首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A facile and efficient way for the synthesis of cholestane and furostan saponin analogues was established and adopted for the first time. Following this strategy, starting from diosgenin, three novel cholestane saponin analogues: (22S,25R)-3β,22,26-trihydroxy-cholest-5-ene-16-one 22-O-[O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside] 11, (25R)-3β,16β,26-trihydroxy-cholest-5-ene-22-one 16-O-[O-α-l-rhamnopyranosyl-(1  2)-α-d-glucopyranoside] 14 and (25R)-3β,16β,26-trihydroxy-cholest-5-ene-22-one 16-O-[O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside] 17, three novel furostan saponin analogues: (22S,25R)-furost-5-ene-3β,22,26-triol 22-O-(α-d-glucopyranoside) 23, (22R,25R)-furost-5-ene-3β,22,26-triol 22-O-(α-d-glucopyranoside) 24 and (22S,25R)-furost-5-ene-3β,22,26-triol 22-O-[O-α-l-rhamnopyranosyl-(1  2)-α-d-glucopyranoside] 26, were synthesized ultimately. The structures of all the synthesized analogues were confirmed by spectroscopic methods. The S-chirality at C-22 of cholestane was confirmed by Mosher's method. The absolute configuration at C-22 of furostan saponin analogues was distinguished by conformational analysis combined with the NMR spectroscopy. The cytotoxicities of the synthetic analogues toward four types of tumor cells were shown also.  相似文献   

2.
Two new acylated triterpenoid saponins named pendulaosides A and B as well as the known phenolic compounds methyl gallate, gallic acid, 1,2,3,6-tera-O-galloyl-β-d-glucose and 1,2,3,4,6-penta-O-galloyl-β-d-glucose, were isolated from the seeds of Harpullia pendula. The structures of pendulaosides A and B were determined using extensive 1D and 2D NMR analysis and mass spectrometry as well as acid hydrolysis, as 3-O-β-d-glucopyranosyl-(1→2)-[α-L-arabinofuranosyl-(1→3)]-β-d-glucuronopyranosyl-22-O-angeloyl-3β,16α,22α,24β,28-pentahydroxylolean-12-ene and 3-O-β-d-glucopyranosyl-(1→2)-[α-L-arabinofuranosyl-(1→3)]-β-d-glucuronopyranosyl-16-O-(2-methylbutyroyl)-3β,16α,22α,24β,28-pentahydroxylolean-12-ene, respectively. To the best of our knowledge the two triterpene parts 22-O-angeloyl-3β,16α,22α,24β,28-pentahydroxylolean-12-ene and16-O-(2-methylbutyroyl)-3β,16α,22α,24β,28-pentahydroxylolean-12-ene have never been characterized before. The two isolated saponins were assayed for their in-vitro cytotoxic activity against the three human tumor cell lines HepG2, MCF7 and PC3. The results showed that pendulaoside A exhibited moderate activity on PC3 cell line with IC50value equal to 13.0 μM and weak activity on HepG2 cell line with IC50 value equal to 41.0 μM. Pendulaoside B proved to be inactive against the three used cell lines.  相似文献   

3.
Three spirostanol and two furostanol glycosides were isolated from a methanol extract of the roots of Asparagus curillus and characterized as 3-O-[α-l-arabinopyranosyl (1→4)- β-d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-[{α-l-rhamnopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-(25S)-5β-spirostan- 3β-ol, 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β- d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]- 22α-methoxy-(25S)-5β-furostan-3β, 26-diol and 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]- (25S)-5β-furostan-3β, 22α, 26-triol respectively.  相似文献   

4.
Three new saponins, melongosides N, O and P, have been isolated from the methanolic extract of seeds of Solanum melongena and their structures elucidated. Melongoside N is 3-O-[β-D-glucopyranosy l-(1 → 2)-β-D-glucopyranosyl]-26-O-(β-D-glucopyranosyl)-(25R)-5α-furostan-3β,22 α,26-triol, whereas melongoside O is 3-O-[β-D-glucopyranosyl-(1 → 2)β-D-glucopyranosyl]- 26-O-(β-D-glucopyranosyl)-(25R)-furost-5-en-3β,22α,26-triol and melongoside P is 3-O- [β-D-glucopyranosyl-(1 → 2)]-[α-L-rhamnopyranosyl-(1 → 3)]-β-D-glucopyranosyl)-26-O- (β-D-glucopyranosyl)-(25 R)-5α-furostan-3β,22α,26-triol.  相似文献   

5.
Two new steroid glycosides from the starfish Fromia milleporella collected in the Seychelles were isolated and characterized: milleporoside A, (20R, 24R)-29-O-[3-O-methyl-β-D-xylopyranosyl-(1→4)-3-O-methyl-β-D-xylopyranosyl]-24-ethyl-5α-cholestane-3β,4β,6α,8,15β,16β,29-heptaol, and milleporoside B, (20R, 24R)-(22E)-28-O-[3-O-methyl-β-D-xylopyranosyl-(1→4)-3-O-methyl-β-D-xylopyranosyl]-24-methyl-5α-cholest-22-ene-3β,4β,6α,8,15β,16β,28-heptaol. The structures of the glycosides were determined from their spectra and a comparison with spectral characteristics of known compounds. These compounds exhibit a moderate cytostatic activity toward the embryos of the sea urchin Strongylocentrotus intermedius.  相似文献   

6.
Withanolide D, 7β-acetoxy-withanolide D and two new withanolide glycosides, named dunawithanines A and B, were isolated from Dunalia australis. From physical data and chemical transformations, the structures of the new compounds were determined as (20R,22R-O(3)-[2′,3′-di-O-(β-D-glucopyranosyl)-β-D-glucopyranosyl]-3β,20-dihydroxy-1α-acetoxy-witha-5,24-dienolide and the corresponding O(3)-[β-D-glucopyranosyl(1′ → x)-β-D- glucopyranosyl] compound, representing the first withanolide glycosides found in the plant kingdom.  相似文献   

7.
Thirteen steroidal saponins were isolated from the leaves of Beaucarnea recurvata Lem. Their structures were established using one- and two-dimensional NMR spectroscopy and mass spectrometry. Six of them were identified as: 26-O-β-d-glucopyranosyl (25S)-furosta-5,20(22)-diene 1β,3β,26-triol 1-O-α-l-rhamnopyranosyl-(1 → 2) β-d-fucopyranoside, 26-O-β-d-glucopyranosyl (25S)-furosta-5,20(22)-diene 1β,3β,26-triol 1-O-α-l-rhamnopyranosyl-(1 → 2)-4-O-acetyl-β-d-fucopyranoside, 26-O-β-d-glucopyranosyl (25R)-furosta-5,20(22)-diene-23-one-1β,3β,26-triol 1-O-α-l-rhamnopyranosyl-(1 → 2) β-d-fucopyranoside, 26-O-β-d-glucopyranosyl (25S)-furosta-5-ene-1β,3β,22α,26-tetrol 1-O-α-l-rhamnopyranosyl-(1 → 4)-6-O-acetyl-β-d-glucopyranoside, 26-O-β-d-glucopyranosyl (25S)-furosta-5-ene-1β,3β,22α,26-tetrol 1-O-α-l-rhamnopyranosyl-(1 → 2) β-d-fucopyranoside, and 24-O-β-d-glucopyranosyl (25R)-spirost-5-ene-1β,3β,24-triol 1-O-α-l-rhamnopyranosyl-(1 → 2)-4-O-acetyl-β-d-fucopyranoside. The chemotaxonomic classification of B. recurvata in the family Ruscaceae was discussed.  相似文献   

8.
From the methanol extract of the fruits of Asparagus adscendens sitosterol-β-d-glucoside, two spirostanol glycosides (asparanin A and B) and two furostanol glycosides (asparoside A and B) were isolated and characterized as 3-O-[β-d-glucopyranosyl (1→2)-β-d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-{[β-d-glucopyranosyl(1→2)][α-l-rhamnopyranosyl(1→4)]-β-d-glucopyranosyl}-(25S)-5β-spirostan-3β-ol,3-O-{[β-d-glucopyranosyl(1→2)][α-l-rhamnopyranosyl(1→4)]-β-d-glucopyranosyl|} -26-O-(β- d-glucopyranosyl)-22α-methoxy-(25S)-5β-furostan-3β,26-diol and 3-O-{[β-d-glucopyranosyl(1→2)][α-l-rhamnopyranosyl(1→4)]-β-d-glucopyranosyl}-26-O-(β-d-glucopyranosyl)- 25S)-5β-furostan-3β,22α, 26-triol, respectively.  相似文献   

9.
In the search of natural compounds inhibiting methane production in ruminants three novel steroidal saponins have been isolated from the aerial parts of Helleborus viridis L. Their structures have been established based on spectral analyses as: (25R)-26-O-β-d-glucopyranosyl-5β-furostan-3β,22α,26-triol 3-O-β-d-glucopyranosyl-(1  6)-O-β-d-glucopyranoside, (25R)-26-O-β-d-glucopyranosyl-5α-furostan-3β,22α,26-triol 3-O-β-d-glucopyranosyl-(1  6)-O-β-d-glucopyranoside and (25R)-26-O-β-d-glucopyranosyl-furost-5-ene-1β,3β,22α,26-tetraol 1-O-{α-l-rhamnopyranosyl-(1  2)-O-[β-d-glucopyranosyl-(1  3)]-6-O-acetoxy-β-d-glucopyranoside}.  相似文献   

10.
A phytochemical analysis of the bulbs of Allium vavilovii M. Pop. & Vved. was attained for the first time extensively, affording to the isolation of four new furostanol saponins, named vavilosides A1/A2–B1/B2 (1a/b–2a/2b), as two couple of isomers in equilibrium, together with ascalonicoside A1/A2 (3a/3b) and 22-O-methyl ascalonicoside A1/A2 (4a/4b), previously isolated from shallot, Allium ascalonicum. High concentrations of kaempferol, kaempferide, and kaempferol 4I-glucoside were also isolated. The chemical structures of the new compounds, established through a combination of extensive nuclear magnetic resonance, mass spectrometry and chemical analyses, were identified as (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-α-l-rhamnopyranosyl-(1→2)-O-β-d-galactopyranosyl 26-O-α-l-rhamnopyranoside (vaviloside A1), (25R)-furost-5(6)-en-1β,3β,22β,26-tetraol 1-O-α-l-rhamnopyranosyl-(1→2)-O-β-d-galactopyranosyl 26-O-α-l-rhamnopyranoside (vaviloside A2), (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-α-l-rhamnopyranosyl-(1→2)-O-β-d-xylopyranosyl 26-O-α-l-rhamnopyranoside (vaviloside B1), (25R)-furost-5(6)-en-1β,3β,22β,26-tetraol 1-O-α-l-rhamnopyranosyl-(1→2)-O-β-d-xylopyranosyl 26-O-α-l-rhamnopyranoside (vaviloside B2). The isolated saponins showed cytotoxic activity on J-774, murine monocyte/macrophage, and WEHI-164, murine fibrosarcoma, cell lines with the following rank: vaviloside B1/B2 > ascalonicoside A1/A2 > vaviloside A1/A2.  相似文献   

11.
Three new steroidal saponins, spirosta-5,25(27)-diene-1β,3β-diol-1-O-α-l-rhamnopyranosyl-(1→2)-β-d-fucopyranoside (fruticoside H) 1, 5α-spirost-25(27)-ene-1β,3β-diol-1-O-α-l-rhamnopyranosyl-(1→2)-(4-O-sulfo)-β-d-fucopyranoside (fruticoside I) 2, and (22S)-cholest-5-ene-1β,3β,16β,22-tetrol 1-O-β-galactopyranosyl-16-O-α-l-rhamnopyranoside (fruticoside J) 3, together with the known quercetin 3-O-β-d-glucopyranoside, quercetin 3-O-[6-trans-p-coumaroyl]-β-d-glucopyranoside, quercetin 3-rutinoside, apigenin 8-C-β-d-glucopyranoside and farrerol, were isolated from the leaves of Cordyline fruticosa. Their structures were elucidated by spectroscopic techniques (1H NMR, 13C NMR, HSQC, 1H–1H COSY, HMBC, TOCSY, NOESY), mass spectrometry (HRESIMS, Tandem MS–MS), chemical methods and by comparison with published data. Compounds 1 and 2 showed moderate cytotoxic activity against MDA-MB 231 human breast adenocarcinoma cell line, HCT 116 human colon carcinoma cell line, and A375 human malignant melanoma cell line, while compound 3 was not active. Compound 2 also showed a moderate antibacterial activity against the Gram-positive Enterococcus faecalis.  相似文献   

12.
Two new furostanol glycosides trigofoenosides A and D have been isolated from the Trigonella foenum-graecum seeds as their methyl ethers, A-1 and D-1. Their structures have been determined as (25S)-22-O-methyl-furost-5-ene-3β,26-diol, 3-O-α-L-rhamnopyranosyl (1 → 2)-β-D-glucopyranoside; 26-O-β-D-glucopyranoside (A-1) and (25S)-22-O-methyl-furost-5-ene-3β,26-diol, 3-O-α-L-rhamnopyranosyl (1 → 2)-[β-D-glucopyranosyl (1 → 3)]-β-D-glucopyranoside; 26-O-β-D-glucopyranoside (D-1).  相似文献   

13.
Two new steroid glycosides: distolasteroside D6, (24S)-24-O-(β-D-xylopyranosyl)-5α-cholestane-3β,6α,8,15β,16β,24-hexaol, and distolasteroside D7, (22E,24R)-24-O-(β-D-xylopyranosyl)-5α-cholest-22-ene-3β,6α,8,15β,24-pentaol were isolated along with the previously known distolasterosides D1, D2, and D3, echinasteroside C, and (25S)-5α-cholestane-3β4β,6α,7α,8,15α,16β,26-octaol from the Far Eastern starfish Distolasterias nipon. The structures of new compounds were elucidated by NMR spectroscopy and MALDI TOF mass spectrometry. Like neurotrophins, distolasterosides D1, D2, and D3 were shown to induce neuroblast differentiation in a mouse neuroblastoma C1300 cell culture.  相似文献   

14.
Two oligofurostanosides and two spirostanosides, isolated from a methanol extract of Asparagus adscendens (leaves), were characterized as 3-O-[{α-l-rhamnopyranosyl (1 → 4)} {α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]-22α-methoxy-(25S)-furost-5-en-3β,26-diol (Adscendoside A), 3-O-[{α-l-rhamnopyranosyl (1 → 4)} {α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]-(25S)-furost-5-en-3β,22α,26-triol-(Adscendoside B), 3-O-[{α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyranosyl]-(25S)-spirostan-5-en-3β-ol (Adscendin A) and 3-O-[{α-l-rhamnopyranosyl (1 → 4)} {α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyr anosyl]-(25S)-spirostan-5-en-3β-ol (Adscendin B), respectively. Adscendin B and Adscendoside A are the artefacts of Adscendoside B formed through hydrolysis and methanol extraction respectively.bl]  相似文献   

15.
Two new saponins, yuccoside C and protoyuccoside C, have been isolated from the methanolic extract of Yucca filamentosa root and their structures elucidated. Yuccoside C is 3-O-[α-d-galactopyranosyl-(1 → 2)-β-d-glucopyranosyl-(1 → 4)-β-d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, whereas protoyuccoside C is 3-O-[α-d-galactopyranosyl-(1 → 2)-β-d-glucopyranosyl-(1 → 4)-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosy]-(25S)-5β-furostan-3β,22α,26-triol.  相似文献   

16.
The structure of costusoside I and costusoside J have been established as 3-O-{β-d-glucopyranosyl (1 → 2)-α-l-rhamnopyranosyl (1 → 2) [α-l-rhamnopyranosyl (1 → 4)]-β-d-glucopyranosyl}-26-O-(β-d-glucopyranosyl)-22α-methoxy 25 R)-furost-5-en-3β, 26-diol and its 22-hydroxy compound respectively, isolated fron the seeds of Costus speciosus.  相似文献   

17.
Five cycloartane-type triterpene glycosides were isolated from the methanol extract of the roots of Astragalus amblolepis Fischer along with one known saponin, 3-O-β-D-xylopyranosyl-16-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane. Structures of the compounds were established as 3-O-β-D-xylopyranosyl-25-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane, 3-O-[β-D-glucuronopyranosyl-(1 → 2)-β-D-xylopyranosyl]-25-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane, 3-O-β-D-xylopyranosyl-24,25-di-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane, 6-O-α-L-rhamnopyranosyl-16,24-di-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane, 6-O-α-L-rhamnopyranosyl-16,25-di-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy-cycloartane by using 1D and 2D-NMR techniques and mass spectrometry. To the best of our knowledge, the glucuronic acid moiety in cycloartanes is reported for the first time.  相似文献   

18.
Two new saponins beshornin and beshornoside have been isolated from the methanolic extract of Beshorneria yuccoides leaves and their structures elucidated. Beshornin is 3-O-[α-l-rhamnopyranosyl-(1 → 4)-β-d-glucopyranosyl- (1 → 2)-[α-l-rhamnopyranosyl-(1 -+ 4)-P-D-glucopyranosyl-(1 → 3)]-β-d-glucopyranosyl-(1 → 4)-β-d- galactopyranosyl-(25R)-5α-spirostan-3β-ol, whereas beshornoside is 3-O-[α-l-rhamnopyranosyl-(1 → 4)- β-d)-glycopyranosyl-(1 → 2)]-[α-l-rhamnopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 3)]-β-d-glucopyranosyl- (1 → 4)-β-d-galactopyranosyl 26-O-[β-d]-glucopyranosyl-(25R)-5α-furostan-3β,22α,26-triol.  相似文献   

19.
Six cycloartane-type triterpene glycosides were isolated from Astragalus icmadophilus along with two known cycloartane-type glycosides, five known oleanane-type triterpene glycosides and one known flavonol glycoside. The structures of the six compounds were established as 3-O-[α-L-arabinopyranosyl-(1  2)-O-3-acetoxy-α-L-arabinopyranosyl]-6-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane, 3-O-[α-L-rhamnopyranosyl-(1  2)-O-α-L-arabinopyranosyl-(1  2)-O-β-D-xylopyranosyl]-6-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy cycloartane, 3-O-[α-L-arabinopyranosyl-(1  2)-O-3,4-diacetoxy-α-L-arabinopyranosyl]-6-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane, 3-O-[α-L-arabinopyranosyl-(1  2)-O-3-acetoxy-α-L-arabinopyranosyl]-6-O-β-D-glucopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),24(S)-epoxycycloartane, 3-O-[α-L-arabinopyranosyl-(1  2)-O-β-D-xylopyranosyl]-6-O-β-D-glucopyranosyl-3β,6α,16β,24α-tetrahydroxy-20(R),25-epoxycycloartane, 3-O-[α-L-rhamnopyranosyl-(1  2)-O-α-L-arabinopyranosyl-(1  2)-O-β-D-xylopyranosyl]-6-O-β-D-glucopyranosyl-3β,6α,16β,24α-tetrahydroxy-20(R),25-epoxycycloartane by the extensive use of 1D- and 2D-NMR experiments along with ESIMS and HRMS analysis.The first four compounds are cyclocanthogenin and cycloastragenol glycosides, whereas the last two are based on cyclocephalogenin as aglycone, more unusual in the plant kingdom, so far reported only from Astragalus spp.  相似文献   

20.
From the seed of fenugreek, a new glycoside has been isolated and shown to have the structure, (25S)-22-O- methyl-5α-furostan-3β,22,26-triol 3-O-α-rhamnopyranosyl(1→2)[-β-d-glucopyranosyl (1→3)]-β-d- glucopyranoside-26-O-β-d-glucopyranoside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号