首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
海洋微藻脂肪酸去饱和酶   总被引:5,自引:0,他引:5  
海洋微藻中富含多不饱和脂肪酸(polyunsaturated fatty acid,PUFA),在部分微藻中ω3 PUFA的量可达其总脂肪酸的30%~50%。而且微藻油具有鱼油所不可比拟的健康优势,也是唯一得到美国食品与药物管理局(FDA)认可的儿童DHA(二十二碳六烯酸)补充剂来源。由于用培养微藻来提取、纯化PUFA受到现有生产工艺的限制,使微藻油在国际食品(尤其是高质量食品)及保健品市场上供不应求。微藻脂肪酸去饱和酶(fatty aciddesaturase,FAD)是微藻PUFA合成的关键酶类,所以对微藻FAD的深入研究无疑将促进PUFA资源的合理开发和利用。  相似文献   

2.
富含多不饱和脂肪酸的产油微藻是开发高值微藻油的理想原料,一株产油微藻是否具有高值油脂开发潜力需要评估其油脂产量、中性脂比例与多不饱和脂肪酸分布等指标。低氮胁迫是研究微藻油脂积累理想的方式之一,以一株产油绿球藻(Chlorococcum sp.)为实验材料,以硝酸钠(NaNO_3)为氮源,设置17.6 mmol/L、5.9 mmol/L和3.5 mmol/L三种氮浓度,跟踪测定产油绿球藻生长、脂类组成及多不饱和脂肪酸分布的时相变化。结果显示,3.5 mmol/L和5.9 mmol/L氮浓度条件下,产油绿球藻取得了2.55 g/L和2.51 g/L的总脂产量,远高于17.6 mmol/L氮浓度组的总脂产量(1.43 g/L);降低氮浓度可以提高中性脂比例,3.5mmol/L氮浓度组取得最高的中性脂比例,为88.6%总脂质(Total lipid,TL),高于5.9 mmol/L氮浓度组(86.3%TL)和17.6 mmol/L氮浓度组(80.5%TL);降低氮浓度可以改变产油绿球藻的脂肪酸在不同脂类分子中的分布,促进脂肪酸更多分布于中性脂中,其中,3.5 m mol/L TL氮浓度组培养结束时,α-亚麻酸在中性脂的比例由接种时的33.9%提高到86.5%。适宜氮浓度对于提高产油绿球藻总脂产量、中性脂比例而多不饱和脂肪酸分布具有重要作用,产油绿球藻积累的α-亚麻酸在低氮条件下更倾向于分布在中性脂中,是一株具有高值化微藻油开发价值的藻株。  相似文献   

3.
发展微藻生物能源是解决能源危机和环境问题的有效途径之一。目前微藻生物能源的藻种筛选、室外养殖、采收、油脂提取、能源制备等各工艺环节均已经打通,但成本高制约了微藻生物能源的产业化发展。本文分析了微藻生物能源的制备工艺(包括藻种特性、培养技术、油脂诱导技术、油脂转化技术等)及应用研究进展(包括反应器),并结合多年在藻种选育、室外规模化培养、低成本采收和藻油多组分分离方面的研究结果与经验,从多角度为微藻生物能源发展给出建议。指出微藻的全价开发将是微藻生物能源发展的有效模式,其中筛选采收成本低、耐污染、油脂含量较高、富含高值副产物的藻种非常重要,丝状藻是一个非常有潜力的方向,并考虑将物理法和水热液化法结合,实现微藻的多成分提取与分离,提高微藻价值的全价开发。  相似文献   

4.
在新能源开发过程中,人们注意到利用微藻生产可再生能源.微藻具有光能自养能力,在吸收储存太阳能的同时,还能固定CO2、减轻温室效应.相比于陆生植物,微藻具有生长快、光合作用效率高、节省土地、可以工业化生产等优点.一些微藻在一定的条件下可以以积累油脂的方式贮存太阳能,人们可以利用油脂来生产生物柴油.目前微藻油脂的产量还较低,成本较高,用微藻油脂生产生物柴油还不具有竞争力.要使微藻油脂生物柴油具有现实意义,必须保证微藻高效率、低成本生产油脂.  相似文献   

5.
正微藻具有生长周期短、含油量高等优点,被认为是一种极具前景的生物柴油大宗原料。微藻的培养、微藻细胞的破碎以及微藻油脂的提取不仅是微藻油脂上游制备阶段的主要工序,也是影响整个生产工艺的成本、效率的重要因素。文章综述了以上3个工序目前在国内外的研究现状,并对各工艺今后的发展方向进行了展望,为进一步提高微藻生物柴油的经济性提出了建议。  相似文献   

6.
微藻生产油脂培养新技术   总被引:1,自引:0,他引:1  
近年来,随着全球性能源短缺和环境污染等问题日益严重,利用微藻开发绿色、清洁的生物能源已成为了研究热点。但是微藻油脂的低合成速率和高成本限制了微藻油脂的大规模生产。为了有效开发利用微藻资源,双阶段及共培养技术被发展并取得了显著进展。此外,除了改变培养条件,更为简单的添加生长代谢调节因子的策略也被证明是一种有效的提高微藻油脂的技术。对各种新发展的微藻培养技术及其技术原理进行了详细介绍,在此基础上,初步展望了微藻产油研究的未来发展方向。  相似文献   

7.
氮源是影响微藻生长和油脂积累的重要因素,文中通过单因素试验比较了NaNO3、CO(NH2)2、NH4Cl、CH3COONH4及其浓度对眼点拟微绿球藻生长密度、生长速率、油脂产率、二十碳五烯酸(EPA)含量的影响。结果表明:NH4+更易被眼点拟微绿球藻利用,能更好地促进微藻生长和油脂积累;氮浓度的增加有利于微藻的生长和藻油脂肪酸的去饱和,但不利于微藻油脂的积累。在实验考察的氮源种类和浓度范围内,CH3COONH4是促进眼点拟微绿球藻生长和油脂积累、EPA生成的适宜氮源,其适宜的浓度为5.29 mmol/L。  相似文献   

8.
产生物柴油微藻培养研究进展   总被引:14,自引:2,他引:14  
石油的大量使用会导致能源枯竭和温室气体(CO2)排放的增加。为了实现经济和环境的和谐发展,必须使用可再生能源代替石油。可再生能源使用后不会造成温室气体排放的增加。生物柴油是一种理想的可再生能源, 能满足以上要求,所以近年来得到迅速发展。微藻是一种主要利用太阳能固定 CO2,生成制备生物柴油所需油脂的藻类。因此以微藻油脂为原料转化成的生物柴油是石油理想的替代品。简要介绍了产油微藻的种类和微藻油脂的合成,较详细地阐述了微藻自养培养、异养培养、生物反应器、工程微藻的最新研究进展,并初步展望了微藻产油研究的未来发展方向。  相似文献   

9.
正利用微藻油脂、烷烃或微藻淀粉生产生物柴油或生物酒精已成为国际生物能源研究领域的前沿和各个国家尤其是西方发达国家能源科技竞争的热点。然而,微藻生物燃料面临用于大规模工业化培养的微藻品种较少、生产成本高而难于商业化应用的问题。文章深入研究微藻生物技术的发展,对目前微藻藻种筛选、育种和基因工程技术改造进行分析,为进一步发掘筛选新的微藻生物资源、获得富含生物燃料原料成分及多种生物活性成分的优良藻种提供指导,加快微藻的生物产品和生物燃料商业化生产。  相似文献   

10.
产油微藻具有生长速度快、油脂含量高和抗逆性强等特点,是极具生产潜力的生物柴油的原料.微藻生物柴油技术包括微藻藻种的筛选、大量培养和采收、油脂的提取和生物柴油的制备.该文对近些年产油微藻藻种的筛选和规模化培养的研究进展进行综述.  相似文献   

11.
研究了外源褪黑素(MT)对单针藻Monoraphidium sp.QLY-1生长和油脂积累影响,结果表明:在光胁迫下,添加1、10和100μmol/L褪黑素时藻细胞中油脂含量分别比对照组(37.6%)提高了1.32、1.24和1.16倍,且最高油脂含量可达49.6%。活性氧(ROS)、油脂生物合成相关的酶活性与油脂积累存在相关性,添加1μmol/L褪黑素诱导微藻细胞,ROS水平上升、乙酰辅酶A羧化酶(ACCase)和苹果酸酶(ME)酶活性呈现上调趋势,磷酸烯醇式丙酮酸羧化酶(PEPCase)活性下调。研究表明,褪黑素作为一种外源诱导子可有效促进微藻油脂的积累,褪黑素结合光诱导可作为提高微藻油脂积累的另一策略。  相似文献   

12.
以真眼点藻纲8株微藻(类波氏真眼点藻(Eustigmatos cf. polyphem)、大真眼点藻(Eustigmatos magnus)、波氏真眼点藻(Eustigmatos polyphem)、魏氏真眼点藻(Eustigmatos vischeri)、斧形魏氏藻(Vischeria helvetica)、点状魏氏藻(Vischeria punctata)、星形魏氏藻(Vischeria stellata)和眼点拟微绿球藻(Nan-nochloropsis oculata))为研究材料, 用3种氮源(硝酸钠、碳酸氢铵或尿素)和4种氮浓度(18、9、6和3 mmol) 在改良的BG-11培养基中对藻细胞进行培养。比较分析这8株微藻在不同培养条件下的藻液pH、生物量、油脂含量、脂肪酸组成的差异, 从而筛选出适合该类微藻生长和油脂积累的最适氮源与最佳氮浓度。结果表明, 这8株微藻均能在3种氮源中生长, 但是随着培养时间延长, 以碳酸氢铵和尿素为氮源时藻液pH逐渐降低, 其变化范围为5.0—6.0, 而以硝酸钠为氮源时藻液pH保持在7.0—8.0, 变化不大。当以尿素为氮源培养时, 能获得较高的生物量, 但是不同藻株在不同尿素浓度时达到最高生物量。最高生物量是波氏真眼点藻(E. polyphem)在9 mmol时达到, 为10.96 g/L。总脂含量分析发现, 在低氮浓度下均能促进8株微藻油脂的积累, 真眼点藻属中的魏氏真眼点藻(E. vischeri)在8株藻中获得最高油脂含量, 达到59.24%。进一步对脂肪酸分析发现, 8株微藻总脂肪酸含量为细胞干重的50%—58%, 主要脂肪酸组成为豆蔻酸(C14鲶0)、棕榈酸(C16鲶0)、棕榈油酸(C16鲶1)、油酸(C18鲶1)和二十碳五烯酸(C20鲶5), 其中拟微绿球藻(N. oculata)细胞中棕榈酸的含量最高占总脂肪酸50%左右; 其他7株微藻细胞中棕榈油酸的含量较高, 其占总脂肪酸含量范围在40%—60%。8株微藻均表现出较高的生物量与油脂积累能力, 以尿素为氮源, 氮浓度为6 mmol时更有利于该类微藻生物量和油脂的积累。总体来说, 真眼点藻纲的微藻是一类极具潜力适合于微藻生物燃料生产的微藻, 而真眼点藻属藻株表现更为明显的优势。  相似文献   

13.
五种微绿球藻产油和产多不饱和脂肪酸的研究   总被引:1,自引:0,他引:1  
从5种微绿球藻中鉴别出4个高产油藻种和1个产油量很低的藻种。4种高产油微绿球藻在平台期油脂含量最高,占细胞干重的57%以上,其中三酰基甘油的含量占细胞干重的32.4%-45.2%。分析5种微绿球藻细胞的脂肪酸组成及4种高产油藻三酰基甘油中的脂肪酸组成,发现在高产油藻中,总的饱和脂肪酸和单不饱和脂肪酸的比例达到95%以上,多不饱和脂肪酸在5%以下,而在产油量很低的微绿球藻中多不饱和脂肪酸比例达45%以上。高产油微绿球藻三酰基甘油的多不饱和脂肪酸含量在4%以下,是生物柴油的优质原料,而产油量低的微绿球藻可用于提取C20:5脂肪酸(EPA)。    相似文献   

14.
微藻生物柴油技术的研究现状及展望   总被引:7,自引:1,他引:7  
微藻生物柴油是一种优良的可再生新能源,对于解决人类面临的能源短缺和全球变暖两大危机具有潜在的重大战略意义。综述了微藻生物柴油的技术流程、油脂含量较高的微藻藻种、微藻生物柴油的最大技术瓶颈、提高微藻油脂总产量的方法、微藻的大规模培养、微藻的采收和微藻生物柴油的制取等方面的研究现状,并对微藻生物柴油未来的核心研究方向提出了初步见解。  相似文献   

15.
微藻因生长迅速、光合作用效率高、分布范围广和油脂积累能力强等优势,已被认为是生产生物柴油的理想原料。诱变育种可改善野生型微藻生长缓慢、油脂含量低和环境适应能力弱等缺陷,提高了以微藻生产生物柴油的可行性。概述了物理、化学和基因工程三类诱变育种方法的研究现状,介绍了低场核磁共振和荧光激活细胞分选两种富油脂微藻筛选技术以及一种测定诱变藻株致死率的方法,讨论了三种诱变方法的应用前景,供相关研究人员参考。  相似文献   

16.
微藻细胞富含油脂、淀粉及其他高值代谢物,可用于食品、饲料、化学品和能源的生产。但在规模化培养中,微藻的高生长速率和高产物含量难以兼得,制约了其商业化应用。通过微藻的两阶段培养技术可以将生长和产物积累的时期分离,从而同时获得较高的微藻生物量和产物含量。该技术具有产品得率高、节能减排、适用范围广的优点,是推进微藻商业化的关键之一。本综述总结了现有微藻两阶段培养技术的优势和产品类型,解析了目前微藻两阶段培养技术的限制因素及发展前景,并提出微藻两阶段培养中存在阶段转换时间尚不明确、中间采收步骤成本高这两个限制该技术应用的关键瓶颈,从而为未来微藻两阶段培养技术规模化生产方案的科学决策与实施提供参考。  相似文献   

17.
基于微藻能源的第三代生物燃料,是一种通过微藻的光合作用积累生物量和油脂而获得的新型清洁生物能源。微藻是由阳光驱动的细胞工厂,它可以在常温常压下实现对CO2的高效吸收,通过微藻细胞高效的光合作用,将光能转化为脂肪或淀粉等碳水化合物的化学能,并释放出O2。将就生物能源、微藻生物能源及其在CO2减排中的应用和产业化进程进行总结和展望。  相似文献   

18.
溶剂法提取微藻油脂不同于植物种子油脂,它是全细胞的提取物,成分非常复杂,存在与甘油三酯(TAG)在色谱保留性质上相近的低极性物质,干扰TAG的测定。建立了基于二醇基柱及蒸发光检测器、正己烷-异丙醇为流动相的快速测定微藻中性脂的方法。对该方法进行评价,结果显示,测定的TAG、游离脂肪酸(FFA)、甘油二酯(DAG)、甘油一酯(MAG)线性相关系数均大于0.99,方法重复性好。湛江等鞭金藻及微拟球藻样品中TAG加标回收率为96.2%~113.1%,相对标准偏差(RSD)为0.46%~4.8%。将本方法测定湛江等鞭金藻及微拟球藻中TAG的含量并与传统的固相萃取(SPE)及常用的TLC/GC测定TAG的方法进行比较,相比上述两种方法,该方法前处理简单、灵敏度高,可快速准确测定微藻中TAG的含量。  相似文献   

19.
朱志浩  刘辉  邵留  叶建锋 《微生物学报》2022,62(4):1322-1333
利用废水培养微藻能够降低微藻的培养成本,同时削减污染.微藻的蛋白质、多糖和油脂等组分是影响其后续资源化利用的重要因素.本文重点综述了以废水为基质培养微藻的研究进展,从组分积累的角度,分析了微藻种类的选择依据,探讨了影响微藻生长的因素和提高产量的方法,并对藻体中组分的合成机制进行了讨论,提出未来废水培养微藻技术面临的挑战...  相似文献   

20.
Cryptococcus curvatus O3酵母菌培养及产油脂特性   总被引:2,自引:0,他引:2  
生物柴油的发展, 导致全球油脂供求紧张。微生物油脂的甘三酯组成与植物油类似, 发展微生物油脂可部分缓解植物油脂供应压力。本文研究了Cryptococcus curvatus O3酵母利用葡萄糖为碳源生长和积累油脂的特性。Cryptococcus curvatus O3酵母在培养过程中能适应间歇式碳源流加方式达到高密度培养的目的, 但在相同培养条件下, 不同氮源能影响其代谢过程中糖到油脂转化的脂肪系数。Cryptococcus curvatus O3酵母利用葡萄糖作为碳源在30°C下摇瓶发酵, 菌体生物量为51.8 g/L, 油脂含量达65.1%。脂肪酸组成分析结果表明, 菌油富含饱和及低度不饱和长链脂肪酸, 其中饱和脂肪酸之和占总脂肪酸组成的64%左右, 其脂肪酸组成类似于可可脂, 这些结果对于利用产油微生物转化生物质获取如类可可脂等具有高附加值油脂的研究具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号