首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A procedure is described for the intact-cell assay of superoxide dismutase(s). The technique involves the use of toluene which renders the cells permeable to the necessary components of a photochemical assay for superoxide dismutase. Whole-cell superoxide dismutase activities from a number of procaryotic and eucaryotic microorganisms compare with cell-free activities and with activities reported in the literature. Using this procedure, changing levels of superoxide dismutase are readily monitored under conditions known to modulate superoxide dismutase activity assayed in vitro. In whole cells of Escherichia coli, exogenous methyl viologen causes a marked increase in superoxide dismutase activity, whereas in the cyanobacterium, Microcystis aeruginosa, such treatment leads to a marked, light-dependent loss of whole-cell superoxide dismutase activity.  相似文献   

2.
Y Mizuno 《Life sciences》1984,34(10):909-914
Changes in superoxide dismutase activities in early stages of chronological development were investigated in normal and dystrophic chickens. Both cupro-zinc and manganese superoxide dismutase activities were significantly elevated in the dystrophic chickens studied as early as one week after hatching compared to those in the control. In control chickens, both cupro-zinc and manganese superoxide dismutase activities declined as they grew older. In dystrophic chickens, manganese superoxide dismutase activity declined gradually as they grew older as in the control. However, cupro-zinc superoxide dismutase activity increased until four weeks of age. The latter activity was still twice as high as that of the control at four months of age. Increased activities in superoxide dismutases in early stages of the development suggest presence of increased turnover of active oxygen species from the early stage of the disease in this avian muscular dystrophy. And the distinct time course of cupro-zinc superoxide dismutase activity suggests involvement of active oxygen species in pathogenesis of this disorder.  相似文献   

3.
S L Marklund 《Mutation research》1985,148(1-2):129-134
In various types of autoimmune disease, an increased frequency of spontaneous chromosome breaks has been reported. Plasma from such patients induces chromosome breaks in normal cells. Exposure of plasma to superoxide radicals increases the breakage activity, and addition of superoxide dismutase protects against it. The New Zealand black mouse is an animal model of autoimmune disease which displays the breakage phenomenon. To test for the possibility that the breakage is related to deficient protection against superoxide radicals, the activities of superoxide dismutase isoenzymes were determined in tissues and blood from New Zealand black mice and compared with the activities of normal BALB/c mice. No differences between the strains were revealed in tissue EC-superoxide dismutase, CuZn superoxide dismutase and Mn superoxide dismutase activity. The erythrocyte superoxide dismutase activities were also equal. The plasma EC-superoxide dismutase activity was 35% lower in the New Zealand black mice than in the BALB/c mice. Between euthymic BALB/c mice and nude mice, previously reported to be deficient in tissue superoxide dismutase activity, no difference could be demonstrated.  相似文献   

4.
Superoxide dismutase activity was demonstrated for 6 strains of 3 propionibacteria species. Rather high level of superoxide dismutase activity found in propionibacteria was in accordance with high level of catalase activity reported for propionibacteria previously. Both these activities were shown to have cytozolic localization. For the first time peroxidase activity was detected in gel-fractionated crude cell extracts of propionibacteria. The ability to produce superoxide radicals in NADH-dependent oxidation system was revealed for three strains of the bacteria. The level of superoxide production by the membrane particles of the propionic acid bacteria correlated with the levels of superoxide dismutase and catalase activities and was the lowest for Propionibacterium shermanii. The ability to perform monovalent oxygen reduction during succinate oxidation was not revealed. The intact cells of P. globosum, P. vannielii, P. shermanii apparently did not excrete superoxide radicals into culture fluid during respiration.  相似文献   

5.
The contents of extracellular superoxide dismutase, CuZn superoxide dismutase and Mn superoxide dismutase were determined in tissues from nine mammalian species. The pattern of CuZn superoxide dismutase distribution was similar in all species, with high activity in metabolically active organs such as liver and kidney and low activity in, for example, skeletal muscle. Mn superoxide dismutase activity was high in organs with high respiration, such as liver, kidney, and myocardium. Overall the Mn superoxide dismutase activity in organs was almost as high as the CuZn superoxide dismutase activity. The content of extracellular superoxide dismutase was, almost without exception, lower than the content of the other isoenzymes. The pattern of tissue distribution was distinctly different from those of CuZn superoxide dismutase and Mn superoxide dismutase. The tissue distribution of extracellular superoxide dismutase differed among species, but in general there was much in lungs and kidneys and little in skeletal muscle. In man, pig, sheep, cow, rabbit and mouse the overall tissue extracellular superoxide dismutase activities were similar to each other, whereas dog, cat and rat tissues contained distinctly less. There was no general correlation between the tissue extracellular superoxide dismutase activity of any of the various species and the variable plasma activity. The ratio between the plasma and the overall tissue activities was high, for some species over unity, providing further evidence for the notion that one role of extracellular superoxide dismutase is as a plasma protein.  相似文献   

6.
7.
Root-colonizing, saprophytic fluorescent pseudomonads of the Pseudomonas putida-P. fluorescens group express similar levels of catalase and superoxide dismutase activities during growth on a sucrose- and amino acid-rich medium. Increased specific activities of catalase but not superoxide dismutase were observed during growth of these bacteria on components washed from root surfaces. The specific activities of both enzymes were also regulated during contact of these bacteria with intact bean roots. Increased superoxide dismutase and decreased catalase activities were observed rapidly, by 10 min upon inoculation of cells onto intact bean roots. Catalase specific activity increased with time to peak at 12 h before declining. By 48 h, the cells displayed this low catalase but maintained high superoxide dismutase specific activities. Catalase with a low specific activity and a high superoxide dismutase activity also were present in extracts of cells obtained from 7-day-old roots colonized from inoculum applied to seed. This specific activity of superoxide dismutase of root-contacted cells was about fourfold-higher in comparison to cells grown on rich medium, whereas the specific activity for catalase was reduced about fivefold. A single catalase isozyme, isozyme A, and one isozyme of superoxide dismutase, isozyme 1, were detected during growth of the bacteria on root surface components and during exposure of cells to intact bean roots for 1 h. An additional catalase, isozyme B, was detected from bacteria after exposure to the intact bean roots for 12 h. Catalase isozyme A and superoxide dismutase isozyme 1 were located in the cytoplasm and catalase band B was located in the membrane of P. putida.  相似文献   

8.
Short-term photosensitivity and oxidative stress responses were compared for three groups of marine microalgae: Antarctic microalgae, temperate diatoms and temperate flagellates. In total, 15 low-light-acclimated species were exposed to simulated surface irradiance including ultraviolet radiation (SSI). Photosensitivity was assessed as the rate of recovery of Fv/Fm in the hours following SSI treatment. Before, during and after the SSI treatment, oxidative stress responses were assessed by following xanthophyll content and cycling, and activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase, and glutathione redox status. When acclimated to low irradiance, antioxidant levels were not group specific. Superoxide dismutase activity was positively correlated with cell size, whereas in general, ascorbate peroxidase activity appeared to be lower and glutathione redox status appeared to be higher in the Antarctic than in the temperate species. After SSI exposure, the strong inhibition of PSII was followed by variable rates of recovery, although four species remained photosynthetically inactive. SSI tolerance appeared unrelated to geographic or taxonomic background, or to cell size. PSII recovery was enhanced in species with decreasing superoxide dismutase activity, glutathione redox status and increased xanthophyll cycle activity. We conclude that antioxidant responses are highly species specific and not related to the geographic or taxonomic background. Furthermore, xanthophyll cycling seems more important than antioxidants. Finally, it can be hypothesized that glutathione could function as a stress sensor and response regulator.  相似文献   

9.
The freshly harvested mature neem seeds (42.2 % seed moisture content) with 100 % viability deteriorate when naturally desiccated to below 10.9 %. The desiccation-induced loss of viability was closely associated with over accumulation of superoxide anion and lipid peroxidation products both in the embryonic axes and cotyledons. The levels of superoxide anion and lipid peroxidation products were higher in axes compared to cotyledons. Superoxide dismutase activity was not much affected, both in the axes and cotyledons of 100 % viable seeds during desiccation from 42.2 % to 10.9 % seed moisture content. Steep rise in its activity was observed during drying below lowest safe moisture content (LSMC). Activities of catalase and peroxidase exhibited substantially higher levels in the 100 % viable seeds dehydrated up to LSMC. Their activities declined sharply in seeds with water content below LSMC. Impairment of catalase and peroxidase activities possibly lead to enhanced accumulation of reactive oxygen species. The accumulation of superoxide anion, lipid peroxidation and differential expression of superoxide dismutase and catalse/peroxidase activities in response to desiccation (below LSMC) is discussed to explain the intermediate storage physiology of neem seeds.  相似文献   

10.
Studies show mixed conclusions about acute responses of copper status to strenuous exercise. Because copper function involves metalloenzyme activities, which might take days to change, the present study examined the response of three copper metalloenzyme activities to sustained strenuous exercise in sled dogs. A race lasting 12–15 d depressed activities for both plasma ceruloplasmin and erythrocyte superoxide dismutase in dogs consuming commercial dog foods and meats. A shorter, 3-d training run for dogs fed a commercial balanced diet also depressed ceruloplasmin activities but not superoxide dismutase activities. Dogs fed the same diet but that did not run showed no changes in either parameter. Activities of a third copper enzyme, plasma diamine oxidase, also decreased after a 3-d training run. In summary, blood activities of three copper enzymes were depressed by sustained strenuous exercise in sled dogs.  相似文献   

11.
Transfection of a human pSV2 (copper-zinc) superoxide dismutase expression vector into murine fibroblasts resulted in stable clones producing increased amounts of copper-zinc superoxide dismutase. A marked increase in endogenous glutathione peroxidase activity (up to 285%) and a smaller increase in glutathione transferase activity (up to 16%) also occurred. Manganese superoxide dismutase activity was decreased in all clones, whereas catalase and NADPH reductase activities were not affected. Alterations in glutathione peroxidase and manganese superoxide dismutase activities correlated with increases in copper-zinc superoxide dismutase activity. Whereas all clones were resistant to paraquat, a direct correlation between copper-zinc superoxide dismutase activity and resistance to paraquat did not exist. In agreement with previous reports clones expressing the highest copper-zinc superoxide dismutase activity did not display the highest resistance to paraquat. However, there was a direct correlation between the increase in glutathione peroxidase activity and paraquat resistance (p less than 0.002).  相似文献   

12.
13.
Effects of the dietary addition of orotic acid to a diet containing casein as a sole protein source on lipid levels in the liver and serum, activities of antioxidant enzymes in the liver, and some enzyme activities in serum, were compared with other diets containing egg protein, soy protein, or wheat gluten, respectively. 1. The contents in the liver of each lipid were increased by the addition of orotic acid as compared with those values without it. The orotic acid added to the casein diet caused accumulation of more liver total lipids, triacylglycerol, 1,2-diacylglycerol, and phospholipids than those fed three other diets. 2. The addition of orotic acid to the casein, but not to the other three diets, lowered the activities of liver superoxide dismutase and increased the activities of both serum ornithine carbamoyltransferase and alanine aminotransferase. Thus, the significant increase in serum ornithine carbamoyltransferase activities as the marker of liver lesions may result from the marked accumulation of liver lipids, decreased activities of hepatic superoxide dismutase, and the increased level of hepatic 1,2-diacylglycerol, followed by possibly the increased level of superoxide anion and increased activity of protein kinase C in rats fed the casein diet with orotic acid added.  相似文献   

14.
The relationship between voluntary distance running and antioxidant capacity was studied in rats after three weeks voluntary running. Hydroxyl radical level, reduced glutathione level, activities of glutathione reductase and superoxide dismutase were measured in plasma, liver, brain, soleus and gastrocnemius white muscle. Hydroxyl radical level of liver negatively correlated with the running distance (r=-0.616, P<0.001). The reduced glutathione levels of liver and brain increased depending on the running distance and the correlation was confirmed between them in liver (r=0.638, P<0.01) and brain (r=0.766, P<0.001). The hydroxyl radical level in liver positively correlated with the activities of glutathione reductase (r=0.464, P<0.05) and superoxide dismutase (r=0.549, P<0.05). A significant positive correlation was detected between the hydroxyl radical level and superoxide dismutase activity in brain (r=0.488, P<0.05). These results demonstrate that physical activity correlates well with glutathione level and anti-oxidant enzyme activities in liver, suggesting a close relation between physical activity and induction of antioxidant systems.  相似文献   

15.
We investigated the changes in antioxidative enzyme activities of two sweet potato cultivars under waterlogging and high-light conditions in the growth chamber. The activities of antioxidative enzymes were measured from leaf crude extract of sweet potato during the first five days of the treatments. Activities of superoxide dismutase and catalase were consistently increased in Taoyuan 1 sweet potato over time under waterlogging and high-light conditions. However, decreases in both superoxide dismutase and catalase activities were observed for cultivar Yongtsai under waterlogging and high-light conditions. Waterlogging, together with high-light intensity, impairs superoxide dismutase and catalase activities in the cultivar Yongtsai indicating its greater susceptibility to waterlogging and high-light stress. In contrast, the increase in activities of superoxide dismutase and catalase in Taoyuan 1 indicated its greater ability to detoxify reactive oxygen species during the treatment and ensured its reduced susceptibility to waterlogging and high-light stress. The activities of peroxidase may be inactivated by high-light treatment and, therefore, may not be associated with tolerance of sweet potato plants to waterlogging and high-light stress. Differences in susceptibility to waterlogging and high-light conditions in the leafy vegetable Yongtsai and storage root Taoyuan 1 are discussed.  相似文献   

16.
In this paper we have investigated whether or not superoxide dismutase is localized in peroxisomes from rat liver. Using an improved method to prepare peroxisomes from clofibrate induced rat livers, we identified superoxide dismutase activity in peroxisomes. This activity was found to be predominantly of the copper-zinc type. The finding of superoxide dismutase activity in peroxisomes makes sense since peroxisomes also contain superoxide generating enzyme activities such as xanthine oxidase.  相似文献   

17.
Multiple electrophoretic molecular variants of superoxide dismutase were demonstrated in normal rat mammary tissues and DMBA-induced rat mammary tumors. The specific activities of CuZu superoxide dismutase in mammary tumors of estrogen-treated rats were not significantly different from those activities seen in normal rat mammary tissues. However, the enzyme activities of mammary tumors from untreated rats (no estrogen) were significantly lower than the activities of normal rat mammary tissues. Exogenous estrogen appeared to raise superoxide dismutase levels in DMBA-induced rat mammary tumors to those levels seen in normal rat mammary tissues.  相似文献   

18.
The endothelium is a key site of injury from reactive oxygen species that can potentially be protected by the antioxidant enzymes superoxide dismutase and catalase. Large proteins, such as superoxide dismutase and catalase, do not readily penetrate cell membranes, which limits their efficacy in protecting cells from cellular reactions involving both intracellularly and extracellularly generated reactive oxygen species. Two methods are described that promote enzyme delivery to cultured endothelial cells and confer increased resistance to oxidative stress. The first method is to entrap the antioxidant enzymes within liposomes, which then become incorporated by endothelial cells and can increase enzyme specific activities by as much as 44-fold within 2 h. The second method involves covalent conjugation of polyethylene glycol (PEG) to superoxide dismutase and catalase, a technique that increases circulatory half-life and reduces protein immunogenicity. Conjugation of PEG to superoxide dismutase and catalase increased cellular-specific activities of these enzymes in cultured endothelial cells (but at a slower rate than for liposome entrapped enzymes) and rendered these cells more resistant to oxidative stress. Both liposome-mediated delivery and PEG conjugation offer an additional benefit over native superoxide dismutase and catalase because they can increase cellular antioxidant activities in a manner that can provide protection from both intracellular and extracellular superoxide and hydrogen peroxide.  相似文献   

19.
Superoxide dismutase and catalase activities were studied in Azotobacter vinelandii grown diazotrophically at different ambient oxygen concentrations in continuous culture. Activities were expressed either as specific activity or activity per cell. Specific superoxide dismutase activity increased by a factor of 1.6 with increasing oxygen concentration from about 1% to 90% air saturation of the growth medium whereas specific catalase activity increased only slightly, if at all. Since cell volumes increased in parallel to increases in the oxygen concentration cellular superoxide dismutase activities increased by a factor of 4.3 while cellular catalase activities increased by a factor of 3.3. Under all conditions only the Fe-containing form of superoxide dismutase was detected. The possible function of these enzymes in the protection nitrogenase from oxygen damage is discussed.Abbreviation SOD superoxide dismutase  相似文献   

20.
In X-irradiated mice the loss of white blood cells increases exponentially with dose. The dose xo, which reduces the cell number to 1/e, is 115 ± 15, 205 ± 30, 108 ± 5, and 235 ± 18 rad for leucocytes, granulocytes, lymphocytes and platelets, respectively. The xo value increases with the amount of endogenous superoxide dismutase per cell. Intravenous bovine superoxide dismutase has no effect on the xo for granulocytes and platelets but increases it to 145 ± 15 and 143 ± 20 rad for leucocytes and lymphocytes, respectively. The exogenous enzyme also shortens the delay in recovery of the white blood cells, particularly after X-ray doses of 550 and 675 rad. The earlier hematological recovery is attributable to the known radioprotective effect of the enzyme on bone marrow stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号