首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By the use of a T7 expression system, endoglucanases-xylanases EngB and EngD from Clostridium cellulovorans were hyperexpressed and purified from Escherichia coli. The two enzymes demonstrated both endoglucanase and xylanase activities. The substrate specificities of both endoglucanases were similar except that EngD had four-times-greater p-nitrophenyl beta-1,4-cellobiosidase activity. The two proteins were very homologous (80%) up to the Pro-Thr-Thr region which divided the protein into -NH2- and -COOH-terminals. The -COOH- region of EngB has high homology to the endoglucanases and a xylanase from Clostridium thermocellum and to an endoglucanase from Clostridium cellulolyticum and did not show strong binding to cellulose (Avicel). However, the -COOH- region of EngD, which had homology to the cellulose-binding domains of Cellulomonas fimi exo- and endoglucanases and to Pseudomonas fluorescens endoglucanase, demonstrated binding ability to cellulose even when the domain was fused to the N-terminal domain of EngB. By probing the Avicel-purified cellulase complex (F8) with anti-EngB and anti-EngD antibodies, both EngB and EngD were shown to be present on the cellulase complex of C. cellulovorans. Many proteins homologous to EngB and EngD were also present on the complex.  相似文献   

2.
An endoglucanase gene, engB, from Clostridium cellulovorans, previously cloned into pUC19, has been further characterized and its product investigated. The enzyme, EngB, encoded by the gene was secreted into the periplasmic space of Escherichia coli. The enzyme was active against carboxymethylcellulose, xylan and lichenan but not Avicel (crystalline cellulose). The sequenced gene showed an open reading frame of 1323 base pairs and coded for a protein with a molecular mass of 48.6 kDa. The mRNA contained a typical Gram-positive ribosome-binding site sequence GGAGG and a sequence coding for a putative signal peptide. There is high amino acid and base sequence homology between the N-terminal regions of EngB and another C. cellulovorans endoglucanase, EngD, but they differ significantly in their C-termini. Deletion analyses revealed that up to 32 amino acids of the N-terminus and 52 amino acids of the C-terminus were not required for catalytic activity. The conserved reiterated domains at the C-terminus of EngB were similar to those from endoglucanases from other cellulytic bacteria. According to our deletion analyses, this region is not needed for catalytic activity.  相似文献   

3.
Summary The nucleotide sequence of engD, an endo--1,4-glucanase gene from Clostridium cellulovorans was determined (Genbank Accession No. M37434). The COON-terminal part of the gene product, EngD, contained a Thr-Thr-Pro repeated sequence followed by a region that has homology to the exoglucanase of Cellulomonas fimi. EngD and EngB, another C. cellulovorans endoglucanase, show 75% amino acid sequence homology at their NH2-termini, in contrast to their carboxyterminal domains which show no homology. EngD had endoglucanase activity on carboxymethylcellulose (CMC), cellobiosidase activity on p-nitrophenyl-cellobioside (p-NPC), and partial hydrolytic activity on crystalline cellulose (Avicel), while EngB showed hydrolytic activity against only CMC. Chimeric proteins between EngB and EngD were constructed by exchanging the non-homologous COOH-terminal regions. Chimeric proteins that contained the NH2-terminus of EngD retained cellobiosidase activity but chimeras with the EngB NH2-terminus showed no cellobiosidase activity. Hydrolysis of crystalline cellulose (Avicelase activity) was observed only with the enzyme containing the EngD NH2-terminus and EngD COOH-terminus.  相似文献   

4.
Murashima K  Kosugi A  Doi RH 《Proteins》2003,50(4):620-628
Clostridium cellulovorans produces a cellulase complex (cellulosome) as well as noncellulosomal cellulases. In this study, we determined a factor that affected the solubility of the cellulosomal cellulase EngB and the noncellulosomal EngD when they were expressed in Escherichia coli. The catalytic domains of EngB and EngD formed inclusion bodies when expressed in E. coli. On the other hand, both catalytic domains containing the C-terminal cellulose-binding domain (CBD) of EngD were expressed in soluble form. Fusion with the CBD of EngD also helped increased the solubility of cellulosomal cellulase EngL upon expression in E. coli. These results indicate that the CBD of EngD plays an important role in the soluble expression of the catalytic domains of EngB, EngL, and EngD. The possible mechanisms of solubilization by fusion of the catalytic domain with the CBD from EngD are discussed.  相似文献   

5.
Buettner K  Hertel TC  Pietzsch M 《Amino acids》2012,42(2-3):987-996
The thermostability of microbial transglutaminase (MTG) of Streptomyces mobaraensis was further improved by saturation mutagenesis and DNA-shuffling. High-throughput screening was used to identify clones with increased thermostability at 55°C. Saturation mutagenesis was performed at seven "hot spots", previously evolved by random mutagenesis. Mutations at four positions (2, 23, 269, and 294) led to higher thermostability. The variants with single amino acid exchanges comprising the highest thermostabilities were combined by DNA-shuffling. A library of 1,500 clones was screened and variants showing the highest ratio of activities after incubation for 30 min at 55°C relative to a control at 37°C were selected. 116 mutants of this library showed an increased thermostability and 2 clones per deep well plate were sequenced (35 clones). 13 clones showed only the desired sites without additional point mutations and eight variants were purified and characterized. The most thermostable mutant (triple mutant S23V-Y24N-K294L) exhibited a 12-fold higher half-life at 60°C and a 10-fold higher half-life at 50°C compared to the unmodified recombinant wild-type enzyme. From the characterization of different triple mutants differing only in one amino acid residue, it can be concluded that position 294 is especially important for thermostabilization. The simultaneous exchange of amino acids at sites 23, 24, 269 and 289 resulted in a MTG-variant with nearly twofold higher specific activity and a temperature optimum of 55°C. A triple mutant with amino acid substitutions at sites 2, 289 and 294 exhibits a temperature optimum of 60°C, which is 10°C higher than that of the wild-type enzyme.  相似文献   

6.
The endoglucanase II of Trichoderma reesei is considered the most effective enzyme for biofinishing cotton fabrics and biostoning denim garments. However, the commercially available preparation of endoglucanase II is usually mixed with other cellulase components, especially endoglucanase I, resulting in hydrolysis and weight loss of garments during biofinishing and biostoning. We thus isolated the endoglucanase II gene from T. reesei to express this in Pichia pastoris, under the control of a methanol-inducible AOX1 promoter, to avoid the presence of other cellulase components. A highly expressible Mut(+) transformant was selected and its expression in BMMH medium was found most suitable for the production of large amounts of the recombinant protein. Recombinant endoglucanase II was purified to electrophoretic homogeneity, and functionally characterized by activity staining. The specific activity of recombinant endoglucanase II was found to be 220.57 EU/mg of protein. Purified recombinant endoglucanase II was estimated to have a molecular mass of 52.8 kDa. The increase in molecular mass was likely due to hyperglycosylation. Hyperglycosylation of recombinant endoglucanase II secreted by P. pastoris did not change the temperature or pH optima as compared to the native protein, but did result in increased thermostability. Kinetic analysis showed that recombinant endoglucanase was most active against amorphous cellulose, such as carboxymethyl cellulose, for which it also had a high affinity.  相似文献   

7.
A BamHI genomic library from Thermomonospora curvata was constructed in E. coli using cosmid vector pHC79. Four clones able to hydrolyze CMC were isolated. Restriction digests and Southern gel analysis revealed the presence of three different endoglucanase genes. DNA fragments contained in all of the endoglucanase cosmids hybridized to T. curvata chromosomal DNA. The cellulase genes were expressed in E. coli, but at rather low levels.  相似文献   

8.
Low exoglucanase and endoglucanase activities of marine Aspergillus niger cellulase decreased the hydrolyzing ability of cellulase. To increase the activity of halostable cellulase obtained from a marine A. niger, a cellulase with endoglucanase and exoglucanase activity was efficiently expressed by constructing a vector with promoter glaA. Exoglucanase and endoglucanase activities increased from 0.21 and 4.51 U/ml of the original strain to 0.89 U/ml and 15.12 U/ml of the transformant, respectively. Filter paper activity (FPA) increased by 7.1 folds from 0.63 to 4.47 U/ml. The release of glucose by hydrolysis of wheat straw with cellulase from the transformant was 1.37 folds higher than that with cellulase from the original strain under high salinity condition. Cellulase with endoglucanase and exoglucanase activities could be well expressed in marine A. niger. The cellulase from the transformant not only showed higher activity, but also retained halostability. An appreciate proportion of β-glucosidase, exoglucanase, endgolucanasein cellulase was important for hydrolyzing cellulose.  相似文献   

9.
We overexpressed one of the hydrophobic repeated domains (HBDs) (110 amino acid residues) of the cellulose-binding protein (CbpA) from Clostridium cellulovorans by making a hybrid protein with the Escherichia coli maltose-binding protein (MalE). The HBD was purified to homogeneity, and interactions between the HBD and endoglucanases were analyzed by a novel interaction Western blotting (immunoblotting) method. The HBD had specific interactions with endoglucanases (EngB and EngD) from C. cellulovorans. These results indicated that the HBD was an endoglucanase binding site of CbpA.  相似文献   

10.

A metagenomic library from DNA isolated from a biogas plant was constructed and screened for thermoactive endoglucanases to gain insight into the enzymatic diversity involved in plant biomass breakdown at elevated temperatures. Two cellulase-encoding genes were identified and the corresponding proteins showed sequence similarities of 59% for Cel5A to a putative cellulase from Anaerolinea thermolimosa and 99% for Cel5B to a characterized endoglucanase isolated from a biogas plant reactor. The cellulase Cel5A consists of one catalytical domain showing sequence similarities to glycoside hydrolase family 5 and comprises 358 amino acids with a predicted molecular mass of 41.2 kDa. The gene coding for cel5A was successfully cloned and expressed in Escherichia coli C43(DE3). The recombinant protein was purified to homogeneity using affinity chromatography with a specific activity of 182 U/mg, and a yield of 74%. Enzymatic activity was detectable towards cellulose and mannan containing substrates and over a broad temperature range from 40 °C to 70 °C and a pH range from 4.0 to 7.0 with maximal activity at 55 °C and pH 5.0. Cel5A showed high thermostability at 60 °C without loss of activity after 24 h. Due to the enzymatic characteristics, Cel5A is an attractive candidate for the degradation of lignocellulosic material.

  相似文献   

11.
The use of thermostable cellulases is advantageous for the breakdown of lignocellulosic biomass toward the commercial production of biofuels. Previously, we have demonstrated the engineering of an enhanced thermostable family 8 cellulosomal endoglucanase (EC 3.2.1.4), Cel8A, from Clostridium thermocellum, using random error-prone PCR and a combination of three beneficial mutations, dominated by an intriguing serine-to-glycine substitution (M. Anbar, R. Lamed, E. A. Bayer, ChemCatChem 2:997-1003, 2010). In the present study, we used a bioinformatics-based approach involving sequence alignment of homologous family 8 glycoside hydrolases to create a library of consensus mutations in which residues of the catalytic module are replaced at specific positions with the most prevalent amino acids in the family. One of the mutants (G283P) displayed a higher thermal stability than the wild-type enzyme. Introducing this mutation into the previously engineered Cel8A triple mutant resulted in an optimized enzyme, increasing the half-life of activity by 14-fold at 85°C. Remarkably, no loss of catalytic activity was observed compared to that of the wild-type endoglucanase. The structural changes were simulated by molecular dynamics analysis, and specific regions were identified that contributed to the observed thermostability. Intriguingly, most of the proteins used for sequence alignment in determining the consensus residues were derived from mesophilic bacteria, with optimal temperatures well below that of C. thermocellum Cel8A.  相似文献   

12.
【目的】建立里氏木霉(Trichoderma reesei)高产突变菌株的快速筛选方法,选育出高产内切葡聚糖酶的突变株。【方法】对里氏木霉T306菌株的初筛培养基进行优化,建立快速筛选方法;通过紫外诱变手段选育内切葡聚糖酶高产突变菌株,并对突变菌株的产酶培养基进行优化。【结果】在初筛培养基中添加浓度为0.1%(W/V)的乳糖、蛋白胨及脱氧胆酸钠有利于菌株的筛选。诱变后筛选出菌落形态发生明显变化的内切葡聚糖酶高产突变株0516,其羧甲基纤维素酶活力(CMC酶)较出发菌株提高了38.9%。其产酶培养基经优化后,得到最适碳、氮源分别为:乳糖1.50%、硫酸铵0.14%、尿素0.05%、蛋白胨0.10%,优化后CMC酶活力达64.2 U/mL,较优化前提高了2.3倍。【结论】建立了里氏木霉高产突变菌株的快速筛选方法,通过紫外诱变育种获得了产内切葡聚糖酶能力高且遗传稳定的突变株0516。  相似文献   

13.
A cosmid gene library was constructed in Escherichia coli from genomic DNA isolated from the ruminal anaerobe Fibrobacter succinogenes AR1. Clones were screened on carboxymethyl cellulose, and 8 colonies that produced large clearing zones and 25 colonies that produced small clearing zones were identified. Southern blot hybridization revealed the existence of at least three separate genes encoding cellulase activity. pRC093, which is representative of cosmid clones that produce large clearing zones, was subcloned in pGem-1, and the resulting hybrid pRCEH directed synthesis of endoglucanase activity localized on a 2.1-kb EcoRI-HindIII insert. Activity was expressed from this fragment when it was cloned in both orientations in pGem-1 and pGem-2, indicating that F. succinogenes promoters functioned successfully in E. coli. A high level of endoglucanase activity was detected on acid-swollen cellulose, ball-milled cellulose, and carboxymethyl cellulose; and a moderate level was detected on filter paper, Avicel, lichenan, and xylan. Most activity (80%) was localized in the periplasm of E. coli, with low but significant levels (16%) being detected in the extracellular medium. The periplasmic endoglucanase had an estimated molecular weight of 46,500, had an optimum temperature of 39 degrees C, and exhibited activity over a broad pH range, with a maximum at pH 5.0.  相似文献   

14.
The metagenomic DNA of pulp sediments from paper mill effluent was extracted and purified. The 16S rDNA was amplified using the purified metagenomic DNA as template and a 16S rDNA library was prepared. Sequence analysis of 16S rDNA clones showed that diverse of uncultured bacteria inhabit in this environment, which can be classified into 4 clusters as Spirochaetes, Proteobacteria, Bacteroidetes and Firmicutes. A metagenomic library containing 10000 clones was constructed into cosmid vector, and the capacity of inserted DNA of which was 3.53 x 10(8) bp. Functional screening of the library resulted in isolation of two independent clones expressing endoglucanase activity, three independent clones expressing exoglucanase activity and two independent clones expressing beta-glucosidase activity. One clone expressing strongest enzyme activity from each activity category was chosen to be further analyzed. Three novel cellulase genes designated as umcel5L, umcel5M and umbgl3D were identified by subcloning, sequencing and expression. The umcel5L encodes an endoglucanase belonging to glycosyl hydrolase family 5, which is most related to an endoglucanase from Bradyrhizobium japonicum at 43% identity and 59% similarity. The umcel5M encodes a cellodextrinase belonging to glycosyl hydrolase family 5, which is most similar to a cellodextrinase from Fibrobacter succinogenes at 48% identity and 69% similarity. The umbgl3D encodes a putative beta-glucosidase belonging to glycosyl hydrolase family 3, which shares highest homology with a beta-glucosidase from Thermotoga maritima at 46% identity and 61% similarity. It is the first time to reveal the bacterial diversity of pulp sediments from paper mill effluent and clone novel cellulase genes from the bacteria by culture-independent method.  相似文献   

15.
A cosmid gene library was constructed in Escherichia coli from genomic DNA isolated from the ruminal anaerobe Fibrobacter succinogenes AR1. Clones were screened on carboxymethyl cellulose, and 8 colonies that produced large clearing zones and 25 colonies that produced small clearing zones were identified. Southern blot hybridization revealed the existence of at least three separate genes encoding cellulase activity. pRC093, which is representative of cosmid clones that produce large clearing zones, was subcloned in pGem-1, and the resulting hybrid pRCEH directed synthesis of endoglucanase activity localized on a 2.1-kb EcoRI-HindIII insert. Activity was expressed from this fragment when it was cloned in both orientations in pGem-1 and pGem-2, indicating that F. succinogenes promoters functioned successfully in E. coli. A high level of endoglucanase activity was detected on acid-swollen cellulose, ball-milled cellulose, and carboxymethyl cellulose; and a moderate level was detected on filter paper, Avicel, lichenan, and xylan. Most activity (80%) was localized in the periplasm of E. coli, with low but significant levels (16%) being detected in the extracellular medium. The periplasmic endoglucanase had an estimated molecular weight of 46,500, had an optimum temperature of 39 degrees C, and exhibited activity over a broad pH range, with a maximum at pH 5.0.  相似文献   

16.
We constructed a library of chimeras from the major endoglucanase, CelA, of Clostridium thermocellum and a less stable endoglucanase CelB from Clostridium josui with multiple point mutations using low-fidelity family-shuffling method. Mutations that inactivated the enzyme were rapidly eliminated with high-throughput screening. The activities and thermostabilities of selected variants were evaluated, and four amino acid substitutions, K249R, P258S, S329N and E355G, were identified as having significant impact on the thermostability of CelA without affecting enzymatic activity. In the crystal structure of CelA, most of them are away from the activity cleft and are responsible for the stabilization of secondary structures.  相似文献   

17.
Scytalidium thermophilum type culture Torula thermophila was isolated from mushroom compost and the total cellulase, endoglucanase, Avicel-adsorbable endoglucanase activities, as well as the fungal biomass generation and cellulose utilisation were analyzed in shake flask cultures with Avicel (microcrystalline cellulose) as the carbon source. Results were compared with an industrial strain of Scytalidium thermophilum type culture Humicola insolens. The pH and temperature optima for endoglucanase activities during enzyme assays were also analyzed for both organisms and determined to be pH 6.0 and 65 degrees C for type culture Torula thermophila, and pH 6.5 and 60 degrees C for type culture Humicola insolens. Analysis of the effect of growth temperature showed that type culture T. thermophila can grow and produce cellulases in the range of 35 to 55 degrees C although 40 to 50 degrees C seemed to favor growth and cellulase production. Although 45 degrees C was found optimal for fungal growth, both the specific endoglucanase and Avicel-adsorbable endoglucanase activities (U/mg protein) as well as the percentage of Avicel-adsorbable endoglucanase activity reached maxima at 50 degrees C and were higher as compared to type culture H. insolens. Results indicate that type culture T. thermophila, with further optimisations, is of potential use in the industrial production of cellulases.  相似文献   

18.
Jeon SD  Yu KO  Kim SW  Han SO 《New biotechnology》2012,29(3):365-371
Clostridium cellulovorans produces an efficient enzyme complex for the degradation of lignocellulosic biomass. In our previous study, we detected and identified protein spots that interacted with a fluorescently labeled cohesin biomarker via two-dimensional gel electrophoresis. One novel, putative cellulosomal protein (referred to as endoglucanase Z) contains a catalytic module from the glycosyl hydrolase family (GH9) and demonstrated higher levels of expression than other cellulosomal cellulases in Avicel-containing cultures. Purified EngZ had optimal activity at pH 7.0, 40°C, and the major hydrolysis product from the cellooligosaccharides was cellobiose. EngZ's specific activity toward crystalline cellulose (Avicel and acid-swollen cellulose) was 10-20-fold higher than other cellulosomal cellulase activities. A large percentage of the reducing ends that were produced by this enzyme from acid-swollen cellulose were released as soluble sugar. EngZ has the capability of reducing the viscosity of Avicel at an intermediate-level between exo- and endo-typing cellulases, suggesting that it is a processive endoglucanase. In conclusion, EngZ was highly expressed in cellulolytic systems and demonstrated processive endoglucanase activity, suggesting that it plays a major role in the hydrolysis of crystalline cellulose and acts as a cellulosomal enzyme in C. cellulovorans.  相似文献   

19.
Clostridium cellulovorans, an anaerobic bacterium, produces a small nonenzymatic protein called HbpA, which has a surface layer homology domain and a type I cohesin domain similar to those found in the cellulosomal scaffolding protein CbpA. In this study, we demonstrated that HbpA could bind to cell wall fragments from C. cellulovorans and insoluble polysaccharides and form a complex with cellulosomal cellulases endoglucanase B (EngB) and endoglucanase L (EngL). Synergistic degradative action of the cellulosomal cellulase and HbpA complexes was demonstrated on acid-swollen cellulose, Avicel, and corn fiber. We propose that HbpA functions to bind dockerin-containing cellulosomal enzymes to the cell surface and complements the activity of cellulosomes.  相似文献   

20.
Paper from an ancient library of the cultural city of Fez (Morocco) is exposed to rapid deterioration by variety of microorganisms, especially cellulolytic fungi. For this, ten isolates fungi previously isolated from historical biodeteriorated paper were screened for their ability to produce endoglucanase (CMCase), amylase, polygalacturonase and ligninase enzymes. The CMCase activity of cellulolytic strains was essayed in liquid media at 25°C for 10 days. Influence of temperature and pH were assessed for the production of CMCase by all the fungus isolated from decaying paper. The research findings from the present study demonstrate that all the tested isolates had cellulase, amylase, pectinase and ligninase activities. It was found that Mucor racemosus PF15, Aspergillus niger, and Aspergillus oryzae exhibited the maximum endoglucanase activity in liquid medium (0.256, 0.236, and 0.216 UI/mL in descending order) for six days. Temperature profiling revealed optimum endoglucanase activity at 25 and 30°C. Maximum activity was observed at pH 5 and pH 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号