首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

NMR-spectroscopy has certain unique advantages for recording unfolding transitions of proteins compared e.g. to optical methods. It enables per-residue monitoring and separate detection of the folded and unfolded state as well as possible equilibrium intermediates. This allows a detailed view on the state and cooperativity of folding of the protein of interest and the correct interpretation of subsequent experiments. Here we summarize in detail practical and theoretical aspects of such experiments. Certain pitfalls can be avoided, and meaningful simplification can be made during the analysis. Especially a good understanding of the NMR exchange regime and relaxation properties of the system of interest is beneficial. We show by a global analysis of signals of the folded and unfolded state of GB1 how accurate values of unfolding can be extracted and what limits different NMR detection and unfolding methods. E.g. commonly used exchangeable amides can lead to a systematic under determination of the thermodynamic protein stability. We give several perspectives of how to deal with more complex proteins and how the knowledge about protein stability at residue resolution helps to understand protein properties under crowding conditions, during phase separation and under high pressure.

  相似文献   

2.
The thermodynamics and kinetics of unfolding of 28 bacteriophage T4 lysozyme variants were compared by using urea gradient gel electrophoresis. The mutations studied cause a variety of sequence changes at different residues throughout the polypeptide chain and result in a wide range of thermodynamic stabilities. A striking relationship was observed between the thermodynamic and kinetic effects of the amino acid replacements: All the substitutions that destabilized the native protein by 2 kcal/mol or more also increased the rate of unfolding. The observed increases in unfolding rate corresponded to a decrease in the activation energy of unfolding (delta Gu) at least 35% as large as the decrease in thermodynamic stability (delta Gu). Thus, the destabilizing lesions bring the free energy of the native state closer to that of both the unfolded state and the transition state for folding and unfolding. Since a large fraction of the mutational destabilization is expressed between the transition state and the native conformation, the changes in folding energetics cannot be accounted for by effects on the unfolded state alone. The results also suggest that interactions throughout much of the folded structure are altered in the formation of the transition state during unfolding.  相似文献   

3.
We have investigated the thermal unfolding of bovine alpha-lactalbumin by means of circular dichroism spectroscopy in the far- and near-ultraviolet regions, and shown that the native alpha-lactalbumin undergoes heat and cold denaturation. The guanidine hydrochloride-induced unfolding of alpha-lactalbumin was also investigated by circular dichroism spectroscopy at various temperatures from 261 to 318 K. It is shown that the population of the molten globule state is strongly dependent on temperature and that the molten globule state does not accumulate during the guanidine hydrochloride-induced unfolding transition at 261 K. Our results indicate that the molten globule state of alpha-lactalbumin undergoes cold denaturation as the native alpha-lactalbumin does, and that the heat capacity change of unfolding from the molten globule to the unfolded state is positive and significant. The present results further support the idea that the molten globule and the unfolded states do not belong to the same thermodynamic state, and that the native, molten globule and unfolded states are sufficient for interpreting the guanidine hydrochloride-induced unfolding behavior of alpha-lactalbumin.  相似文献   

4.
The stability of bacteriorhodopsin (bR) has often been assessed using SDS unfolding assays that monitor the transition of folded bR (bR(f)) to unfolded (bR(u)). While many criteria suggest that the unfolding curves reflect thermodynamic stability, slow retinal (RET) hydrolysis during refolding makes it impossible to perform the most rigorous test for equilibrium, i.e., superimposable unfolding and refolding curves. Here we made a new equilibrium test by asking whether the refolding rate in the transition zone is faster than RET hydrolysis. We find that under conditions we have used previously, refolding is in fact slower than hydrolysis, strongly suggesting that equilibrium is not achieved. Instead, the apparent free energy values reported previously are dominated by unfolding rates. To assess how different the true equilibrium values are, we employed an alternative method by measuring the transition of bR(f) to unfolded bacterioopsin (bO(u)), the RET-free form of unfolded protein. The bR(f)-to-bO(u) transition is fully reversible, particular when we add excess RET. We compared the difference in unfolding free energies for 13 bR mutants measured by both assays. For 12 of the 13 mutants with a wide range of stabilities, the results are essentially the same within experimental error. The congruence of the results is fortuitous and suggests the energetic effects of most mutations may be focused on the folded state. The bR(f)-to-bO(u) reaction is inconvenient because many days are required to reach equilibrium, but it is the preferable measure of thermodynamic stability. This article is part of a Special Issue entitled: Protein Folding in Membranes.  相似文献   

5.
Aghera N  Earanna N  Udgaonkar JB 《Biochemistry》2011,50(13):2434-2444
To improve our understanding of the contributions of different stabilizing interactions to protein stability, including that of residual structure in the unfolded state, the small sweet protein monellin has been studied in both its two variant forms, the naturally occurring double-chain variant (dcMN) and the artificially created single-chain variant (scMN). Equilibrium guanidine hydrochloride-induced unfolding studies at pH 7 show that the standard free energy of unfolding, ΔG°(U), of dcMN to unfolded chains A and B and its dependence on guanidine hydrochloride (GdnHCl) concentration are both independent of protein concentration, while the midpoint of unfolding has an exponential dependence on protein concentration. Hence, the unfolding of dcMN like that of scMN can be described as two-state unfolding. The free energy of dissociation, ΔG°(d), of the two free chains, A and B, from dcMN, as measured by equilibrium binding studies, is significantly lower than ΔG°(U), apparently because of the presence of residual structure in free chain B. The value of ΔG°(U), at the standard concentration of 1 M, is found to be ~5.5 kcal mol(-1) higher for dcMN than for scMN in the range from pH 4 to 9, over which unfolding appears to be two-state. Hence, dcMN appears to be more stable than scMN. It seems that unfolded scMN is stabilized by residual structure that is absent in unfolded dcMN and/or that native scMN is destabilized by strain that is relieved in native dcMN. The value of ΔG°(U) for both protein variants decreases with an increase in pH from 4 to 9, apparently because of the thermodynamic coupling of unfolding to the protonation of a buried carboxylate side chain whose pK(a) shifts from 4.5 in the unfolded state to 9 in the native state. Finally, it is shown that although the thermodynamic stabilities of dcMN and scMN are very different, their kinetic stabilities with respect to unfolding in GdnHCl are very similar.  相似文献   

6.
Chaudhuri TK  Arai M  Terada TP  Ikura T  Kuwajima K 《Biochemistry》2000,39(50):15643-15651
The equilibrium and kinetics of the unfolding and refolding of authentic and recombinant human alpha-lactalbumin, the latter of which had an extra methionine residue at the N-terminus, were studied by circular dichroism spectroscopy, and the results were compared with the results for bovine and goat alpha-lactalbumins obtained in our previous studies. As observed in the bovine and goat proteins, the presence of the extra methionine residue in the recombinant protein remarkably destabilized the native state, and the destabilization was entirely ascribed to an increase in the rate of unfolding. The thermodynamic stability of the native state against the unfolded state was lower, and the thermodynamic stability of the molten globule state against the unfolded state was higher for the human protein than for the other alpha-lactalbumins previously studied. Thus, the population of the molten globule intermediate was higher during the equilibrium unfolding of human alpha-lactalbumin by guanidine hydrochloride. Unlike the molten globule states of the bovine and goat proteins, the human alpha-lactalbumin molten globule showed remarkably more intense circular dichroism ellipticity than the native state in the far-ultraviolet region below 225 nm. During refolding from the unfolded state, human alpha-lactalbumin thus exhibited overshoot kinetics, in which the alpha-helical peptide ellipticity exceeded the native value when the molten globule folding intermediate was formed in the burst phase. The subsequent folding involved reorganization of nonnative secondary structures. It should be noted that the rate constant of the major refolding phase was approximately the same among the three types of alpha-lactalbumin and that the rate constant of unfolding was accelerated 18-600 times in the human protein, and these results interpreted the lower thermodynamic stability of this protein.  相似文献   

7.
We have earlier reported that both guanidine hydrochloride (GdnHCl)-induced and heat-induced unfolding of seed coat soybean peroxidase (SBP), monitored by far UV CD, show single step transition. However, although GdnHCl-induced unfolding follows a two-state pathway, the heat-induced denaturation proceeds through intermediates as indicated by the very low cooperativity of transition. In the former case, analysis of the data based on the two-state model gives true thermodynamic parameters, whereas underestimated values are obtained in the latter case. Available complex equations also cannot be applied for the analysis of the thermal unfolding of SBP due to the absence of separate transitions for the intermediates. In the present study, we report a method to obtain true thermodynamic parameters from thermal transition curves of SBP using the two-state model. When SBP is subjected to thermal unfolding at high GdnHCl concentrations (5.8-6.9 M), cooperative behavior is observed, which allowed the analysis by the two-state model to determine their thermodynamic parameters. We then obtained the thermodynamic parameters in the absence of GdnHCl by extrapolating the graph of linear dependence of DeltaH(m) on T(m) to the T(m) corresponding to 0 m GdnHCl. Another key point for checking the validity of our method was the fact that the unfolded state of SBP generated by either heat or GdnHCl is the same by which we could cross-check our results with that obtained from GdnHCl unfolding. Having obtained the true thermodynamic parameters, we report a detailed thermodynamic study of SBP. Further we address the effect of heme in the thermal unfolding mechanism of SBP.  相似文献   

8.
Trehalose has been widely used to stabilize cellular structures such as membranes and proteins. The effect of trehalose on the stability of the enzyme cutinase was studied. Thermal unfolding of cutinase reveals that trehalose delays thermal unfolding, thus increasing the temperature at the midpoint of unfolding by 7.2 degrees . Despite this stabilizing effect, trehalose also favors pathways that lead to irreversible denaturation. Stopped-flow kinetics of cutinase folding and unfolding was measured and temperature was introduced as experimental variable to assess the mechanism and thermodynamics of protein stabilization by trehalose. The main stabilizing effect of trehalose was to delay the rate constant of the unfolding of an intermediate. A full thermodynamic analysis of this step has revealed that trehalose induces the phenomenon of entropy-enthalpy compensation, but the enthalpic contribution increases more significantly leading to a net stabilizing effect that slows down unfolding of the intermediate. Regarding the molecular mechanism of stabilization, trehalose increases the compactness of the unfolded state. The conformational space accessible to the unfolded state decreases in the presence of trehalose when the unfolded state acquires residual native interactions that channel the folding of the protein. This residual structure results into less hydrophobic groups being newly exposed upon unfolding, as less water molecules are immobilized upon unfolding.  相似文献   

9.
For the purpose of equilibrium and kinetic folding-unfolding studies, the SH3 domain of alpha-spectrin (spc-SH3) has long been considered a classic two-state folding protein. In this work we have indeed observed that the thermal unfolding curves of spc-SH3 measured at pH 3.0 by differential scanning calorimetry, circular dichroism, and NMR follow apparently the two-state model when each unfolding profile is considered individually. Nevertheless, we have found that protein concentration has a marked effect upon the thermal unfolding profiles. This effect cannot be properly explained in terms of the two-state unfolding model and can only be interpreted in terms of the accumulation of intermediate associated states in equilibrium with the monomeric native and unfolded states. By chemical cross-linking and pulsed-field gradient NMR diffusion experiments we have been able to confirm the existence of associated states formed during spc-SH3 unfolding. A three-state model, in which a dimeric intermediate state is assumed to be significantly populated, provides the simplest interpretation of the whole set of thermal unfolding data and affords a satisfactory explanation for the concentration effects observed. Whereas at low concentrations the population of the associated intermediate state is negligible and the unfolding process consequently takes place in a two-state fashion, at concentrations above approximately 0.5 mM the population of the intermediate state becomes significant at temperatures between 45 degrees C and 80 degrees C and reaches up to 50% at the largest concentration investigated. The thermodynamic properties of the intermediate state implied by this analysis fall in between those of the unfolded state and the native ones, indicating a considerably disordered conformation, which appears to be stabilized by oligomerization.  相似文献   

10.
The energetics of a salt bridge formed between the side chains of aspartic acid 70 (Asp70) and histidine 31 (His31) of T4 lysozyme have been examined by nuclear magnetic resonance techniques. The pKa values of the residues in the native state are perturbed from their values in the unfolded protein such that His31 has a pKa value of 9.1 in the native state and 6.8 in the unfolded state at 10 degrees C in moderate salt. Similarly, the aspartate pKa is shifted to a value of about 0.5 in the native state from its value of 3.5-4.0 in the unfolded state. These shifts in pKa show that the salt bridge is stabilized 3-5 kcal/mol. This implies that the salt bridge stabilizes the native state by 3-5 kcal/mol as compared to the unfolded state. This is reflected in the thermodynamic stability of mutants of the protein in which Asp70, His31, or both are replaced by asparagine. These observations and consideration of the thermodynamic coupling of protonation state to folding of proteins suggest a mechanism of acid denaturation in which the unfolded state is progressively stabilized by protonation of its acid residues as pH is lowered below pH 4. The unfolded state is stabilized only if acidic groups in the folded state have lower pKa values than in the unfolded state. When the pH is sufficiently low, the acid groups of both the native and unfolded states are fully protonated, and the apparent unfolding equilibrium constant becomes pH independent. Similar arguments apply to base-induced unfolding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
During the folding of many proteins, collapsed globular states are formed prior to the native structure. The role of these states for the folding process has been widely discussed. Comparison with properties of synthetic homo and heteropolymers had suggested that the initial collapse represented a shift of the ensemble of unfolded conformations to more compact states without major energy barriers. We investigated the folding/unfolding transition of a collapsed state, which transiently populates early in lysozyme folding. This state forms within the dead-time of stopped-flow mixing and it has been shown to be significantly more compact and globular than the denaturant-induced unfolded state. We used the GdmCl-dependence of the dead-time signal change to characterize the unfolding transition of the burst phase intermediate. Fluorescence and far-UV CD give identical unfolding curves, arguing for a cooperative two-state folding/unfolding transition between unfolded and collapsed lysozyme. These results show that collapse leads to a distinct state in the folding process, which is separated from the ensemble of unfolded molecules by a significant energy barrier. NMR, fluorescence and small angle X-ray scattering data further show that some local interactions in unfolded lysozyme exist at denaturant concentrations above the coil-collapse transition. These interactions might play a crucial role in the kinetic partitioning between fast and slow folding pathways.  相似文献   

12.
Maestro B  Sanz JM 《FEBS letters》2007,581(3):375-381
We have investigated the stability of the choline-binding module C-LytA against sodium dodecyl sulphate (SDS)-induced unfolding at pH 7.0 and 20 degrees C. A major intermediate with an unfolded N-terminal region accumulates at around 0.75 mM SDS, whereas 2.0 mM SDS was sufficient for a complete unfolding. This might be the first report of a protein being extensively unfolded by submicellar concentrations of SDS, occurring through formation of detergent clusters on the protein surface. All transitions were reversible upon SDS complexation with beta-cyclodextrin, allowing the calculation of thermodynamic parameters. A model for the unfolding of C-LytA by SDS is presented and compared to a previous denaturation scheme by guanidine hydrochloride.  相似文献   

13.
Under native conditions, proteins can undergo transient partial unfolding, which may cause proteins to misfold or aggregate. A change in sequence connectivity by circular permutation may affect the energetics of transient partial unfolding in proteins without altering the three‐dimensional structures. Using Escherichia coli dihydrofolate reductase (DHFR) as a model system, we investigated how circular permutation affects transient partial unfolding in proteins. We constructed three circular permutants, CP18, CP37, and CP87, with the new N‐termini at residue 18, 37, and 87, respectively, and probed transient partial unfolding by native‐state proteolysis. The new termini in CP18, CP37, and CP87 are within, near, and distal to the Met20 loop, which is known to be dynamic and also part of the region that undergoes transient unfolding in wild‐type DHFR. The stabilities of both native and partially unfolded forms of CP18 are similar to those of wild‐type DHFR, suggesting that the influence of introducing new termini in a dynamic region to the protein is minimal. CP37 has a significantly more accessible partially unfolded form than wild‐type DHFR, demonstrating that introducing new termini near a dynamic region may promote transient partial unfolding. CP87 has significantly destabilized native and partially unfolded forms, confirming that modification of the folded region in a partially unfolded form destabilizes the partially unfolded form similar to the native form. Our findings provide valuable guidelines to control transient partial unfolding in designing circular permutants in proteins.  相似文献   

14.
Equations of state for completely unfolded proteins have been generated from group additivity algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state to compute the standard molal thermodynamic properties of these molecules at elevated temperatures and pressures. The requisite equations of state parameters were computed from those of groups retrieved by regression of experimental calorimetric and densimetric data reported in the literature. This approach permits calculation of the standard molal thermodynamic properties as a function of temperature and pressure for any completely unfolded protein for which the amino acid sequence is known. Calculations of this kind have been carried out for 11 thermophilic proteins. The thermodynamic properties reported below can be combined with those for protein unfolding to compute the corresponding properties of completely folded (i.e. native) proteins.  相似文献   

15.
The thermal unfolding of alpha-lactalbumin has been studied by equilibrium measurements of aromatic difference spectra, and by kinetic measurements of the Joule heating temperature-jump. The unfolding at neutral pH is a reversible two-state transition. The equilibrium transition curves are analyzed by the nonlinear squares method, which gives correct values of thermodynamic parameters based on the data in a wide range of temperature. The results are discussed in relation to the previous studies on the unfolding by guanidine hydrochloride or by acid. The thermally unfolded state, a partially unfolded species, is shown to be thermodynamically similar to but not identical with the acid state. The folding pathway deduced from the kinetic results is essentially consistent with the folding model of alpha-lactalbumin proposed previously. Large decreases in entropy and in heat capacity during the reversed activation suggest the packing of the folded segments by hydrophobic interactions, while the forward activation shows a marked temperature dependence, probably caused by the disruption of specific long-range interactions.  相似文献   

16.
The thermodynamic stability and temperature induced structural changes of oxidized thioredoxin h from Chlamydomonas reinhardtii have been studied using differential scanning calorimetry (DSC), near- and far-UV circular dichroism (CD), and fluorescence spectroscopies. At neutral pH, the heat induced unfolding of thioredoxin h is irreversible. The irreversibly unfolded protein is unable to refold due to the formation of soluble high-order oligomers. In contrast, at acidic pH the heat induced unfolding of thioredoxin h is fully reversible and thus allows the thermodynamic stability of this protein to be characterized. Analysis of the heat induced unfolding at acidic pH using calorimetric and spectroscopic methods shows that the heat induced denaturation of thioredoxin h can be well approximated by a two-state transition. The unfolding of thioredoxin h is accompanied by a large heat capacity change [6.0 +/- 1.0 kJ/(mol.K)], suggesting that at low pH a cold denaturation should be observed at the above-freezing temperatures for this protein. All used methods (DSC, near-UV CD, far-UV CD, Trp fluorescence) do indeed show that thioredoxin h undergoes cold denaturation at pH <2.5. The cold denaturation of thioredoxin h cannot, however, be fitted to a two-state model of unfolding. Furthermore, according to the far-UV CD, thioredoxin h is fully unfolded at pH 2.0 and 0 degrees C, whereas the other three methods (near-UV CD, fluorescence, and DSC) indicate that under these conditions 20-30% of the protein molecules are still in the native state. Several alternative mechanisms explaining these results such as structural differences in the heat and cold denatured state ensembles and the two-domain structure of thioredoxin h are discussed.  相似文献   

17.
P Alexander  J Orban  P Bryan 《Biochemistry》1992,31(32):7243-7248
The 56 amino acid B domain of protein G (GB) is a stable globular folding unit with no disulfide cross-links. The physical properties of GB offer extraordinary flexibility for evaluating the energetics of the folding reaction. The protein is monomeric and very soluble in both folded and unfolded forms. The folding reaction has been previously examined by differential scanning calorimetry (Alexander et al., 1992) and found to exhibit two-state unfolding behavior over a wide pH range with an unfolding transition near 90 degrees C (GB1) at neutral pH. Here, the kinetics of folding and unfolding two naturally occurring versions of GB have been measured using stopped-flow mixing methods and analyzed according to transition-state theory. GB contains no prolines, and the kinetics of folding and unfolding can be fit to a single, first-order rate constant over the temperature range of 5-35 degrees C. The major thermodynamic changes going from the unfolded state to the transition state are (1) a large decrease in heat capacity (delta Cp), indicating that the transition state is compact and solvent inaccessible relative to the unfolded state; (2) a large loss of entropy; and (3) a small increase in enthalpy. The most surprising feature of the folding of GB compared to that of previously studied proteins is that its folding approximates a rapid diffusion controlled process with little increase in enthalpy going from the unfolded to the transition state.  相似文献   

18.
The equilibrium folding pathway of staphylococcal nucleas (SNase) has been approximated using a statistical thermodynamic formalism that utilizes the high-resolution structure of the native state as a template to generate a large ensemble of partially folded states. Close to 400,000 different states ranging from the native to the completely unfolded states were included in the analysis. The probability of each state was estimated using an empirical structural parametrization of the folding energetics. It is shown that this formalism predicts accurately the stability of the protein, the cooperativity of the folding/unfolding transition observed by differential scanning calorimetry (DSC) or urea denaturation and the thermodynamic parameters for unfolding. More importantly, this formalism provides a quantitative account of the experimental hydrogen exchange protection factors measured under native conditions for SNase. These results suggest that the computer-generated distribution of states approximates well the ensemble of conformations existing in solution. Furthermore, this formalism represents the first model capable of quantitatively predicting within a unified framework the probability distribution of states seen under native conditions and its change upon unfolding. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Choi HS  Huh J  Jo WH 《Biomacromolecules》2004,5(6):2289-2296
Denaturant-induced unfolding of protein is simulated by using a Monte Carlo simulation with a lattice model for protein and denaturant. Following the binding theory for denaturant-induced unfolding, the denaturant molecules are modeled to interact with protein by nearest-neighbor interactions. By analyzing the conformational states on the unfolding pathway of protein, the denaturant-induced unfolding pathway is compared with the temperature-induced unfolding pathway under the same condition; that is, the free energies of unfolding under two different pathways are equal. The two unfoldings show markedly different conformational distributions in unfolded states. From the calculation of the free energy of protein as a function of the number fraction (Q0) of native contacts relative to the total number of contacts, it is found that the free energy of the largely unfolded state corresponding to low Q0 (0.1 < Q0 < 0.5) under temperature-induced unfolding is lower than that under denaturant-induced unfolding, whereas the free energy of the unfolded state close to the native state (Q0 > 0.5) is lower in denaturant-induced unfolding than in temperature-induced unfolding. A comparison of two unfolding pathways reveals that the denaturant-induced unfolding shows a wider conformational distribution than the temperature-induced unfolding, while the temperature-induced unfolding shows a more compact unfolded state than the denaturant-induced unfolding especially in the low Q0 region (0.1 < Q0 < 0.5).  相似文献   

20.
Proteins are denatured in aqueous urea solution. The nature of the molecular driving forces has received substantial attention in the past, whereas the question how urea acts at different phases of unfolding is not yet well understood at the atomic level. In particular, it is unclear whether urea actively attacks folded proteins or instead stabilizes unfolded conformations. Here we investigated the effect of urea at different phases of unfolding by molecular dynamics simulations, and the behavior of partially unfolded states in both aqueous urea solution and in pure water was compared. Whereas the partially unfolded protein in water exhibited hydrophobic collapses as primary refolding events, it remained stable or even underwent further unfolding steps in aqueous urea solution. Further, initial unfolding steps of the folded protein were found not to be triggered by urea, but instead, stabilized. The underlying mechanism of this stabilization is a favorable interaction of urea with transiently exposed, less-polar residues and the protein backbone, thereby impeding back-reactions. Taken together, these results suggest that, quite generally, urea-induced protein unfolding proceeds primarily not by active attack. Rather, thermal fluctuations toward the unfolded state are stabilized and the hydrophobic collapse of partially unfolded proteins toward the native state is impeded. As a result, the equilibrium is shifted toward the unfolded state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号