Here, we report the isolation of a Caenorhabditis elegans strain bearing the 3.1-kb uaDf5 deletion that removes 11 genes from the mtDNA. The uaDf5 deletion is maternally transmitted and has been maintained for at least 100 generations in a stable heteroplasmic state in which it accounts for approximately 60% of the mtDNA content of each developmental stage. Heteroplasmy levels vary between individual animals (from approximately 20 to 80%), but no observable phenotype is detected. The total mtDNA copy number in the uaDf5 mutant is approximately twice that of the wild type. The maternal transmission of the uaDf5 mtDNA is controlled by at least two competing processes: one process promotes the increase in the average proportion of uaDf5 mtDNA in the offspring, while the second promotes a decrease. These two forces prevent the segregation of the mtDNAs to homoplasmy.  相似文献   

19.
Microsatellites and mitochondrial DNA (mtDNA) have traditionally been used in population genetics because of their variability and presumed neutrality, whereas genes of the major histocompatibility complex (MHC) are increasingly of interest because strong selective pressures shape their standing variation. Despite the potential for MHC genes, microsatellites, and mtDNA sequences to complement one another in deciphering population history and demography, the three are rarely used in tandem. Here we report on MHC, microsatellite, and mtDNA variability in a single large population of the eastern tiger salamander (Ambystoma tigrinum tigrinum). We use the mtDNA mismatch distribution and, on microsatellite data, the imbalance index and bottleneck tests to infer aspects of population history and demography. Haplotype and allelic variation was high at all loci surveyed, and heterozygosity was high at the nuclear loci. We find concordance among neutral molecular markers that suggests our study population originated from post-Pleistocene expansions of multiple, fragmented sources that shared few migrants. Differences in N(e) estimates derived from haploid and diploid genetic markers are potentially attributable to secondary contact among source populations that experienced rapid mtDNA divergence and comparatively low levels of nuclear DNA divergence. We find strong evidence of natural selection acting on MHC genes and estimate long-term effective population sizes (N(e)) that are very large, making small selection intensities significant evolutionary forces in this population.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号