首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seasonal composition of phytoplankton communities was investigatedin a Mediterranean brackish area (Varano lagoon). Twelve stationswere sampled monthly from March 1997 to February 1998. Numbersof prokaryotic and eukaryotic picophytoplankton cells were estimatedby epifluorescence microscopy, while larger phytoplankton (nanoand micro fractions) were enumerated by the Utermöhl settlingtechnique. Picophytoplankton densities ranged from 0.7 to 448.6cells x 106 l–1. Nano- and microphytoplankton abundancesvaried between 0.2 and 7.9 cells x 106 l–1. The picoplanktonfraction was represented mainly by cyanobacteria and the Utermöhlfraction by nano-sized phytoflagellates (56.2%) and diatoms(20.1%). The phytoflagellates had a greater abundance over timewhile diatoms reached the highest densities in summer and fall.In Varano lagoon, phytoplankton development is related to ‘nitrogen-poor'waters and to phosphorus availability. Suspension-feeding bivalves(Mytilus galloprovincialis) are sufficiently abundant to filtera volume equivalent to the volume of Varano lagoon at leastonce daily. These observations suggest that grazing exerts animportant influence on phytoplankton dynamics, mainly on themicro fraction, and that diatoms seem to play an important rolein the food web dynamics of this coastal fishery.  相似文献   

2.
Microphytoplankton and zooplankton composition and distributionin the vicinity of the Prince Edward Islands and at the Sub-antarcticFront (SAF) were investigated in late austral summer (April/May)1996. Samples were collected for analysis of chlorophyll a concentration(Chi a), microphytoplankton and zooplankton abundance. Generally,the highest Chl a concentrations (up to 2.0 µg l–1)and zooplankton densities (up to 192 ind. m–3) were recordedat stations within the inter-island area while the lowest values(<0.4 µg l–1) were observed at stations upstreamof the islands. High Chl a and zooplankton biomass values werealso associated with the SAF. Microphytoplankton were dominatedby chain-forming species of the genera Chaetoceros (mainly C.neglectus),Fragilariopsis spp. and the large diatom Dactyliosolen antarcticus.The zooplankton assemblages were always dominated by mesozooplanktonwhich at times contributed up to 98% of total zooplankton abundanceand up to 95% of total biomass. Among mesozooplankton, copepods,mainly Clausocalanus brevipes and Metridia lucens numericallydominated. Among the macrozooplankton euphausiids, mainly Euphausiavallentini, E.longirostis and Stylocheiron maximum, and chaetognaths(Sagitta gazellae) accounted for the bulk of abundance and biomass.Cluster and ordination analysis did not identify any distinctbiogeographic regions among either the microphytoplankton orzooplankton.  相似文献   

3.
The toxic dinoflagellate Alexandrium tamarense and other dinoflagellatespecies were studied, along with water temperature and nutrientconcentrations, from September 1995 to December 1998 in theGolfo Nuevo, Chubut, Argentina. Nutrient concentrations werelow, showing a peak of high concentration in winter and a phaseof depletion in late spring and summer. Dinoflagellates tendedto be abundant during spring and summer, when Prorocentrum micanswas the most important species. Other dinoflagellates were Pyrophacushorologium and Dinophysis acuminata. Ceratium tripos, C. fususand C. horridum were present during the autumn, and a C. tripospeak up to 5.9 x 103 cell l–1 was observed in May 1997.Alexandrium tamarense showed strong interannual variation, thehighest concentration being found in spring (September–October)1995, with densities up to 15 x 103 cells l–1. The secondA.tamarense peak was observed during October–November1998 with maximal densities up to 5 x 103 cells l–1. Moderatelyhigh A. tamarense cyst densities, up to 300 cysts cm–3of sediment, were found in the deep zone of the Golfo Nuevobasin. Among meteorolog-ical variables, increased late winterrain and higher solar radiation during spring may have influencedA. tamarense blooms.  相似文献   

4.
Seasonal population dynamics and the vertical distribution ofciliates were studied in relation to the particular food resourcesoccurring in a humic and moderately acidic lake (Lake Vassivière).The abundance (1.4 x 103–20.4 x 103 cells l–1 mean= 4.8 x 103 cells l–1) and biomass (0.5–34.6 µgC l–1, mean = 6.0 µg C l–1) of ciliated protozoawere low and close to values reported for oligotrophic environments.The species composition of the population varied greatly withdepth. Whereas large-sized species of oligotrichs, some of whichwere mixotrophic, dominated at the surface, haptorids were bestrepresented in deep waters. The spatial distribution of thevarious groups of ciliates was largely determined by light andthe vertical distribution of microbial food resources (detritus,bacteria, algae) within the water column of this brown-coloredlake.  相似文献   

5.
Seasonal and vertical fluctuations of zooplankton species composition,biomass, and production were monitored by weekly sampling duringa two year period in one eutrophic pond in Central Finland.The study was one part of a more comprehensive study programto investigate the effects of warm water effluents from onesmall thermal power plant (35 MW) on the pond ecosystem. Becauseof the circulation of the pond water through the pumps in thepower plant the crustacean populations were very sparse in planktonduring the seasons the power plant was in operation (late Augustto May). During that time rotifers were dominant and some speciesreached very high densities (e.g., Keratella cochlearis s.l.ca. 15 000 ind. l–1 in sping). In summer months Asplanchnapriodonta, Ceriodaphnia quadrangula, Bosmina longirostris, Mesocyclopsleuckarti and Thermocyclops oithonoides were dominant. A totalof 96 planktonic and meroplanktonic taxa were identified (26ciliates, 46 rotifers, 21 cladocerans and 3 copepods). The dryweight biomass of total zooplankton was 10 mg m–3 in wintermonths, 10–100 mg m–3 in spring and 300–1000mg m–3 in summer. The total yearly production of zooplanktonwas 8552 mg dry wt m–3 a–1 in 1979 and 8440 mg drywt m–3 a–1 in 1980, from which the proportion ofrotifers was 33–39%, cladocerans 52–58% and copepods8.6 –9.4%. The winter production was 0.2–0.5% ofthe total yearly production, that of spring and autumn togetherwas 8.1–10.4% and the remainder (89–91%) was summerproduction.  相似文献   

6.
The plankton of a large oligotrophic freshwater Antarctic lake   总被引:4,自引:0,他引:4  
The planktonic community of Crooked Lake, a large freshwaterlake in the Vestfold Hills, Antarctica was investigated duringthe austral summer in 1990. Very low levels of chlorophyll aranging between mean values of 0 29 and 1.8 µl1were recorded. The phytoplankton was largely made up of colouredflagellates, including single species of Chlamydomonas, Ochromonasand Pendimum, which occurred in low concentrations (23.8x 102–47.3x102 l1). Heterotrophic colourless flagellates, includingParaphysomonas vestita, were also relatively sparse (2.1x 102–21.3x102l1). Ciliated protozoans were particularly poorly represented.Only three species occurred reaching densities of 10011,and among them the mixotrophic species Strombidium vinde wasthe most common. A single species of heliozoan Actinosphaeriumand relatively large numbers of naked amoebae were the sarcodinerepresentatives The protistan community and the bacteria wereconcentrated into microbial consortia associated with floesof paniculate organic matter probably derived from the benthicalgal mat. Of the two microcrustacean zooplankters recordedfrom the lake only Daphniopsis studeri was found breeding inthe plankton in very low numbers. The behavioural and physiologicaladaptations of the organisms inhabiting this extremely oligotrophicenvironment are discussed.  相似文献   

7.
The seasonal distribution of plankton in a Mediterranean hypersalinecoastal lagoon has been studied through a dataset, comprisingthe taxonomic composition and the size–abundance distributionof both phyto- and zooplankton, measured by image analysis techniquesduring a one-year time series of weekly samplings. The studiedorganisms ranged from small nanoplanktonic heterotrophic flagellates(2 µm diameter) to fish larvae (>2 µm). The phytoplanktonannual succession was characterized by a winter period dominatedby Rhodomonas spp. and Cryptomonas spp. with Cyclotella spp.as the main diatom represented, a spring phase where diatoms(mainly Cyclotella) were the dominant group with some monospecificblooms of other diatoms (mainly of Chaetoceros sp.), a summerphase characterized by diatoms with blooms of Niztschia closterium,and a post-summer phase where dinoflagellates increased withpeaks of Ceratium furca. High densities of the microbial foodweb elements, flagellates and ciliates, indicate the importanceof the microbial loop in the ecosystem. Meroplankton contributedwidely to the seasonal character of the zooplankton distribution.Copepods, represented by Oithona nana, Centropages ponticusand Acartia spp. (mainly latisetosa), remained relatively constantthroughout the year, exhibiting a lower density in the warmerwater period (July–September). At the end of the samplingperiod, a massive proliferation of copepods (>1000 ind l–1), mainly due to O. nana, took place. The autotrophsto heterotrophs biovolume ratio (A:H) remained lower than 1throughout the year except when, occasionally, large phytoplanktoncells bloomed. Persistent very low values of A:H suggest thatadditional sources of energy, such as the microbial loop ordetrital pathways, would be needed to sustain the high heterotrophicbiovolume found in the lagoon.  相似文献   

8.
The occurrence and abundance of the toxic, chain-forming dinoflagellateGymnodinium catenatum in a Tyrrhenian coastal lagoon, the Fusaro,during an annual sampling cycle are reported. Peak abundanceswere observed from late spring until early autumn Although veryhigh cell numbers were recorded, up to 1 5 x 106 cells l–1,no monospecific bloom of this species occurred. The first observationof G.catenatum in the Mediterranean occurred in the Fusaro andthe appearance of this species in a traditional shellfish farmingarea, where no shellfish intoxication has been reported to date,is discussed in relation to human interventions in the basin.In particular, intensive dredging in recent years with resuspensionof bottom sediments may have seeded the water body with cysts.A Gymnodinium n d species, illustrated using scanning electronmicroscopy, caused a monospecific bloom in concomitance withmaximum abundances of G.catenatum, apparently outcompeting thislatter species  相似文献   

9.
The dynamics of bacterioplankton and protozooplankton in twomaritime Antarctic lakes (Heywood Lake and Sombre Lake, SignyIsland, South Orkneys) were studied during the phase of icebreak-out (December and early January 1994/95). The lakes aresuffering animal-induced (fur seal) eutrophication, though HeywoodLake is most severely affected. Both lakes had morphologicallydiverse bacterial communities which increased during the studyperiod, reaching maxima of 80 x 108 l–1 in Heywood Lakeand 31.8 x 108 l–1 in Sombre Lake. Heterotrophic nanoflagellates(HNAN) reached a peak in late December with maxima of 40.6 x108 l–1 in Sombre Lake and 174 x 105 l–1 in HeywoodLake. Phototrophic nanoflagellates (PNAN) peaked in late Decemberafter ice loss in Heywood Lake (63 x 105 l–1), which coincidedwith a peak in a bloom of Chroomonas acuta which reached abundancesof 1.0 x 108 l–1. In Sombre Lake, ice persisted for alonger period and here PNAN reached their highest density atthe end of the study period (around 70.0 x 105 l–1). Ciliateabundance reached high levels in Heywood Lake (>60001–1),while in Sombre Lake maximum abundance was 568l–1. Protozooplanktondiversity was greater in the less-enriched Sombre Lake. Grazingrates of ciliates averaged 70.6 bacteria indiv.–1 h–1in Heywood Lake and 119.3 bacteria indiv.–1 h–1in Sombre Lake. The difference was a reflection of the differenttaxonomic make-up of the community in the lakes. HNAN grazingrates varied between 0.51 and 0.83 bacteria indiv.–1 h–1in Sombre and Heywood Lakes, respectively. Specific growth rates(r) h–1 in Sombre Lake were 0.028 for ciliates and 0.013for HNAN, and in Heywood Lake 0.010 for ciliates and HNAN 0.012.These growth rates result in doubling times ranging between38 and 69 h for ciliates and around 55 h for HNAN.HNAN grazingon bacteria was curtailed in Heywood Lake in early January asa result of predation by microcrustacean larvae feeding on theplankton. Thus, for a short phase top-down control was apparentin the dynamics of Heywood Lake, a feature uncommon in Antarcticlake ecosystems. The impact of natural eutrophication on thesesystems is discussed in relation to other unaffected Antarcticlakes.  相似文献   

10.
The phytoplankton and ice algal assemblages in the SiberianLaptev Sea during the autumnal freeze-up period of 1995 aredescribed. The spatial distribution of algal taxa (diatoms,dinoflagellates, chrysophytes, chlorophytes) in the newly formedice and waters at the surface and at 5 m depth differed considerablybetween regions. This was also true for algal biomass measuredby in situ fluorescence, chlorophyll (Chl) a and taxon-specificcarbon content. Highest in situ fluorescence and Chl a concentrations(ranging from 0.1 to 3.2 µg l–1) occurred in surfacewaters with maxima in Buor Khaya Bay east of Lena Delta. Thealgal standing stock on the shelf consisted mainly of diatoms,dinoflagellates, chrysophytes and chlorophytes with a totalabundance (excluding unidentified flagellates <10 µm)in surface waters of 351–33 660 cells l–1. Highestalgal abundance occurred close to the Lena Delta. Phytoplanktonbiomass (phytoplankton carbon; PPC) ranged from 0.1 to 5.3 µgC l–1 in surface waters and from 0.3 to 2.1 µg Cl–1 at 5 m depth, and followed the distribution patternof abundances. However, the distribution of Chl a differed considerablyfrom the distribution pattern shown by PPC. The algal assemblagein the sea ice, which could not be quantified due to high sedimentload, was dominated by diatom species, accompanied by dinoflagellates.Thus, already during the early stage of autumnal freeze-up,incorporation processes, selective enrichment and subsequentgrowth lead to differences between surface water and sea icealgal assemblages.  相似文献   

11.
The seasonal development of bacteria was studied in the hypertrophiccoastal lagoon Ciénaga Grande de Santa Marta (Caribbeancoast of Colombia). This large but only 1.5 m deep lagoon issubject to strong seasonal variations of salinity from almostfully marine (April/May) to brackish conditions in October/November.Chlorophyll ranged from 6 to 182 µg L–1, and grossprimary production amounted to 1690 g C m–2 per year.Total bacterial number (TBN) ranged from 6.5 to 90.5 x 109 cellsL–1 and bacterial biomass (BBM) from 77 to 1542 µgC L–1, which are among the highest ever reported for naturalcoastal waters. Neither TBN nor BBM varied significantly withsalinity, phytoplankton or seston concentrations. Only the bacterialmean cell volume showed a significant relation to salinity,being highest (0.066 µm3) during the period of increasingand lowest (0.032 µm3) during decreasing salinity. Bacterialprotein accounted for 24% (19–26%) and phytoplankton proteinfor 57% (53–71%) of total seston protein. The ratio (annualmean) of bacterial carbon to phytoplankton carbon was 0.44 (range0.04–1.43). At low phytoplankton abundance [chlorophylla (Chl a) < 25 µg L–1], bacterial carbon wasalmost equal to phytoplankton biomass (i.e. the mean ratio was1.04). In contrast, at Chl a > 100 µg L–1, BBMwas low compared to phytoplankton biomass (the mean ratio was0.16). In general, BBM varied less than phytoplankton biomass.Most probably, the missing correlation between bacterial andphytoplankton variables was due to (i) organic material partlyderived from allochthonous sources serving as food resourcefor bacteria and (ii) a strong resuspension of bacteria fromthe sediment caused by frequent wind-induced mixing of the veryshallow lagoon.  相似文献   

12.
Physical–chemical variables, phytoplankton biomass, speciescomposition and photosynthesis–irradiance (P-I) parameterswere analysed during 1 year in the Santo André Lagoon,SouthwestPortugal – a land-locked coastal ecosystem withtemporary connections with the sea. When the lagoon stayed closedthe observed phytoplankton blooms were mainly caused by Prorocentrumminimum, a potentially toxic dinoflagellate. It was dominantduring most of the year but the seawater inflow to the lagoontriggered a decrease in phytoplankton biomass and an abruptshift in species composition. The maximum photosynthetic rate(Pmax) ranged from 2.0 to 22.5 mg C (mg chlorophyll a)–1h–1 and the light saturation index (Ik), ranged from 5.2to 335.0 µE m–2 s–1, with winter minima andsummer maxima. Pmax and Ik were both positively correlated totemperature. Abundance ofP. minimum was associated with highnitrate concentrations whereas diatoms appear when ammonium,salinity and wind velocity are high. A mathematical model todescribe photosynthetic rate as a function of irradiance andtemperature [P (I, t)] was applied to the samples in which P.minimum was the dominant species  相似文献   

13.
JARVIS  S. C. 《Annals of botany》1981,48(2):147-158
The effect of changes in nitrate-nitrogen supply on the absorptionand distribution of copper was examined in grasses grown inflowing solution culture with a maintained concentration ofcopper. Absorption by roots (µg Cu g–1 dry root)decreased markedly when nitrogen had been depleted or was maintainedat 0.1 mg l–1 N, but there was an immediate increase whennitrogen was maintained at 1.0 or 10.0 mg l–1. There werealso large increases in the concentration of copper in the shootsof plants grown with 1.0 and 10.0 mg 1–1 N. The rootsof plants grown with 0.1 or 1.0 mg 1–1 N retained similarproportions of uptake, but a lower proportion was retained whenthe plants were grown with 10.0 mg 1–1. Although a lowerproportion of the copper was associated with cell walls in theplants grown at 10.0 mg 1–1 N this was the result of alower content of cell walls rather than an effect on copperitself. In a longer-term experiment in conventional solutionculture with a range of nitrogen concentration, the concentrationof copper in shoots was largely determined by shoot growth. Dactylis glomerata, Festuca arundinacea, Lolium perenne, cell walls, copper absorption, copper distribution, flowing solution culture, nitrate-nitrogen  相似文献   

14.
Results are presented from size fractionated chlorophyll a (Chla) and primary production studies along a transect between Antarcticaand southern Africa during the second South African AntarcticMarine Ecosystem Study (SAAMES II), conducted in late australsummer (January to February) 1993. Total integrated Chl a alongthe transect was highest in the vicinity of the Marginal IceZone (MIZ) and Antarctic Polar Front (APF). At these stations,integrated Chl a biomass was always >25 mg Chl a m–2and was dominated by microphytoplankton. Although nominal increasesinChl a biomass were also associated with the Subantarctic Front(SAF) and Subtropical Convergence (STC), total Chl a biomassin these regions was dominated by nanophytoplankton. Withinthe inter-frontal regions, total integrated Chl a biomass waslower, generally <25 mg Chl a m–2, and was always dominatedby nanophytoplankton. An exception was found in the AgulhasReturn Current (ARC) where picophytoplankton dominated. Totaldaily integrated production along the transect ranged between60 and 436 mg C m–2 day–1. Elevated production rateswere recorded at stations occupied in the vicinity of the MIZand at all the major oceanic frontal systems. The contributionsof the various size fractions to total daily production displayedthe same spatial pattern as integrated biomass, with microphytoplanktonbeing the most important contributor in areas characterizedby elevated phytoplankton biomass. Outside these regions, nanophytoplanktondominated the total phytoplankton production. Again, an exceptionwas found in the ARC north of the STC where picophytoplanktondominated total production. There, the lowest production alongthe entire transect was recorded, with total daily integratedproduction always <90 mg C m–2 day–1. The increasedproduction rates recorded in the MIZ appeared to result fromincreased water column stability as indicated by a shallow mixed-layerdepth. Within the inter-frontal regions, the existence of adeep mixed layer appeared to limit phytoplankton production.Low silicate concentrations in the waters north of the APF mayalso have limited the growth of large microphytoplankton.  相似文献   

15.
The goals of this study were to determine rates of ingestionand fecal pellet release, and their variability, for individualplanktonic copepods over extended periods of time (>20 min).Ingestions and rejections of individual cells of the diatomThalassiosira eccentrica by adult females of the calanoid Paracalanusaculeatus were directly quantified by observing individual copepodscontinuously at cell concentrations ranging from 0.1 toli mm3l–1.Average ingestion rates increased with increasing food concentration,but were not significantly different between 0.3 and 1.0 mm3l–1(9.8 and 32.7 µg Cl–1) of T.eccentrica. Rates ofcell rejections were low and similar at 0.1 and 0.3, but weresignificantly higher at 1.0 mm3 l–1. The coefficientsof variation for average ingestion rates of individual copepodshardly differed between food concentrations, ranging from 17to 22%, and were close to those for average fecal pellet releaseintervals which ranged from 15 to 21%. A comparison betweenindividuals at each food concentration found no significantdifferences at 1.0; at 0.1 and 0.3 mm3l–1, respectively,ingestion rates of four out of five females did not differ significantlyfrom each other. Average intervals between fecal pellet releaseswere similar at 0.3 and 1.0 mm3l–1 of T.eccentrica, butsignificantly longer at 0.1 mm3 l–1. Fecal pellet releaseintervals between individuals were significantly different ateach food concentration; these significant differences wereattributed to rather narrow ranges of pellet release intervalsof each individual female. Potential sources/causes of variabilityin the sizes and rates of copepods in the ocean are evaluated. 3Present address: Great Lakes Environmental Research Laboratory,2205 Commonwealth Boulevard, Ann Arbor, Ml 48105, USA  相似文献   

16.
The distribution of physical and chemical parameters and theirimpact on the biomass and abundance of phytoplankton in theWestern Pacific Ocean were compared in two opposing situations:the El Niño Southern Oscillation (ENSO) event of 1987and the non-ENSO period of 1988. During El Niño conditions(September 1987), maximum cell abundance was recorded at 10°Sat the boundary between the South Equatorial Current (SEC) andthe South Equatorial Countercurrent (SECC). In September 1988,after the return of non-ENSO conditions, a well-establishedequatorial upwelling produced an increase in the surface layernutrient supply over 7° of latitude. This in turn causedan increase in phytoplankton populations in the upper layer,with chlorophyll concentrations >0.2 mg m–3 and cyanobacteriaand microalgae populations >8.0x106 l–1 and >1.2x106l–1 respectively. Integrated over 120 m, the cyanobacteriaand microalgae populations were respectively 4.7 and 3.2 timeslarger than the year before. On the other hand, transient nutrientinputs such as those observed at 10°S in September 1987caused a large increase in cyanobacteria populations (4.4 times),compared with those in neighbouring zones, and a somewhat smallerincrease in microalgae populations (1.3 times). Cyanobacteriapopulations were much larger than those of microalgae in the80–100 m upper layer, whereas the latter were more numerousat that depth and below the chorophyll maximum. Population variationsin cyanobacteria were accompanied by changes in form, size andfluorescence of the cells. The analysis of the 52 profiles ofdepth distribution of cyanobacteria and microalgae shows howthe community structure is related to the depth and gradientof the nitracline.  相似文献   

17.
Eighty-seven freshwater plankton samples collected by meansof two different nets, a submersible centrifugal pump and a5.81 water bottle were compared with respect to their abilityto catch the rotifer Keratella cochlearis. Sample size, illumination(day/night), the presence of bridles ahead of the net mouths(versus unbridled nets), and different mouth diameters (0.2and 0.5 m) did not affect abundance estimates. Slight differenceswere found between the yields of pushed nets versus towed nets;these are probably due to uneven distribution of the animalsin the 0–3 m layer. Both pump and bottle volumes stronglyaffected abundance estimates (K. cochlearisl–1 in pumpsamples=164.84 volume of water filtered–0 817; K. cochlearisl–1in bottle samples=84.74+2336.6 volume of water filtered–1)Net sample results were always considerably higher (4.6–12.3times) than pump and bottle estimates; these differences aremost probably due to evading reactions of the rotifer.  相似文献   

18.
Shoot bud formation was induced in the stem callus of Sisymbriumirio L., a Cruciferous plant. The callus was established onMurashige and Skoog medium with IAA (1?0 mg l–1) and kinetin(0?5 mg l–1). The effect of three purines (kinetin, 6-benzylaminopurine,and 6-methylaminopurine) incorporated singly along with IAAin MS medium was investigated. It was found that kinetin orMAP (3–5 mg l–1) along with IAA (0?5 mg l–1)were the most effective in inducing shoot bud formation. Adeninesulphate (10 mg l–1) with kinetin (1?0 mg l–1) alsoinduced bud differentiation. The morphogenetic potential of the callus to differentiate shootbuds was seemingly lost in 2 year old callus cultures. However,on successively subculturing on a regeneration medium shootbuds differentiated and the number of buds formed improved onfurther subculture. Two types of meristematic outgrowths were recognized: (i) arisingfrom superficial cells and (ii) arising from deep-seated cellsin the vicinity of tracheidal elements. However, both typesformed meristematic nodules on the surface of which shoot budsdifferentiated. Some embryoids were also recognized arisingsuperficially.  相似文献   

19.
We analysed early spring protozooplankton peaks following winterstratification in two different basins (northeast, NE; southwest,SW) of an artificially-divided bog lake Große Fuchskuhle(Brandenburg,Germany). The maximum ciliate biomass and numbers (660 and 990µg l–1 of organic carbon, and 290 and 260 cellsml–1 in NE and SW, respectively) were reached in the surfacelayer during the ice melting and then continuously decreased.The surface layers were numerically dominated by species ofthe genus Urotricha, while in the ciliate biomass during thefirst part of the study, a mixotrophic oligotrich, Pelagostrombidiummirabile prevailed (Corg up to 940 µg l–1). We observeda conspicuous ciliate peak that could not be related to thefeeding activity of the dominant ciliate species upon picoplankton.Seemingly, the peak was related to the specific conditions resultingfrom the ice melting where these ciliates could be concentrated.Additionally, the mixotrophy of oligo-trichous species allowedthem to penetrate below the oxycline, although feeding on nanoplanktonsuch as flagellates was also very likely. Our direct measurementsof uptake rates of bacteria showed that the abundant strombidiidswere not nutritionally dependent on bacterivory. However, theciliate uptake rate (up to 670 bacteria ciliate–1 h–1)contributed significantly to the overall bacteria mortalityrate. The maximum (community average) cell-specific ciliatefeeding rate of over 200 bacteria ciliates–1 h–1was reached, along with an increasing contribution of scuticociliates,paralleled by a drop in large oligotrichs.  相似文献   

20.
The dynamics of the phytoplankton community were investigatedin a marine coastal lagoon (Thau, NW Mediterranean) from February1999 to January 2000. Dilution experiments, chlorophyll a (Chla) size-fractionation and primary production measurements wereconducted monthly. Maximum growth and microzooplankton grazingrates were estimated from Chl a biomass fractions to separatepico- from nano- and microphytoplankton and by flow cytometryto distinguish between picoeukaryotes and picocyanobacteria.In spring, the phytoplankton community was dominated by Chaetocerossp. and Skeletonema costatum, which represented most of biomass(B) and primary production (P). Nano- and microphytoplanktongrowth was controlled by nutrient availability and exceededlosses due to microzooplankton grazing (g). Picoeukaryote andcyanobacteria growth was positively correlated with water temperatureand/or irradiance, reaching maximum values in the summer (2.38and 1.44 day–1 for picoeukaryotes and cyanobacteria, respectively).Picophytoplankton accounted for 57% of the biomass-specificprimary productivity (P/B). Picophytoplankton was strongly controlledby protist grazers (g = 0.09–1.66 day–1 for picoeukaryotes,g = 0.25–1.17 day–1 for cyanobacteria), and microzooplanktonconsumption removed 71% of the daily picoplanktonic growth.Picoeukaryotes, which numerically dominate the picoplanktoncommunity, are an important source of organic carbon for theprotistan community and contribute to the carbon flow to highertrophic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号