首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: To engineer Streptomyces tenebrarius for producing carbamoyl tobramycin as a main component. Methods and Results: The aprH‐M gene fragment (apramycin biosynthetic gene from GenBank) in S. tenebrarius Tt49 was knocked out by genetic engineering to form S. tenebrarius T106 (△aprH‐M). Compared to the wild‐type strain, mutant strain T106 (△aprH‐M) no longer produced apramycin, while mainly synthesize carbamoyl tobramycin. TLC and HPLC‐MS analyses indicated that the mutant strain significantly increased the production of carbamoyl tobramycin. Conclusions: The metabolic flow for the apramycin and its analogues biosynthesis was blocked by disrupting the aprH‐M gene clusters. The aprH‐M gene clusters might be essential for the biosynthesis of apramycin. The mutant strain T106 mainly synthesized carbamoyl tobramycin. Significance and Impact of Study: The mutant T106 mainly produces carbamoyl tobramycin without synthesizing apramycin, which will reduce cost of postextraction from fermentation products. Therefore, it has good prospects for industrial application.  相似文献   

2.
Du Y  Li T  Wang YG  Xia H 《Current microbiology》2004,49(2):99-107
Streptomyces tenebrarius H6 produces a variety of aminoglycoside antibiotics, such as apramycin, tobramycin, and kanamycin B. Primers were designed according to the highly conserved sequences of the dTDP-glucose-4,6-dehydratase genes, and a 0.6-kb PCR product was obtained from S. tenebrarius H6 genomic DNA. With the 0.6-kb PCR product as a probe, a BamHI 7.0-kb fragment was isolated. DNA sequence analysis of the 7.0-kb fragment revealed four ORFs and an incomplete ORF. In search of databases, the deduced product of one ORF (orfE) showed 62% identity to the dTDP-glucose-4,6-dehydratase, StrE of S. griseus. Three other ORFs (orfG1, orfG2, and orfGM) showed 55%, 62%, and 42% similarities, respectively, to glycosyltransferase from Clostridium acetobutylicum and mannosyltransferase from Xanthomonas axonopodis pv. citri str. 306 and glycosyltransferase from Pseudomonas putida KT2440. Upstream of the orfE was an incomplete ORF, and the deduced product showed 56% similarity to dTDP-4-dehydrorhamnose, StrL from S. griseus. The function of the orfE gene was studied by targeted gene disruption. The resulting mutant failed to produce tobramycin and kanamycin B, but still produced apramycin, suggesting that the orfE gene and linked gene cluster are essential for the biosynthesis of tobramycin and kanamycin B in S. tenebrarius H6.  相似文献   

3.
Genetic engineering as an important approach to strain optimization has received wide recognition. Recent advances in the studies on the biosynthetic pathways and gene clusters of Streptomyces make stain optimization by genetic alteration possible. Kanamycin B is a key intermediate in the manufacture of the important medicines dibekacin and arbekacin, which belong to a class of antibiotics known as the aminoglycosides. Kanamycin could be prepared by carbamoylkanamycin B hydrolysis. However, carbamoylkanamycin B production in Streptomyces tenebrarius H6 is very low. Therefore, we tried to obtain high kanamycin B-producing strains that produced kanamycin B as a main component. In our work, aprD3 and aprD4 were clarified to be responsible for deoxygenation in apramycin and tobramycin biosynthesis. Based on this information, genes aprD3, aprQ (deduced apramycin biosynthetic gene), and aprD4 were disrupted to optimize the production of carbamoylkanamycin B. Compared with wild-type strain, mutant strain SPU313 (ΔaprD3, ΔaprQ, and ΔaprD4) produced carbamoylkanamycin B as a single antibiotic, whose production increased approximately fivefold. To construct a strain producing kanamycin B instead of carbamoylkanamycin B, the carbamoyl-transfer gene tacA was inactivated in strain SPU313. Mutant strain SPU314 (ΔaprD3, ΔaprQ, ΔaprD4, and ΔtacA) specifically produced kanamycin B, which was proven by LC-MS. This work demonstrated careful genetic engineering could significantly improve production and eliminate undesired products.  相似文献   

4.
Aminoglycosides antibiotics negate dissociation and recycling of the bacterial ribosome’s subunits by binding to Helix 69 (H69) of 23S rRNA. The differential binding of various aminoglycosides to the chemically synthesized terminal domains of the Escherichia coli and human H69 has been characterized using spectroscopy, calorimetry and NMR. The unmodified E. coli H69 hairpin exhibited a significantly higher affinity for neomycin B and tobramycin than for paromomycin (Kds = 0.3 ± 0.1, 0.2 ± 0.2 and 5.4 ± 1.1 µM, respectively). The binding of streptomycin was too weak to assess. In contrast to the E. coli H69, the human 28S rRNA H69 had a considerable decrease in affinity for the antibiotics, an important validation of the bacterial target. The three conserved pseudouridine modifications (Ψ1911, Ψ1915, Ψ1917) occurring in the loop of the E. coli H69 affected the dissociation constant, but not the stoichiometry for the binding of paromomycin (Kd = 2.6 ± 0.1 µM). G1906 and G1921, observed by NMR spectrometry, figured predominantly in the aminoglycoside binding to H69. The higher affinity of the E. coli H69 for neomycin B and tobramycin, as compared to paromomycin and streptomycin, indicates differences in the efficacy of the aminoglycosides.  相似文献   

5.
Streptomyces tenebrarius is an industrially important microorganism, producing an antibiotic complex that mainly consists of the aminoglycosides apramycin, tobramycin carbamate, and kanamycin B carbamate. When S. tenebrarius is used for industrial tobramycin production, kanamycin B carbamate is an unwanted by-product. The two compounds differ only by one hydroxyl group, which is present in kanamycin carbamate but is reduced during biosynthesis of tobramycin. 13C metabolic flux analysis was used for elucidating connections between the primary carbon metabolism and the composition of the antibiotic complex. Metabolic flux maps were constructed for the cells grown on minimal medium with glucose or with a glucose-glycerol mixture as the carbon source. The addition of glycerol, which is more reduced than glucose, led to a three-times-greater reduction of the kanamycin portion of the antibiotic complex. The labeling indicated an active Entner-Doudoroff (ED) pathway, which was previously considered to be nonfunctional in Streptomyces. The activity of the pentose phosphate (PP) pathway was low (10 to 20% of the glucose uptake rate). The fluxes through Embden-Meyerhof-Parnas (EMP) and ED pathways were almost evenly distributed during the exponential growth on glucose. During the transition from growth phase to production phase, a metabolic shift was observed, characterized by a decreased flux through the ED pathway and increased fluxes through the EMP and PP pathways. Higher specific NADH and NADPH production rates were calculated in the cultivation on glucose-glycerol, which was associated with a lower percentage of nonreduced antibiotic kanamycin B carbamate.  相似文献   

6.
The medicinal value associated with complex polyketide and nonribosomal peptide natural products has prompted biosynthetic schemes dependent upon heterologous microbial hosts. Here we report the successful biosynthesis of yersiniabactin (Ybt), a model polyketide-nonribosomal peptide hybrid natural product, using Escherichia coli as a heterologous host. After introducing the biochemical pathway for Ybt into E. coli, biosynthesis was initially monitored qualitatively by mass spectrometry. Next, production of Ybt was quantified in a high-cell-density fermentation environment with titers reaching 67 ± 21 (mean ± standard deviation) mg/liter and a volumetric productivity of 1.1 ± 0.3 mg/liter-h. This success has implications for basic and applied studies on Ybt biosynthesis and also, more generally, for future production of polyketide, nonribosomal peptide, and mixed polyketide-nonribosomal peptide natural products using E. coli.  相似文献   

7.
The mevalonate-based isoprenoid biosynthetic pathway is responsible for producing cholesterol in humans and is used commercially to produce drugs, chemicals, and fuels. Heterologous expression of this pathway in Escherichia coli has enabled high-level production of the antimalarial drug artemisinin and the proposed biofuel bisabolane. Understanding the kinetics of the enzymes in the biosynthetic pathway is critical to optimize the pathway for high flux. We have characterized the kinetic parameters of phosphomevalonate kinase (PMK, EC 2.7.4.2) from Saccharomyces cerevisiae, a previously unstudied enzyme. An E. coli codon-optimized version of the S. cerevisiae gene was cloned into pET-52b+, then the C-terminal 6X His-tagged protein was expressed in E. coli BL21(DE3) and purified on a Ni2+ column. The KM of the ATP binding site was determined to be 98.3 µM at 30°C, the optimal growth temperature for S. cerevisiae, and 74.3 µM at 37°C, the optimal growth temperature for E. coli. The KM of the mevalonate-5-phosphate binding site was determined to be 885 µM at 30°C and 880 µM at 37°C. The Vmax was determined to be 4.51 µmol/min/mg enzyme at 30°C and 5.33 µmol/min/mg enzyme at 37°C. PMK is Mg2+ dependent, with maximal activity achieved at concentrations of 10 mM or greater. Maximum activity was observed at pH = 7.2. PMK was not found to be substrate inhibited, nor feedback inhibited by FPP at concentrations up to 10 µM FPP.  相似文献   

8.
The intention of this investigation was to evaluate the free radical scavenging activity and erythrocyte protective activity of ethanolic extract of Crinumasiaticum (L) and lycorine. The ethanolic extract of C. asiaticum (L) and lycorine were found to have different levels of antioxidant properties in the test models. Both ethanolic extract of C. asiaticum (L) (0.5–2.5 mg/ml) and lycorine (0.010 mg–0.050 mg/ml) increases the percentage of lipid peroxidation inhibition (26.25 ± 0.23% and 19.25 ± 0.23%) and enhances the free radical scavenging activity (20.92 ± 0.22% and 20.52 ± 0.22%), scavenging of hydrogen peroxide (25.67 ± 0.17% and 23.07 ± 0.3%) superoxide anion scavenging activity (27.69 ± 0.16% and 16.09 ± 0.7%) at concentration of 2.5 and 0.050 mg of C. asiaticum (L) and lycorine, respectively. But compared with tocopherol (P < 0.05) less activity was observed by C. asiaticum (L) and lycorine. The ethanolic extract of C. asiaticum (L) and lycorine were normalized to reduce the level of glutathione and also to sustain the status of protein in erythrocytes during the peroxyl radical [2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)] induced oxidative damage in ex vivo model. The present results of the investigations demonstrated that protective nature of the C. asiaticum (L) and lycorine will be considered as a significant natural antioxidant source.  相似文献   

9.

Background

The study was conducted to evaluate the in vitro thrombolytic activity, and in vivo analgesic, anti-inflammatory and antipyretic potentials of different hydrocarbon soluble extracts of Litsea glutinosa leaves for the first time widely used in the folkloric treatments in Bangladesh. This work aimed to create new insights on the fundamental mechanisms of the plant extracts involved in these activities.

Results

In thrombolytic activity assay, a significant clot disruption was observed at dose of 1 mg/mL for each of the extracts (volume 100 μL) when compared to the standard drug streptokinase. The n-hexane, ethyl acetate, chloroform, and crude methanolic extracts showed 32.23 ± 0.26, 37.67 ± 1.31, 43.13 ± 0.85, and 46.78 ± 0.9% clot lysis, respectively, whereas the positive control streptokinase showed 93.35 ± 0.35% disruption at the dose of 30,000 I.U. In hot plate method, the highest pain inhibitory activity was found at a dose of 500 mg/kg of crude extract (15.54 ± 0.37 sec) which differed significantly (P <0.01 and P <0.001) with that of the standard drug ketorolac (16.38 ± 0.27 sec). In acetic acid induced writhing test, the crude methanolic extract showed significant (P <0.01 and P <0.001) analgesic potential at doses 250 and 500 mg/kg body weight (45.98 and 56.32% inhibition, respectively), where ketorolac showed 64.36% inhibition. In anti-inflammatory activity test, the crude methanolic extract showed significant (P <0.001) potential at doses 250 and 500 mg/kg body weight (1.51 ± 0.04 and 1.47 ± 0.03 mm paw edema, respectively), where ketorolac showed 1.64 ± 0.05 mm edema after 3 h of carrageenan injection. In antipyretic activity assay, the crude extract showed notable reduction in body temperature (32.78 ± 0.46°C) at dose of 500 mg/kg-body weight, when the standard (at dose 150 mg/kg-body weight) exerted 33.32 ± 0.67°C temperature after 3 h of administration.

Conclusions

Our results yield that the crude hydroalcoholic extract has better effects than the other in all trials. In the context, it can be said that the leaves of L. glutinosa possess remarkable pharmacological effects, and justify its traditional use as analgesic, antipyretic, anti-inflammatory, and thrombolytic agent.  相似文献   

10.
Owing to a striking, and most likely fortuitous, structural and sequence similarity with the bacterial 16 S ribosomal A site, the RNA kissing-loop complex formed by the HIV-1 genomic RNA dimerization initiation site (DIS) specifically binds 4,5-disubstituted 2-deoxystreptamine (2-DOS) aminoglycoside antibiotics. We used chemical probing, molecular modeling, isothermal titration calorimetry (ITC) and UV melting to investigate aminoglycoside binding to the DIS loop–loop complex. We showed that apramycin, an aminoglycoside containing a bicyclic moiety, also binds the DIS, but in a different way than 4,5-disubstituted 2-DOS aminoglycosides. The determination of thermodynamic parameters for various aminoglycosides revealed the role of the different rings in the drug–RNA interaction. Surprisingly, we found that the affinity of lividomycin and neomycin for the DIS (Kd ~ 30 nM) is significantly higher than that obtained in the same experimental conditions for their natural target, the bacterial A site (Kd ~ 1.6 µM). In good agreement with their respective affinity, aminoglycoside increase the melting temperature of the loop–loop interaction and also block the conversion from kissing-loop complex to extended duplex. Taken together, our data might be useful for selecting new molecules with improved specificity and affinity toward the HIV-1 DIS RNA.  相似文献   

11.
Aerosols of microorganisms were tested for particle size by use of an Andersen sampler. Mycoplasma aerosols had an average count median diameter (CMD) of 2.1 ± 0.5 μ. Staphylococcus aureus L forms gave an average CMD of 4.6 ± 1.7 μ; the diphtheroid L form, a CMD of 3.4 ± 0.3 μ. Escherichia coli had a CMD of 5.4 ± 2.5 μ; Neisseria sicca, 3.3 ± 0.5 μ; N. meningitidis, 3.4 ± 0.2 μ. S. aureus ATCC 6538, the parent strain of the L form, yielded a CMD of 3.9 ± 1.2 μ. Candida albicans gave an average CMD of 5.9 ± 1.4 μ. All organisms tested survived aerosolizing and could be recovered in viable form for at least 1 hr. Ultraviolet radiation at 2,537 A destroyed the bacteria and mycoplasmas instantaneously, and destroyed 87% of the L forms of S. aureus, 69% of the diphtheroid L form, and 98% of the C. albicans cells. After irradiation, viable particles of the L form and C. albicans aerosols were consistently larger, indicating that clumping led to survival. Submicron size particles were found in aerosols of all species tested except C. albicans.  相似文献   

12.
Campesterol is an important precursor for many sterol drugs, e.g. progesterone and hydrocortisone. In order to produce campesterol in Yarrowia lipolytica, C-22 desaturase encoding gene ERG5 was disrupted and the heterologous 7-dehydrocholesterol reductase (DHCR7) encoding gene was constitutively expressed. The codon-optimized DHCR7 from Rallus norvegicus, Oryza saliva and Xenapus laevis were explored and the strain with the gene DHCR7 from X. laevis achieved the highest titer of campesterol due to D409 in substrate binding sites. In presence of glucose as the carbon source, higher biomass conversion yield and product yield were achieved in shake flask compared to that using glycerol and sunflower seed oil. Nevertheless, better cell growth rate was observed in medium with sunflower seed oil as the sole carbon source. Through high cell density fed-batch fermentation under carbon source restriction strategy, a titer of 453±24.7 mg/L campesterol was achieved with sunflower seed oil as the carbon source, which is the highest reported microbial titer known. Our study has greatly enhanced campesterol accumulation in Y. lipolytica, providing new insight into producing complex and desired molecules in microbes.  相似文献   

13.

Objectives

Increased plasma C-reactive protein (CRP) levels are associated with the occurrence and severity of acute coronary syndrome. We investigated whether CRP can be generated in vascular endothelial cells (ECs) after exposure to the most electronegative subfraction of low-density lipoprotein (LDL), L5, which is atherogenic to ECs. Because L5 and CRP are both ligands for the lectin-like oxidized LDL receptor-1 (LOX-1), we also examined the role of LOX-1.

Methods and Results

Plasma LDL samples isolated from asymptomatic hypercholesterolemic (LDL cholesterol [LDL-C] levels, 154.6±20 mg/dL; n = 7) patients and normocholesterolemic (LDL-C levels, 86.1±21 mg/dL; P<0.001; n = 7) control individuals were chromatographically resolved into 5 subfractions, L1-L5. The L5 percentage (L5%) and the plasma L5 concentration ([L5]  =  L5% × LDL-C) in the patient and control groups were 8.1±2% vs. 2.3±1% (P<0.001) and 12.6±4 mg/dL vs. 1.9±1 mg/dL (P<0.001), respectively. In hypercholesterolemic patients treated with atorvastatin for 6 months (10 mg/day), [L5] decreased from 12.6±4 mg/dL to 4.5±1.1 mg/dL (P = 0.011; n = 5), whereas both [L5] and L5% returned to baseline levels in 2 noncompliant patients 3 months after discontinuation. In cultured human aortic ECs (HAECs), L5 upregulated CRP expression in a dose- and time-dependent manner up to 2.5-fold (P<0.01), whereas the least electronegative subfraction, L1, had no effect. DiI-labeled L1, internalized through the LDL receptor, became visible inside HAECs within 30 seconds. In contrast, DiI-labeled L5, internalized through LOX-1, became apparent after 5 minutes. L5-induced CRP expression manifested at 30 minutes and was attenuated by neutralizing LOX-1. After 30 minutes, L5 but not L1 induced reactive oxygen species (ROS) production. Both L5-induced ROS and CRP production were attenuated by ROS inhibitor N-acetyl cysteine.

Conclusions

Our results suggest that CRP, L5, and LOX-1 form a cyclic mechanism in atherogenesis and that reducing plasma L5 levels with atorvastatin disrupts the vascular toxicity of L5.  相似文献   

14.
Two Salmonella typhimurium strains, which could be used as sources for the leucine biosynthetic intermediates α- and β-isopropylmalate were constructed by a series of P22-mediated transductions. One strain, JK527 [flr-19 leuA2010 Δ(leuD-ara)798 fol-162], accumulated and excreted α-isopropylmalate, whereas the second strain, JK553 (flr-19 leuA2010 leuB698), accumulated and excreted α- and β-isopropylmalate. The yield of α-isopropylmalate isolated from the culture medium of JK527 was more than five times the amount obtained from a comparable volume of medium in which Neurospora crassa strain FLR92-1-216 (normally used as the source for α- and β-isopropylmalate) was grown. Not only was the yield greater, but S. typhimurium strains are much easier to handle and grow to saturation much faster than N. crassa strains. The combination of the two regulatory mutations flr-19, which results in constitutive expression of the leucine operon, and leuA2010, which renders the first leucine-specific biosynthetic enzyme insensitive to feedback inhibition by leucine, generated limitations in the production of valine and pantothenic acid. The efficient, irreversible, and unregulated conversion of α-ketoisovaleric acid into α-isopropylmalate (α-isopropylmalate synthetase Km for α-ketoisovaleric acid, 6 × 10−5 M) severely restricted the amount of α-ketoisovaleric acid available for conversion into valine and pantothenic acid (ketopantoate hydroxymethyltransferase Km for α-ketoisovaleric acid, 1.1 × 10−3 M; transaminase B Km for α-ketoisovaleric acid, 2 × 10−3 M).  相似文献   

15.
(R)‐(+)‐perillyl alcohol is widely used in agricultural and anticarcinogenic fields. Microbial production of (R)‐(+)‐perillyl alcohol was investigated in this study. We optimized biosynthesis of (R)‐(+)‐perillyl alcohol in Escherichia coli by using neryl pyrophosphate synthase and NADPH regeneration. Engineering neryl pyrophosphate (NPP)‐supplied pathway resulted in a 4‐fold improvement of (R)‐(+)‐perillyl alcohol titer. Subsequently, combined engineering of p‐cymene monooxygenase (CymA) expression and module for NADPH regeneration exhibited a 15.4‐fold increase of titer over the initial strain S02. Finally, 453 mg/L (R)‐(+)‐perillyl alcohol was achieved in fed‐batch fermentation, which is the highest (R)‐(+)‐perillyl alcohol titer in E. coli.  相似文献   

16.

Background

During acute pancreatitis (AP), oxidative stress contributes to intestinal barrier failure. We studied actions of multispecies probiotics on barrier dysfunction and oxidative stress in experimental AP.

Methodology/Principal Findings

Fifty-three male Spraque-Dawley rats were randomly allocated into five groups: 1) controls, non-operated, 2) sham-operated, 3) AP, 4) AP and probiotics and 5) AP and placebo. AP was induced by intraductal glycodeoxycholate infusion and intravenous cerulein (6 h). Daily probiotics or placebo were administered intragastrically, starting five days prior to AP. After cerulein infusion, ileal mucosa was collected for measurements of E. coli K12 and 51Cr-EDTA passage in Ussing chambers. Tight junction proteins were investigated by confocal immunofluorescence imaging. Ileal mucosal apoptosis, lipid peroxidation, and glutathione levels were determined and glutamate-cysteine-ligase activity and expression were quantified. AP-induced barrier dysfunction was characterized by epithelial cell apoptosis and alterations of tight junction proteins (i.e. disruption of occludin and claudin-1 and up-regulation of claudin-2) and correlated with lipid peroxidation (r>0.8). Probiotic pre-treatment diminished the AP-induced increase in E. coli passage (probiotics 57.4±33.5 vs. placebo 223.7±93.7 a.u.; P<0.001), 51Cr-EDTA flux (16.7±10.1 vs. 32.1±10.0 cm/s10−6; P<0.005), apoptosis, lipid peroxidation (0.42±0.13 vs. 1.62±0.53 pmol MDA/mg protein; P<0.001), and prevented tight junction protein disruption. AP-induced decline in glutathione was not only prevented (14.33±1.47 vs. 8.82±1.30 nmol/mg protein, P<0.001), but probiotics even increased mucosal glutathione compared with sham rats (14.33±1.47 vs. 10.70±1.74 nmol/mg protein, P<0.001). Glutamate-cysteine-ligase activity, which is rate-limiting in glutathione biosynthesis, was enhanced in probiotic pre-treated animals (probiotics 2.88±1.21 vs. placebo 1.94±0.55 nmol/min/mg protein; P<0.05) coinciding with an increase in mRNA expression of glutamate-cysteine-ligase catalytic (GCLc) and modifier (GCLm) subunits.

Conclusions

Probiotic pre-treatment diminished AP-induced intestinal barrier dysfunction and prevented oxidative stress via mechanisms mainly involving mucosal glutathione biosynthesis.  相似文献   

17.
DNA shuffling and saturation mutagenesis of positions F108, L190, I219, D235, and C248 were used to generate variants of the epoxide hydrolase of Agrobacterium radiobacter AD1 (EchA) with enhanced enantioselectivity and activity for styrene oxide and enhanced activity for 1,2-epoxyhexane and epoxypropane. EchA variant I219F has more than fivefold-enhanced enantioselectivity toward racemic styrene oxide, with the enantiomeric ratio value (E value) for the production of (R)-1-phenylethane-1,2-diol increased from 17 for the wild-type enzyme to 91, as well as twofold-improved activity for the production of (R)-1-phenylethane-1,2-diol (1.96 ± 0.09 versus 1.04 ± 0.07 μmol/min/mg for wild-type EchA). Computer modeling indicated that this mutation significantly alters (R)-styrene oxide binding in the active site. Another three variants from EchA active-site engineering, F108L/C248I, I219L/C248I, and F108L/I219L/C248I, also exhibited improved enantioselectivity toward racemic styrene oxide in favor of production of the corresponding diol in the (R) configuration (twofold enhancement in their E values). Variant F108L/I219L/C248I also demonstrated 10-fold- and 2-fold-increased activity on 5 mM epoxypropane (24 ± 2 versus 2.4 ± 0.3 μmol/min/mg for the wild-type enzyme) and 5 mM 1,2-epoxyhexane (5.2 ± 0.5 versus 2.6 ± 0.0 μmol/min/mg for the wild-type enzyme). Both variants L190F (isolated from a DNA shuffling library) and L190Y (created from subsequent saturation mutagenesis) showed significantly enhanced activity for racemic styrene oxide hydrolysis, with 4.8-fold (8.6 ± 0.3 versus 1.8 ± 0.2 μmol/min/mg for the wild-type enzyme) and 2.7-fold (4.8 ± 0.8 versus 1.8 ± 0.2 μmol/min/mg for the wild-type enzyme) improvements, respectively. L190Y also hydrolyzed 1,2-epoxyhexane 2.5 times faster than the wild-type enzyme.  相似文献   

18.
Longidorus africanus multiplication on tomato was highest at 29 °C. Few nematodes were recovered after 6 weeks at soil temperatures of 35 °C or below 23 °C. The time to egg hatching was shortest and the percentage of eggs hatching was highest at 29 °C. The minimum temperature and the heat sum above this temperature required for egg development were calculated to be 14.3 °C and 94.08 degree-days, respectively. The thermal times required for egg development by L. africanus and L. elongatus were nearly identical. For both species the product of the base temperature and the heat sum was near constant, and at a temperature of 22.3 °C the rates of egg development were equal.  相似文献   

19.
20.
Ochratoxin A (OTA) is a mycotoxin which is a common contaminant in grains during storage. Aspergillus ochraceus is the most common producer of OTA. Essential oils play a crucial role as a biocontrol in the reduction of fungal contamination. Essential oils namely natural cinnamaldehyde, cinnamon oil, synthetic cinnamaldehyde, Litsea citrate oil, citral, eugenol, peppermint, eucalyptus, anise and camphor oils, were tested for their efficacy against A. ochraceus growth and OTA production by fumigation and contact assays. Natural cinnamaldehyde proved to be the most effective against A. ochraceus when compared to other oils. Complete fungal growth inhibition was obtained at 150–250 µL/L with fumigation and 250–500 µL/L with contact assays for cinnamon oil, natural and synthetic cinnamaldehyde, L. citrate oil and citral. Essential oils had an impact on the ergosterol biosynthesis and OTA production. Complete inhibition of ergosterol biosynthesis was observed at ≥100 µg/mL of natural cinnamaldehyde and at 200 µg/mL of citral, but total inhibition was not observed at 200 µg/mL of eugenol. But, citral and eugenol could inhibit the OTA production at ≥75 µg/mL and ≥150 µg/mL respectively, while natural cinnamaldehyde couldn’t fully inhibit OTA production at ≤200 µg/mL. The inhibition of OTA by natural cinnamaldehyde is mainly due to the reduction in fungal biomass. However, citral and eugenol could significant inhibit the OTA biosynthetic pathway. Also, we observed that cinnamaldehyde was converted to cinnamic alcohol by A. ochraceus, suggesting that the antimicrobial activity of cinnamaldehyde was mainly attributed to its carbonyl aldehyde group. The study concludes that natural cinnamaldehyde, citral and eugenol could be potential biocontrol agents against OTA contamination in storage grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号