首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty seven lycorine derivatives were prepared and evaluated for their in vitro antimalarial activity against chloroquine-sensitive strains of Plasmodium falciparum. The best antiplasmodial activities were achieved with lycorine derivatives that present free hydroxyl groups at C-1 and C-2 or esterified as acetates or isobutyrates. The double bond C-2–C-3 is also important for the activity. Concerning to the antiplasmodial activity of the secolycorines, the higher values were obtained with the replacement of the methylenedioxy moiety by hydroxyl or acetate groups and with methyl substituent attached to the nitrogen atom.  相似文献   

2.
Plants of the Amaryllidaceae family have been under intense scrutiny for the presence of the specific metabolites responsible for the medicinal properties associated with them. The study began in 1877 with the isolation of alkaloid lycorine from Narcissus pseudonarcissus and since then more than 100 alkaloids, exhibiting diverse biological activities, have been isolated from the Amaryllidaceae plants. Based on the present scientific evidence, it is likely that isocarbostyril constituents of the Amaryllidaceae, such as narciclasine, pancratistatin and their congeners, are the most important metabolites responsible for the therapeutic benefits of these plant species in the folk medical treatment of cancer. Notably, Narcissus poeticus L., used by the ancient Greek physicians, is now known to contain about 0.12 g of narciclasine per kg of fresh bulbs. The focus of the present research work is the chemistry and biology of these compounds as specifically relevant to their potential use in medicine. In particular, the anticancer evaluation of lycorine, narciclasine as well as of other Amaryllidaceae alkaloids and their synthetic derivatives are presented in this paper. The structure–activity relationships among some groups of Amaryllidaceae alkaloids will be discussed.  相似文献   

3.
BackgroundParkinson's disease (PD) is one of the most common neurodegenerative motor disorders, and is characterized by the presence of Lewy bodies containing misfolded α-synuclein (α-syn) and by selective degeneration of midbrain dopamine neurons. Studies have shown that upregulation of ubiquitin-proteasome system (UPS) activity promotes the clearance of aggregation-prone proteins such as α-syn and Tau, so as to alleviate the neuropathology of neurodegenerative diseases.PurposeTo identify and investigate lycorine as a UPS enhancer able to decrease α-syn in transgenic PD models.MethodsDot blot was used to screen α-syn-lowering compounds in an inducible α-syn overexpression cell model. Inducible wild-type (WT) and mutant α-syn-overexpressing PC12 cells, WT α-syn-overexpressing N2a cells and primary cultured neurons from A53T transgenic mice were used to evaluate the effects of lycorine on α-syn degradation in vitro. Heterozygous A53T transgenic mice were used to evaluate the effects of lycorine on α-syn degradation in vivo. mCherry-GFP-LC3 reporter was used to detect autophagy-dependent degradation. Ub-R-GFP and Ub-G76V-GFP reporters were used to detect UPS-dependent degradation. Proteasome activity was detected by fluorogenic substrate Suc-Leu-Leu-Val-Tyr-AMC (Suc-LLVY-AMC).ResultsLycorine significantly promoted clearance of over-expressed WT and mutant α-syn in neuronal cell lines and primary cultured neurons. More importantly, 15 days’ intraperitoneal administration of lycorine effectively promoted the degradation of α-syn in the brains of A53T transgenic mice. Mechanistically, lycorine accelerated α-syn degradation by activating cAMP-dependent protein kinase (PKA) to promote proteasome activity.ConclusionLycorine is a novel α-syn-lowering compound that works through PKA-mediated UPS activation. This ability to lower α-syn implies that lycorine has the potential to be developed as a pharmaceutical for the treatment of neurodegenerative diseases, such as PD, associated with UPS impairment and protein aggregations.  相似文献   

4.
The roots of Haemanthus kalbreyeri contain a new phenanthridone alkaloid, kalbretorine, and a new glucosyloxy alkaloid, kalbreclasine. Additionally, six known alkaloids, viz. haemanthamine, haemanthidine, hippadine, lycorine, narciclasine and pratorimine, previously reported from other Amaryllidaceous plants have now been isolated also from this species. Kalbretorine produced marked inhibition of growth and viability of S-180 tumour cells. Kalbreclasine caused significant mitogenic activation of splenic lymphocytes characteristic of immuno stimulants.  相似文献   

5.
The process of alkaloid biosynthesis by Pancratium maritimum shoot culture, cultivated under submerged conditions, was investigated. Twenty-two compounds of different structural types of the Amaryllidaceae alkaloids (tyramine, narciclasine, galanthamine, haemanthamine, lycorine, pancracine, tazettine and homolycorine types) were detected in the studied samples from biomass and cultural liquid. Dominant compounds in the shoots were of tyramine, lycorine and haemanthamine types, whereas in the culture media were found mainly lycorine type compounds. Based on the multi-metabolic estimation of the alkaloid metabolism and physiological peculiarities, liquid cultures of P. maritimum shoots could be defined as prospective biological systems for producing bioactive molecules with acetylcholinesterase inhibitory and apoptotic activities.  相似文献   

6.
A library of natural and semi-synthetic Amaryllidaceae alkaloids was screened for cytochrome P450 3A4 (CYP3A4) inhibitory activity. Of the crinane, lycorane and galanthamine representatives examined two semi-synthetic silylated lycorane analogues, accessed via a chemoselective silylation strategy from lycorine, and the natural compound narciclasine exhibited low micromolar activities. Important pharmacological features uncovered include the lack of CYP3A4 inhibitory activity seen for galanthamine and the selective activity that is seen with narciclasine over pancratistatin.  相似文献   

7.
The alkaloid patterns of sea daffodil (Pancratium maritimum L.) shoot culture, cultivated in a temporary immersion cultivation system were investigated. The shoots accumulated maximal amounts of biomass (0.8 g dry biomass/L and Growth Index?=?1.6) at immersion frequency with 15 min flooding and 12 h stand-by periods. At this regime P. maritimum shoots achieved the highest degree of utilization of carbon source. Twenty-two alkaloids, belonging to narciclasine, galanthamine, haemanthamine, lycorine, montanine, tazettine, homolycorine and tyramine types were identified in intracellular and extracellular alkaloid extracts. The immersion frequency affected strongly the capacity of alkaloid biosynthesis in P. maritimum shoots and at the optimum conditions of cultivation, the total intracellular alkaloid content reached up to 3,469 μg/g dry biomass. The main biosynthesized alkaloids were haemanthamine (900.1 μg/g) and lycorine (799.9 μg/g). The obtained results proved that temporary immersion technology, as a cultivation approach, and P. maritimum shoots, as a biological system, are prospective for producing wide range bioactive alkaloids.  相似文献   

8.
The polysaccharide composition of a fucoidan preparation isolated from the brown alga Saccharina latissima (formerly Laminaria saccharina) was reinvestigated. The preparation was fractionated by anion-exchange chromatography, and the fractions obtained were analyzed by chemical methods combined with NMR spectroscopy. Several 2D procedures, including HSQC, HMQC-TOCSY, and HMQC-NOESY, were used to obtain reliable structural information from the complex spectra, and the signal assignments were additionally confirmed by comparison with the literature spectra of the related polysaccharides and synthetic oligosaccharides. In accordance with the previous data, the main polysaccharide component was shown to be a fucan sulfate containing a backbone of 3-linked α-l-fucopyranose residues sulfated at C-4 and/or at C-2 and branched at C-2 by single sulfated α-l-fucopyranose residues. In addition, three other types of sulfated polysaccharide molecules were detected in the total fucoidan preparation: (i) a fucogalactan having a backbone of 6-linked β-d-galactopyranose residues branched mainly at C-4 and containing both terminal galactose and fucose residues; (ii) a fucoglucuronomannan having a backbone of alternating 4-linked β-d-glucopyranosyluronic acid and 2-linked α-d-mannopyranose residues with α-l-fucopyranose residues as single branches at C-3 of α-d-Manp; and (iii) a fucoglucuronan having a backbone of 3-linked β-d-glucopyranosyluronic acid residues with α-l-fucopyranose residues as single branches at C-4. Hence, even a single algal species may contain, at least in minor amounts, several sulfated polysaccharides differing in molecular structure. Partial resolution of these polysaccharides has been accomplished, but unambiguous evidence on their presence as separate entities was not obtained.  相似文献   

9.
A vancomycin aglycon analogue that possesses a reduced C-ring and an intact E-ring chloride was prepared and its antimicrobial activity towards Staphylococcus aureus and binding affinity to model cell wall ligands were established. Comparison of the derivative with a series of vancomycin aglycon analogues that possess and lack the chloro substituents on the aryl C- and E-rings defines the impact and further refines the role the C-ring chloride plays in promoting both target binding affinity and binding selectivity for d-Ala-d-Ala and its impact on antimicrobial activity.  相似文献   

10.
Several unnatural derivatives of narciclasine were prepared in which the C-7 carbon was replaced with nitrogen. The 7-aza derivative and its N-oxide were prepared by the coupling of iodopicolinic acid with a conduramine unit derived chemoenzymatically from bromobenzene. Intramolecular Heck reaction was used to construct the isocarbostyryl ring system. The compounds were submitted to biological screening against cancer cell lines. Full experimental and spectra data are provided for all new compounds.  相似文献   

11.
Several of the Amaryllidaceae alkaloids are known for their cytotoxic properties, of which the lycorine group representatives are prominent for potent and cell line specific antiproliferative activities. As a distinct niche within the lycorine group, the phenanthridones, exemplified by narciclasine and pancratistatin, have shown much promise as remarkably selective cytotoxic agents and are presently at various stages of development, with a clinical candidate likely to appear on the market within the next decade. The crinane group of the Amaryllidaceae has also spawned several molecules, such as crinamine and haemanthamine, with promising cytotoxic activities. In the present study, the β-crinane distichamine as well as the phenanthridone narciprimine, both rare constituents of the Amaryllidaceae, are revealed as novel antiproliferative agents. Apoptosis-inducing effects are demonstrated for distichamine in human acute lymphoblastic leukemia (CEM) cells. These findings provide further insights to the structural details of the apoptosis-inducing pharmacophores resident within both series of alkaloids.  相似文献   

12.
Several 1-O-sulfonyl derivatives of d-mannopyranose having a nonparticipating benzyl ether group at C-2 and ester functions at C-6 and C-4 were synthesized from the corresponding d-mannopyranosyl chloride derivatives with silver sulfonates in acetonitrile. The reaction of 1-O-sulfonyl-d-mannopyranose compounds with methanol in various solvents at room temperature gave high yields of glycosides with low degrees of stercoselectivity. On the other hand, 1-O-suffonyl-d-mannopyranose derivatives having an acyl participating-group at O-2 and benzyl ethers at C-3, C-4, and C-6 gave high yields and high stereoselectivity of α-d-mannopyranosides with primary and secondary alcohols in several solvents. Model studies were carried out to determine the best combination of 2-O-acyl group, solvent, time, temperature, and 1-O-sufonyl group to give high yields with high stereoselectivity. The method has been used to prepare in good yields more complex glycosides, including perbenzylated methy 2-O-(α-d-mannopyranosyl)-α-d-mannopyranoside.  相似文献   

13.
A series of lanostane-type triterpenoids, identified as ganoderma alcohols and ganoderma acids, were isolated from the fruiting body of Ganoderma lingzhi. Some of these compounds were confirmed as active inhibitors of the in vitro human recombinant aldose reductase. This paper aims to explain the structural requirement for α-glucosidase inhibition. Our structure–activity studies of ganoderma alcohols showed that the OH substituent at C-3 and the double-bond moiety at C-24 and C-25 are necessary to increase α-glucosidase inhibitory activity. The structure–activity relationships of ganoderma acids revealed that the OH substituent at C-11 is an important feature and that the carboxylic group in the side chain is essential for the recognition of α-glucosidase inhibitory activity. Moreover, the double-bond moiety at C-20 and C-22 in the side chain and the OH substituent at C-3 of ganoderma acids improve α-glucosidase inhibitory activity.These results provide an approach with which to consider the structural requirements of lanostane-type triterpenoids from G. lingzhi. An understanding of these requirements is considered necessary in order to improve a new type of α-glucosidase inhibitor.  相似文献   

14.
The synthesis of a novel aminomethyl C-3 substituted l-fuco-azafagomine and of its C-6 epimer from d-lyxose is reported. The key step of the synthesis is the introduction of the biimino (–NH–NH–) moiety by reductive hydrazination of a 1-deoxy-ketohexose with tert-butyl carbazate. The 3-aminomethyl-azafagomine derivatives were used as lead compounds in the generation of libraries of novel types of derivatives by attaching different hydrophobic groups on the aminomethyl substituent through amide linkages. These polyhydroxylated hexahydropyridazines can be viewed as a new type of diaza-C-glycoside analogues having a biimino (–NH–NH–) moiety. The conformational analysis and the glycosidase inhibitory properties of all the new C-3 substituted azafagomines synthesized are also reported. Those having l-fuco configuration have shown a selective inhibition of α-l-fucosidases.  相似文献   

15.
Analogues of the α-Glcp-(1→3)-α-Glcp and α-Glcp-(1→3)-α-Manp disaccharides (representing the two α-gluco linkages cleaved by α-Glucosidase II in N-glycan biosynthesis) in which the non-reducing-end sugar is replaced by a carbasugar and the inter-glycosidic oxygen by a sulfur were synthesised. The key coupling step was an SN2 displacement of an equatorial triflate at C-1 of the carbasugar by C-3 gluco or manno thiolates with inversion of configuration to give thioether pseudodisaccharides with axial substitution at C-1 of the carbasugar. The deprotected pseudodisaccharides failed to inhibit the action of α-Glucosidase II as measured both by an in vitro assay and by free oligosaccharide (FOS) analysis from cell studies.  相似文献   

16.
The mechanism of, and the solvent effects in, the Koenigs—Knorr reaction of D-glucosyl chlorides having a non-participating group at C-2, using silver perchlorate as principal catalyst, were investigated. When a large excess of methanol was used, methyl D-glucopyranosides with inversion of the configuration at C-1 were predominantly obtained, except in one case. When 1 molar equivalent of nucleophile, such as methanol, methyl trityl ether, or 2-propanol, was used, the ratio of α- and β-D-glucopyranosides obtained varied with the solvent used. It is proposed that the reactions proceed via a common intermediate such as a D-glucosyl-perchlorate. The following conclusions are made for the preparation of α-D-glucopyranosides: anhydrous ether is a preferable solvent, silver perchlorate and sym-collidine are superior to a mixture of silver perchlorate and silver carbonate in the presence of Drierite, β-D-glucosyl chloride is preferred to the α-D anomer, and the solvent and reagents should be as dry as possible.  相似文献   

17.
Nitroxide spin-labeled α-d-glycopyranosides were synthesized in good yield and in a highly stereoselective manner by reaction of per-O-benzyl-α-d-glycopyranosyl bromides with 2,2,6,6-tetramethyl-4-piperidinol under the bromide ion-catalyzed conditions devised by Lemieux etal. After hydrogenolysis, the deblocked intermidiates were oxidized to give the desired, spin-labeled α-d-glycopyranosides. Nitroxide spin-labeled α-d-glycopyranosides, as well as a β-maltoside, were synthesized by standard methods. The synthesis is also described of 2-amino-2-deoxy-d-glucose and -d-galactose derivatives having a spin label at C-2, and of the spin-labeled compound 1-[4-(β-d-galactopyranosyloxy)phenyl]-3-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-yl)-2-thiourea.  相似文献   

18.
Background: Highly effective novel treatments need to be developed to suppress emerging coronavirus (CoV) infections such as COVID-19. The RNA dependent RNA polymerase (RdRp) among the viral proteins is known as an effective antiviral target. Lycorine is a phenanthridine Amaryllidaceae alkaloid isolated from the bulbs of Lycoris radiata (L'Hér.) Herb. and has various pharmacological bioactivities including antiviral function.Purpose: We investigated the direct-inhibiting action of lycorine on CoV's RdRp, as potential treatment for emerging CoV infections.Methods: We examined the inhibitory effect of lycorine on MERS-CoV, SARS-CoV, and SARS-CoV-2 infections, and then quantitatively measured the inhibitory effect of lycorine on MERS-CoV RdRp activity using a cell-based reporter assay. Finally, we performed the docking simulation with lycorine and SARS-CoV-2 RdRp.Results: Lycorine efficiently inhibited these CoVs with IC50 values of 2.123 ± 0.053, 1.021 ± 0.025, and 0.878 ± 0.022 μM, respectively, comparable with anti-CoV effects of remdesivir. Lycorine directly inhibited MERS-CoV RdRp activity with an IC50 of 1.406 ± 0.260 μM, compared with remdesivir's IC50 value of 6.335 ± 0.731 μM. In addition, docking simulation showed that lycorine interacts with SARS-CoV-2 RdRp at the Asp623, Asn691, and Ser759 residues through hydrogen bonding, at which the binding affinities of lycorine (−6.2 kcal/mol) were higher than those of remdesivir (−4.7 kcal/mol).Conclusions: Lycorine is a potent non-nucleoside direct-acting antiviral against emerging coronavirus infections and acts by inhibiting viral RdRp activity; therefore, lycorine may be a candidate against the current COVID-19 pandemic.  相似文献   

19.
20.
Seventy alkaloids of galanthamine, lycorine, homolycorine, tazettine, haemanthamine, narciclasine, and tyramine types were detected by GC/MS in 25 Galanthus elwesii and seven Galanthus nivalis populations, collected from different locations in Bulgaria. Intraspecies diversity in the alkaloid profiles regarding the main alkaloid types (chemotypes) was observed. Tyramine-type protoalkaloids (namely, hordenine and its derivatives) were dominant in 19 populations of G. elwesii. In other populations of G. elwesii, the plants accumulated mainly homolycorine-, lycorine-, and galanthamine-type alkaloids. The alkaloid profiles of G. nivalis were dominated by narciclasine-, galanthamine-, lycorine-, haemanthamine-, or tazettine-type compounds. Geographical distribution of chemotypes indicated a relationship between populations, since adjacent populations often displayed similar alkaloid profiles. The results from year-to-year sampling and transplantation experiments imply genetic determination of alkaloid synthesis in the two studied species of Galanthus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号