首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have developed a novel assembly assay to examine structural changes in the ligand binding domain (LBD) of the thyroid hormone receptor (TR). Fragments including the first helix of the TR LBD interact only weakly with the remainder of the LBD in the absence of hormone, but this interaction is strongly enhanced by the addition of either hormone or the corepressor NCoR. Since neither the ligand nor the corepressor shows direct interaction with this helix, we propose that both exert their effects by stabilizing the overall structure of the LBD. Current models of activation of nuclear hormone receptors focus on a ligand-induced allosteric shift in the position of the C-terminal helix 12 that generates the coactivator binding site. Our results suggest that ligand binding also has more global effects that dynamically alter the structure of the receptor LBD.  相似文献   

2.
3.
4.
5.
Steroid receptor RNA activator (SRA), the only known RNA coactivator, augments transactivation by nuclear receptors (NRs). We identified SLIRP (SRA stem-loop interacting RNA binding protein) binding to a functional substructure of SRA, STR7. SLIRP is expressed in normal and tumor tissues, contains an RNA recognition motif (RRM), represses NR transactivation in a SRA- and RRM-dependent manner, augments the effect of Tamoxifen, and modulates association of SRC-1 with SRA. SHARP, a RRM-containing corepressor, also binds STR7, augmenting repression with SLIRP. SLIRP colocalizes with SKIP (Chr14q24.3), another NR coregulator, and reduces SKIP-potentiated NR signaling. SLIRP is recruited to endogenous promoters (pS2 and metallothionein), the latter in a SRA-dependent manner, while NCoR promoter recruitment is dependent on SLIRP. The majority of the endogenous SLIRP resides in the mitochondria. Our data demonstrate that SLIRP modulates NR transactivation, suggest it may regulate mitochondrial function, and provide mechanistic insight into interactions between SRA, SLIRP, SRC-1, and NCoR.  相似文献   

6.
7.
This paper reports the identification of a Rho family nucleotide exchange factor termed mNET1 as a candidate-interacting partner for the first PDZ domain of MAGI-1, a membrane-associated guanylate kinase with inverted arrangement of protein-protein interacting modules. mNET1 was identified in a yeast two-hybrid screen and has a consensus tripeptide for PDZ domain binding at its extreme carboxy-terminus. In addition to this sequence, a cluster of basic residues located near the carboxy terminus is essential for the binding. The interaction of the first PDZ domain of MAGI-1with mNET1 was documented using a variety of biochemical methods.  相似文献   

8.
The thyroid hormone receptor (TR) recruits the nuclear corepressors, nuclear receptor corepressor (NCoR) and silencing mediator of retinoid and thyroid hormone receptors (SMRT), to target DNA elements in the absence of ligand. While the TR preferentially recruits NCoR, the mechanism remains unclear. The corepressors interact with the TR via interacting domains (IDs) present in their C terminus which contain a conserved motif termed a CoRNR box. Despite their similarity, the corepressor IDs allow for nuclear receptor specificity. Here we demonstrate that NCoR stabilizes the TR homodimer when bound to DNA by preventing its dissociation from thyroid hormone response elements. This suggests that NCoR acts to hold the repression complex in place on target elements. The TR homodimer recruits NCoR through two of its three IDs, one of which is not present in SMRT. This unique ID, N3, contains a CoRNR box but lacks the extended helical motif present in each of the other IDs. Instead, N3 contains an isoleucine just proximal to this motif. This isoleucine is also conserved in N2 but not in the corresponding S2 domain in SMRT. On thyroid hormone response elements and in mammalian cells this residue is critical in both N3 and N2 for high-affinity TR binding. In addition, this residue also controls specificity for the interactions of TR with NCoR. Together these data suggest that the specific recruitment of NCoR by the TR through a unique motif allows for stabilization of the repression complex on target elements.  相似文献   

9.
10.
11.
12.
Obesity and its associated complications, which can lead to the development of metabolic syndrome, are a worldwide major public health concern especially in developed countries where they have a very high prevalence. RIP140 is a nuclear coregulator with a pivotal role in controlling lipid and glucose metabolism. Genetically manipulated mice devoid of RIP140 are lean with increased oxygen consumption and are resistant to high-fat diet-induced obesity and hepatic steatosis with improved insulin sensitivity. Moreover, white adipocytes with targeted disruption of RIP140 express genes characteristic of brown fat including CIDEA and UCP1 while skeletal muscles show a shift in fibre type composition enriched in more oxidative fibres. Thus, RIP140 is a potential therapeutic target in metabolic disorders. In this article we will review the role of RIP140 in tissues relevant to the appearance and progression of the metabolic syndrome and discuss how the manipulation of RIP140 levels or activity might represent a therapeutic approach to combat obesity and associated metabolic disorders. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.  相似文献   

13.
TR surfaces and conformations required to bind nuclear receptor corepressor   总被引:9,自引:0,他引:9  
Residues of the TR that are critical for binding the nuclear receptor corepressor (N-CoR) were identified by testing more than 100 separate mutations of the full-length human TRbeta that scan the surface of its ligand binding domain. The primary inferred interaction surface overlaps the surface described for binding of p160 coactivators, but differs by extending to a novel site underneath which helix 12 rests in the liganded TR, rather than including residues of helix 12. Nonconservative mutations of this surface diminished binding similarly to three isolated N-CoR receptor interaction domains (RIDs), but conservative mutations affected binding variably, consistent with a role for this surface in RID selectivity. The commonality of this surface in binding N-CoR was confirmed for the RXRs and ERs. Deletion of helix 12 increased N-CoR binding by the TR modestly, and by the RXR and ER to a much greater extent, indicating a competition between this helix and the corepressor that regulates the extent of corepressor binding by nuclear receptors. When helix 12 was deleted, N-CoR binding by the ER was stimulated by tamoxifen, and binding by the TR was stimulated by Triac, indicating that helix 12 is not the only feature that regulates corepressor binding. Two additional mutationsensitive surfaces were found alongside helix 1, near the previously described CoR box, and above helix 11, nearby but separate from residues that help link receptor in dimers. Based on effects of selected mutations on T(3) and coactivator binding, and on results of combined mutations of the three sites on corepressor binding, we propose that the second and third surfaces stabilize TR unliganded conformation(s) required for efficient N-CoR binding. In transfection assays mutations of all three surfaces impaired the corepressor-mediated functions of unliganded TR repression or activation. These detailed mapping results suggest approaches for selective modulation of corepressor interaction that include the shape of the molecular binding surface, the competitive occupancy by helix 12, pharmacological stimulation, and specific conformational stabilization.  相似文献   

14.
15.
16.
17.
D S Colvard  E M Wilson 《Biochemistry》1984,23(15):3479-3486
The partially purified 4.5S [3H]dihydrotestosterone receptor binds to nuclear matrix isolated from rat Dunning prostate tumor with properties similar to those reported for androgen receptor binding in intact nuclei [Colvard, D.S., & Wilson, E.M. (1984) Biochemistry (preceding paper in this issue)] in that it requires Zn2+ and mercaptoethanol, is saturable, and is temperature dependent and of high affinity (Ka approximately 10(13) M-1). On a milligrams of DNA equivalent basis, the extent of matrix binding of androgen receptor (700 fmol of receptor bound/mg of matrix protein) is similar to that of intact nuclei, corresponding to approximately 1400 sites/nucleus. Association rate constants (ka) for 4.5S androgen receptor binding to matrix at 0, 15, and 25 degrees C are 2.7 X 10(5), 1.2 X 10(6), and 2.4 X 10(6) M-1 min-1, respectively, indicating an energy of activation of 15 kcal/mol. Up to 50% of matrix-bound receptor is extractable in buffer containing 3 mM ethylenediaminetetraacetic acid plus either 0.4 M KCl or 5 mM pyridoxal 5'-phosphate. A protein fraction designated 8S androgen receptor promoting factor that promotes conversion of the 4.5S androgen receptor to 8 S [Colvard, D. S., & Wilson, E. M. (1981) Endocrinology (Baltimore) 109, 496-504] has been further purified and found to inhibit the binding of the 4.5S androgen receptor to isolated nuclei and nuclear matrix in a concentration-dependent manner. The results support the hypothesis that the 8S steroid receptor is a complex of the activated 4.5S androgen receptor with a non-steroid binding protein that renders the receptor incapable of binding in nuclei.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号