首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new bromoditerpene, (1S)-1, 2-dihydro-1-hydroxybromosphaerol has been isolated from the marine alga Sphaerococcus coronopifolius and its stru  相似文献   

2.
The DM9 domain is a protein unit of 60–75 amino acids that has been first detected in the fruit fly Drosophila as a repeated motif of unknown function. Recent research on proteins carrying DM9 domains in the mosquito Anopheles gambiae and the oyster Crassostrea gigas indicated an association with the uptake of microbial organisms. Likewise, in the trematode Fasciola gigantica DM9-1 showed intracellular relocalization following microbial, heat and drug stress. In the present research, we show that FgDM9-1 is a lectin with a novel mannose-binding site that has been recently described for the protein CGL1 of Crassostrea gigas. This property allowed FgDM9-1 to agglutinate gram-positive and -negative bacteria with appropriate cell surface glycosylation patterns. Furthermore, FgDM9-1 caused hemagglutination across all ABO blood group phenotypes. It is speculated that the parenchymal located FgDM9-1 has a role in cellular processes that involve the transport of mannose-carrying molecules in the parenchymal cells of the parasite.  相似文献   

3.
The MADS-box gene SOC1/TM3 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1/ Tomato MADS-box gene 3) is a main integrator in the Arabidopsis flowering pathway; its structure and function are highly conserved in many plant species. SOC1-like genes have been isolated in chrysanthemum, one of the most well-known ornamental plants, but it has not been well characterized thus far. We isolated and characterized ClSOC1-1 and ClSOC1-2, two putative orthologs of Arabidopsis SOC1, from the wild diploid chrysanthemum, Chrysanthemum lavandulifolium, to investigate the regulatory mechanisms of flowering time control in chrysanthemum. Expression analysis indicated that ClSOC1-1 and ClSOC1-2 were expressed in all examined organs/tissues (leaves, shoot apices, petioles, stems and roots) with different expression levels, and with high expression in the shoot apices and leaves during the early stage of floral transition. The expression levels of ClSOC1-1 and ClSOC1-2 in the shoot apices increased at different developmental stages with the highest expression levels after 7 days of short-day treatment. Overexpression of ClSOC1-1 and ClSOC1-2 in wild-type Arabidopsis resulted in early flowering, which was coupled with the upregulation of one of the flowering promoter genes LEAFY. Our results suggested that the ClSOC1-1 and ClSOC1-2 genes play an evolutionarily conserved role in promoting flowering in Chrysanthemum lavandulifolium and could serve as a vital target for the genetic manipulation of flowering time in the chrysanthemum.  相似文献   

4.
Nicotinamide at mM concentration is a potent inhibitor of certain key molecules involved in cell survival, such as SIRT1 and PARP-1, and affects cell survival in various conditions in vivo and in vitro. However, the effect of an acute treatment of nicotinamide on gene expression has rarely been closely examined. In our study, the treatment of 10 mM nicotinamide downregulated p21WAF1 expression in various human cells including p53-negative or SIRT1-knockdown cells indicating gene regulation not mediated by p53 or SIRT1. Meanwhile, in the nicotinamide-treated cells, Sp1 activity and protein level was substantially reduced due to increased proteasome-mediated degradation. Our results indicate that nicotinamide treatment attenuates p21WAF1 expression through Sp1 downregulation, and suggest a possible involvement of nicotinamide metabolism in cellular gene expression.  相似文献   

5.
The carbohydrate binding specificities of the galectin family of animal lectins has been the source of intense recent investigations. Isothermal titration microcalorimetry (ITC) provides direct determination of the thermodynamics of binding of carbohydrates to lectins, and has provided important insights into the fine carbohydrate binding specificities of a wide number of plant and animal lectins. Recent ITC studies have been performed with galectin-1, galectin-3 and galectin-7 and their interactions with sialylated and non-sialylated carbohydrates. The results show important differences in the specificities of these three galectins toward poly-N-acetyllactosamine epitopes found on the surface of cells. Published in 2004.  相似文献   

6.
7.
The Hedgehog (Hh-) signaling pathway is a key developmental pathway which controls patterning, growth and cell migration in most tissues, but evidence has accumulated showing that many human tumors aberrantly reactivate this pathway. Smoothened antagonists offer opportunities for the treatment of malignancies dependent on the Hh pathway, and the most advanced clinical candidates are demonstrating encourage initial results. A novel series of [6,5]-bicyclic tetrahydroimidazo[1,5-a]pyrazine-1,3(2H,5H)-dione smoothened antagonists has been identified, and the series has been extensively explored to ascertain the key detriments for activity, demonstrating that the trans-2-phenylcyclopropyl and hydantoin ring systems are critical for potency, while a variety of urea substituents can be tolerated. The combination of these optimal groups gives smoothened antagonists with activity in the low nanomolar range.  相似文献   

8.
The diterpene acid content in 10 species of Helianthus has been investigated. Ent-12,16-cyclokauranoic acid, isolated from H. annuus, is converted into a series of 12,16-cyclogibberellins by cultures of Gibberella fujikuroi, mutant B1-41a, and 12,16-cyclogibberellins A9, and A12 have been isolated. Ent-12β-acetoxykaurenoic acid and ent-13(S)-angeloxyatisenoic acid have been isolated from H. decapetalus; the metabolism of ent-13(S)-hydroxyatisenoic acid and atisenoic acid by B1-41a is also described.  相似文献   

9.
MiR-1, miR-133a, and miR-206a have been identified as muscle-specific miRNAs. They play multiple crucial roles in the regulation of muscle development. Here, we show that these miRNAs were differentially expressed during the larval development of flounder, and specifically expressed in skeletal muscle and heart in adult tissues/organs. The expression levels of these miRNAs were significantly changed by thyroid hormone (TH) or thiourea (TU) treatment during metamorphosis from 17 dph (days post hatching) to 42 dph. In addition, the expression levels of MyoD and Myf5 mRNAs markedly increased at 14 dph (pre-metamorphosis) compared to metamorphic stages, and their expression levels are far above the myogenin during larval development. Moreover, these MRFs (myogenic regulatory factors) expression were directly or indirectly regulated by thyroid hormone or thiourea during metamorphosis. All the results suggest that miRNAs and MRFs might be involved in signaling pathway of TH or TU-mediated flounder metamorphosis.  相似文献   

10.
A novel series of monoamine reuptake inhibitors, the 1-amino-3-(1H-indol-1-yl)-3-phenylpropan-2-ols, have been discovered by combining virtual and focused screening efforts with design techniques. Synthesis of the two diastereomeric isomers of the molecule followed by chiral resolution of each enantiomer revealed the (2R,3S)-isomer to be a potent norepinephrine reuptake inhibitor (IC50 = 28 nM) with excellent selectivity over the dopamine transporter and 13-fold selectivity over the serotonin transporter.  相似文献   

11.
Glutathione transferase omega 1-1 (GSTO1-1) catalyzes the biotransformation of arsenic and is implicated as a factor influencing the age-at-onset of Alzheimer’s disease and the posttranslational activation of interleukin 1β (IL-1β). Investigation of the biological role of GSTO1-1 variants has been hampered by the lack of a specific assay for GSTO1-1 activity in tissue samples that contain other GSTs and other enzymes with similar catalytic specificities. Previous studies (P. G. Board and M. W. Anders, Chem. Res. Toxicol. 20 (2007) 149-154) have shown that GSTO1-1 catalyzes the reduction of S-(phenacyl)glutathiones to acetophenones. A new substrate, S-(4-nitrophenacyl)glutathione (4NPG), has been prepared and found to have a high turnover with GSTO1-1 but negligible activity with GSTO2-2 and other members of the glutathione transferase superfamily. A spectrophotometric assay with 4NPG as a substrate has been used to determine GSTO1-1 activity in several human breast cancer cell lines and in mouse liver and brain tissues.  相似文献   

12.
Hodges M  Barber J 《Plant physiology》1983,72(4):1119-1122
A study has been made on the State 1-State 2 transitions exhibited by the unicellular green algae Chlorella pyrenoidosa. Chlorophyll fluorescence induction curves from algae adapted to State 1 or State 2 have been analyzed and a comparison made with similar curves produced by decreasing the intensity of light going to the photosystem II reaction centers. In both cases, quenching of the maximum fluorescence yield (Fm) and the initial fluorescence yield (Fo) were observed so that the Fv/Fm ratio and the area above the induction curve (Amax) remained constant. The State 1-State 2 transition also produced changes in the βmax component indicative of some alteration within photosystem II organization. The implications of these experiments on the in vivo mechanism for energy redistribution between the two photosystems are discussed in terms of changes in absorption cross-section rather than being due to spillover from photosystem II to photosystem I. These changes may reflect the phosphorylation of the light-harvesting chlorophyll a/b protein complex and its subsequent migration away from the photosystem II core leading to its closer association with photosystem I.  相似文献   

13.
The overexpression of CYP1 family of enzymes is reported to be associated with development of human carcinomas. It has been well reported that CYP1A1 specific inhibitors prevents carcinogenesis. Herein, thirteen pyridine-4-yl series of chalcones were synthesized and screened for inhibition of CYP1 isoforms 1A1, 1B1 and 1A2 in Sacchrosomes? and live human HEK293 cells. The structure-activity relationship analysis indicated that chalcones bearing tri-alkoxy groups (8a and 8k) on non-heterocyclic ring displayed selective inhibition of CYP1A1 enzyme, with IC50 values of 58 and 65?nM, respectively. The 3,4,5-trimethoxy substituted derivative 8a have shown >10-fold selectivity towards CYP1A1 with respect to other enzymes of the CYP1 sub-family and >100-fold selectivity with respect to CYP2 and CYP3 family of enzymes. The potent and selective CYP1A1 inhibitor 8a displayed antagonism of B[a]P mediated activation of aromatic hydrocarbon receptor (AhR) in yeast cells, and also protected human cells from CYP1A1-mediated B[a]P toxicity in human cells. This potent and selective inhibitor of CYP1A1 enzyme have a potential for development as cancer chemopreventive agent.  相似文献   

14.
The rmoA gene was recently identified from two partially overlapping sequences corresponding to a region close to the end of the tra operon of plasmid R100. Its putative amino acid sequence showed strong homology to the Hha protein of Escherichia coli and YmoA protein of Yersinia enterocolitica, which are modulators of gene expression in response to environmental stimuli. We have cloned the rmoA gene from plasmid R100-1 in pUC19 and obtained the complete nucleotide sequence, which was previously published only partially and may have contained some mistakes. The rmoA gene product has been identified in radiolabelled minicells as a protein of the predicted molecular mass. The wild-type rmoA gene of plasmid R100-1 has been mutated by gene replacement and its effect on the efficiency of conjugation has been analysed. When grown in LB medium, cells harbouring R100-1 plasmid with a disrupted copy of rmoA showed a five-fold increase in conjugation frequency compared to cells harbouring R100-1 plasmid with the wild-type rmoA gene, grown in the same conditions. When cells were grown in NaCl-free LB medium they showed a 50-fold increase in conjugation frequency.  相似文献   

15.
HopQ1 (for Hrp outer protein Q), a type III effector secreted by Pseudomonas syringae pv phaseolicola, is widely conserved among diverse genera of plant bacteria. It promotes the development of halo blight in common bean (Phaseolus vulgaris). However, when this same effector is injected into Nicotiana benthamiana cells, it is recognized by the immune system and prevents infection. Although the ability to synthesize HopQ1 determines host specificity, the role it plays inside plant cells remains unexplored. Following transient expression in planta, HopQ1 was shown to copurify with host 14-3-3 proteins. The physical interaction between HopQ1 and 14-3-3a was confirmed in planta using the fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy technique. Moreover, mass spectrometric analyses detected specific phosphorylation of the canonical 14-3-3 binding site (RSXpSXP, where pS denotes phosphoserine) located in the amino-terminal region of HopQ1. Amino acid substitution within this motif abrogated the association and led to altered subcellular localization of HopQ1. In addition, the mutated HopQ1 protein showed reduced stability in planta. These data suggest that the association between host 14-3-3 proteins and HopQ1 is important for modulating the properties of this bacterial effector.A multicomponent defense response is initiated when plant pattern recognition receptors perceive microbially derived structural components (Nürnberger and Brunner, 2002), which are referred to as pathogen-associated molecular patterns. Many bacterial pathogens have developed type III secretion system (TTSS) effectors that can suppress or modulate pathogen-associated molecular pattern-triggered immunity (Jones and Dangl, 2006). Effector-triggered immunity represents a second layer of defense, whereby plants have evolved mechanisms that rely upon Resistance (R) proteins to sense and respond to cognate TTSS effectors. Thus, the expression of a specific bacterial effector can either sustain disease in susceptible plants or render the pathogen avirulent in resistant plants that express the corresponding R protein. Several lines of evidence suggest an involvement of scaffold proteins from the 14-3-3 family in mediating these defense responses at various levels (Yang et al., 2009; Oh et al., 2010). Some R proteins have been shown to bind 14-3-3 proteins directly. RPW2.8, which confers resistance to fungal pathogens of Golovinomyces spp., associates specifically with the 14-3-3 isoform λ (designated GF14λ) from Arabidopsis (Arabidopsis thaliana; Yang et al., 2009). Moreover, both types of resistance were compromised in Arabidopsis lacking the λ isoform. Consistently, ectopic overexpression of GF14λ in transgenic Arabidopsis results in enhanced resistance to powdery mildew (Golovinomyces cichoracearum; Yang et al., 2009). Tobacco (Nicotiana tabacum) N protein, which mediates resistance to Tobacco mosaic virus, also binds 14-3-3 protein (Ueda et al., 2006). The viral p50 replicase helicase domain is the cognate ligand for N protein. Since this domain also interacts with 14-3-3s, it is possible that 14-3-3s might function in the formation of the receptor-ligand recognition complex (Ueda et al., 2006). In addition, the tomato (Solanum lycopersicum) 14-3-3 protein TF7 has been shown to exhibit positive regulation on the mitogen-activated protein kinase cascade, which is activated rapidly by pathogen recognition (Oh et al., 2010; Oh and Martin, 2011).There is increasing evidence that many intracellular pathways are regulated by the modulation of scaffold protein properties rather than the activities of integral components in the signaling cascades (Good et al., 2011). This strategy enables signal transduction to be turned on or off rapidly via the assembly or disassembly of complexes. This same mechanism also allows the intensity and kinetics of a response to be fine-tuned to the stimulus (Good et al., 2011). It was recently suggested that the manipulation of scaffolding may be one strategy employed by pathogens to interfere with the host defense response. The best-characterized example of scaffolding manipulation is the phytotoxin fusicoccin, which is secreted by the fungus Fusicoccum amygdali. Fusicoccin targets a 14-3-3 protein that regulates guard cell H+-ATPases, and its activity results in stomatal opening, facilitating pathogen entry (Oecking et al., 1994). Some bacterial virulence factors simply require scaffold proteins to reach their destination within host cells or to become enzymatically active, while others target the host scaffold proteins to suppress defenses. Yersinia species secrete the TTSS effector YopK (for Yersinia outer protein K), which binds to the Receptor for Activated C Kinase1 in mammals (Thorslund et al., 2011). It is hypothesized that this interaction blocks phagocytosis, allowing efficient extracellular proliferation of the bacteria. Yersinia spp. has also acquired the virulence factor YopM, which mimics eukaryotic scaffolds and forces bridging of host kinases (McDonald et al., 2003). Similarly, enterohemorrhagic Escherichia coli strains use EspG to form an artificial complex that effectively reprograms host signaling (Selyunin et al., 2011).HopQ1 (for Hrp outer protein Q [also known as HopQ1-1]; AAZ37975.1) is a type III effector that has been acquired recently by Pseudomonas syringae strains (Rohmer et al., 2004), whereas its xenologs from Ralstonia solanacearum and Xanthomonas spp. appear to be ancient. HopQ1 contributes to host specificity, but its exact role in pathogenesis remains undefined. This study shows that HopQ1 must undergo a specific phosphorylation event in planta as a prerequisite for its binding to host 14-3-3 and that its properties depend upon the formation of the effector-host protein complex.  相似文献   

16.
A series of (3R,4R)-pyrrolidine-3,4-dicarboxylic acid amides was investigated with respect to their factor Xa inhibitory activity, selectivity, pharmacokinetic properties, and ex vivo antithrombotic activity. The clinical candidate from this series, R1663, exhibits excellent selectivity against a panel of serine proteases and good pharmacokinetic properties in rats and monkeys. A Phase I clinical study with R1663 has been finalized.  相似文献   

17.
1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is one of the key regulatory enzymes involved in the synthesis of ethylene. Climacteric fruit ripening is accompanied by increased ethylene production, in which ethylene biosynthesis is changed from system 1 to system 2. In apple, at least four members of the ACS gene family have been identified, two of which, MdACS1 and MdACS3a, have been studied extensively due to their specific expression in fruit tissue. However, the regulatory role of MdACS1 and MdACS3a in the ethylene biosynthesis system is unknown. Here we addressed this issue by investigating ACS expression in ripening apple fruits. Expression analysis in ‘Golden Delicious’ and ‘Red Fuji’ fruits, in combination with treatments of 1-MCP (1-methylcyclopropene, an ethylene inhibitor) and Ethephon (an ethylene releaser) has demonstrated that MdACS3a and MdACS1operate in system 1 and system 2 ethylene biosynthesis, respectively.  相似文献   

18.
A new lupin alkaloid (+)-5α,9α-dihydroxymatrine has been isolated from the leaves of Euchresta horsfeldii (E. formosana cv riukiuensis) together with matrine, matrine N-oxide, sophoranol, sophoranol N-oxide, anagyrine, N-methylcytisine, N-formylcytisine and cytisine.  相似文献   

19.
A novel series of 1,2,3 triazole compounds possessing 1,2,4 oxadiazole ring were efficiently synthesized. Synthesized compounds were evaluated for their in vitro antifungal activities using standard cup plate method. SAR for the series has been developed by comparing their MIC values with miconazole and fluconazole. Compound 11a from the series was more potent than miconazole against Candida albicans (MIC-20) and Aspergillus flavus (MIC-10) whereas equipotent with miconazole against Fusarium oxysporum (MIC-25) and Aspergillus niger (MIC-12.5). Also compound 11h was more potent than miconazole against Candida albicans (MIC-20) and Aspergillus niger (MIC-10) and equipotent with miconazole against Fusarium oxysporum. Compound 11h was equipotent with fluconazole against Aspergillus niger (MIC-10).  相似文献   

20.
A new sapogenin has been isolated from leaves of Solanum polyadenium P.I. 161728, a clone that is highly resistant to Colorado potato beetle and potato leaf hopper. The structure of this compound has been established as 1β-hydroxyneotigogenin, 5α-spirostan-1β,3β-diol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号