首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yan-Hong Wang 《Phytochemistry》2010,71(16):1825-1831
Several lines of evidence indicate that (+)-δ-cadinene-8-hydroxylase (CYP706B1) plays an important role in biosynthesis of gossypol in Gossypium arboreum L. ( [Luo et al., 2001] and [Wang et al., 2003]). The catalytically active enzyme has been expressed in yeast microsomes. Some microsomal preparations conjugated the hydroxylated (+)-δ-cadinene to a moiety that has not yet been identified. However, when microsomes were treated with n-octyl-β-d-glucoside (OG), a non-ionic detergent, (+)-δ-cadinene was reproducibly converted to the free alcohol, 8-hydroxy-(+)-δ-cadinene. OG had little effect on Km and slightly stimulated apparent Vmax. Enzymic activity was more than 10-fold more sensitive to inhibition by the N-substituted imidazole clotrimazole than to miconazole. Sesquiterpene olefins (−)-δ-cadinene, (−)-α-cubebene, (−)-α-muurolene, α-humulene, and a mixture of (−)- and (+)-α-copaene were inhibitory to hydroxylation of (+)-δ-cadinene. In addition, (−)-α-cubebene, (−)-α-muurolene, α-humulene, and, to a smaller extent, (−)-δ-cadinene served as alternative substrates for (+)-δ-cadinene-8-hydroxylase and were converted to mono-hydroxylated products. Of the five olefins tested, α-humulene and α-copaene are found in lysigenous glands of cotton (Elzen et al., 1985), which are also the site of gossypol accumulation ( [Bell et al., 1978] and [Mace et al., 1976]) and the probable site of its biosynthesis.  相似文献   

2.
An unusual iridoid diglycoside (specioside 6′-O-α-d-galactopyranoside) and a new phenylethanoid triglycoside (heterophragmoside) were isolated from the leaves and branches of Heterophragma sulfureum together with specioside, verminoside, 6-trans-feruloylcatapol, stereospermoside, (−)-lyoniresinol 3α-O-β-d-glucopyranoside, (+)-lyoniresinol 3α-O-β-d-glucopyranoside, (−)-5′-methoxyisolariciresinol 3α-O-β-d-glucopyranoside, (+)-5′-methoxyisolariciresinol 3α-O-β-d-glucopyranoside, and dehydroconiferyl 4-O-β-d-glucopyranoside. The structural elucidations were based on analyses of chemical and spectroscopic data.  相似文献   

3.
(±)-7β,8α-Dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-1) and (±)-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-2) are highly mutagenic diol epoxide diastereomers that are formed during metabolism of the carcinogen (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene. Remarkable stereoselectivity has been observed on metabolism of the optically pure (+)- and (?)-enantiomers of the dihydrodiol which are obtained by separation of the diastereomeric diesters with (?)-α-methoxy-α-trifluoromethylphenylacetic acid. The high stereoselectivity in the formation of diol epoxide-1 relative to diol epoxide-2 was observed with liver microsomes from 3-methylcholanthrene-treated rats and with a purified cytochrome P-448-containing monoxygenase system where the (?)-enantiomer produced a diol epoxide-2 to diol epoxide-1 ratio of 6 : 1 and the (+)-enantiomer produced a ratio of 1 : 22. Microsomes from control and phenobarbital-treated rats were less stereospecific in the metabolism of enantiomers of BP 7,8-dihydrodiol. The ratio of diol epoxide-2 to diol epoxide-1 formed from the (?)- and (+)-enantiomers with microsomes from control rats was 2 : 1 and 1 : 6, respectively. Both enantiomers of BP 7,8-dihydrodiol were also metabolized to a phenolic derivative, tentatively identified as 6,7,8-trihydroxy-7,8-dihydrobenzo[a]pyrene, which accounted for ~30% of the total metabolites formed by microsomes from control and phenobarbital-pretreated rats whereas this metabolite represents ~5% of the total metabolites with microsomes from 3-methylcholanthrene-treated rats. With benzo[a]pyrene as substrate, liver microsomes produced the 4,5-, 7,8- and 9,10-dihydrodiol with high optical purity (>85%), and diol epoxides were also formed. Most of the optical activity in the BP 7,8-dihydrodiol was due to metabolism by the monoxygenase system rather than by epoxide hydrase, since hydration of (±)-benzo[a]pyrene 7,8-oxide by liver microsomes produced dihydrodiol which was only 8% optically pure. Thus, the stereospecificity of both the monoxygenase system and, to a lesser extent, epoxide hydrase plays important roles in the metabolic activation of benzo[a]pyrene to carcinogens and mutagens.  相似文献   

4.
The microbial transformations of (−)-α- and (+)-β-thujone (1a and 1b) in cultures of Absidia species: Absidia coerulea AM93, Absidia glauca AM254 and Absidia cylindrospora AM336 were studied. The biotransformations of (−)-α-thujone (1a), by these fungi strains, afforded mixtures of 4-hydroxy- and 7-hydroxy-α-thujone (2 and 3). Aforementioned fungi strains were also able to hydroxylate of (+)-β-thujone at C-7 position. Only A. glauca AM254 transformed 1b to 8-hydroxy-β-thujone (7) and (2S)-2-hydroxyneoisothujol (6). The (4R)-4-hydroxyisothujole (5) was identified as one of the major metabolite of (+)-β-thujone (1b) in culture of A. cylindrospora AM336. This strain was also able to introduce hydroxy group to C-4 position in 1b without reduction of carbonyl group at C-3. The absolute configuration of all chiral centers of new (4R)-4-hydroxyisothujol (5) and (2S)-2-hydroxyneoisothujol (6) were established taking into account the configuration of (+)-β-thujone (1b) and their spectral data.  相似文献   

5.
C-3 of (+) and (?)-α-pinene and of (?)-β-pinene biosynthesized in several Pinus species was derived from C-2 of mevalonate; and the hydrogen at C-5 in all the isomers was derived from that at C-6 in nerol. This pattern is consistent with two routes for bicyclization of the acyclic biosynthetic precursor: one leads to (?)-β-pinene and the other to (+)-α-pinene of opposite absolute configuration. (?)-α-Pinene probably results from subsequent isomerisation of the (?)-β-isomer, and (very small) amounts of (+)-β-pinene result from similar (unfavoured thermodynamically) isomerisation of the (+)-α-isomer.  相似文献   

6.
Two new flavonol tetraglycosides, quercetin 3-O-(4-O-trans-p-coumaroyl)-α-l-rhamnopyranosyl (1→2) [α-l-rhamnopyranosyl (1→6)]-β-d-glucopyranoside-7-O-α-l-rhamnopyranoside (krathummuoside A) and quercetin 3-O-(4-O-cis-p-coumaroyl)-α-l-rhamnopyranosyl (1→2) [α-l-rhamnopyranosyl (1→6)]-β-d-glucopyranoside-7-O-α-l-rhamnopyranoside (krathummuoside B) were isolated from the leaves of Mitragyna rotundifolia in addition to eight known compounds, quercetin 3-O-α-l-rhamnopuranosyl (1→2) [α-l-rhamnopyranosyl (1→6)]-β-d-glucopyranoside-7-O-α-l-rhamnopyranoside, rutin, (−)-epi-catechin, 3,4,5-trimethoxyphenyl β-d-glucopyranoside, (6S, 9R)-roseoside, 3-O-β-d-glucopyranosyl quinovic acid 28-O-β-d-glucopyranosyl ester, (+)-lyoniresinol 3α-O-β-d-glucopyranoside, and (+)-syringaresinol-4-O-β-d-glucopyranoside. The structure elucidation of these compounds was based on analyses of spectroscopic data including 1D- and 2D-NMR.  相似文献   

7.
The effective method of isolation, separation and purification of (?)-α- and (+)-β-thujone (1a and 1b) from Thuja occidentalis was elaborated. Chemical (m-CPBA) and microbial Baeyer–Villiger oxidation of (?)-α- and (+)-β-thujone was carried out. Four new bicyclic δ-lactones (2a, 2b, 3a and 3b) with condensed cyclopropane ring were obtained.  相似文献   

8.
CD103(+) dendritic cells (DCs) are the major conventional DC population in the intestinal lamina propria (LP). Our previous report showed that a small number of cells in the LP could be classified into four subsets based on the difference in CD11c/CD11b expression patterns: CD11c(hi)CD11b(lo) DCs, CD11c(hi)CD11b(hi) DCs, CD11c(int)CD11b(int) macrophages, and CD11c(int)CD11b(hi) eosinophils. The CD11c(hi)CD11b(hi) DCs, which are CD103(+), specifically express TLR5 and induce the differentiation of naive B cells into IgA(+) plasma cells. These DCs also mediate the differentiation of Ag-specific Th17 and Th1 cells in response to flagellin. We found that small intestine CD103(+) DCs of the LP (LPDCs) could be divided into a small subset of CD8α(+) cells and a larger subset of CD8α(-) cells. Flow cytometry analysis revealed that CD103(+)CD8α(+) and CD103(+)CD8α(-) LPDCs were equivalent to CD11c(hi)CD11b(lo) and CD11c(hi)CD11b(hi) subsets, respectively. We analyzed a novel subset of CD8α(+) LPDCs to elucidate their immunological function. CD103(+)CD8α(+) LPDCs expressed TLR3, TLR7, and TLR9 and produced IL-6 and IL-12p40, but not TNF-α, IL-10, or IL-23, following TLR ligand stimulation. CD103(+)CD8α(+) LPDCs did not express the gene encoding retinoic acid-converting enzyme Raldh2 and were not involved in T cell-independent IgA synthesis or Foxp3(+) regulatory T cell induction. Furthermore, CD103(+)CD8α(+) LPDCs induced Ag-specific IgG in serum, a Th1 response, and CTL activity in vivo. Accordingly, CD103(+)CD8α(+) LPDCs exhibit a different function from CD103(+)CD8α(-) LPDCs in active immunity. This is the first analysis, to our knowledge, of CD8α(+) DCs in the LP of the small intestine.  相似文献   

9.
Three undescribed flavonol triglycosides, rhamnetin-3-O-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→6)]-β-d-glucopyranoside (champaluangoside A), rhamnetin-3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)]-β-d-galactopyranoside (champaluangoside B) and rhamnocitrin-3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)]-β-d-glucopyranoside (champaluangoside C), were isolated from Magnolia utilis in addition to eleven known compounds; quercetrin-3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)]-β-d-glucopyranoside, oxytroflavoside G, magnoloside A, magnoloside M, magnoloside D, manglieside A, manglieside B, 1,2-di-O-β-d-glucopyranosyl-4-allylbebzene, syringrin, benzyl β-d-allopyranoside and (+)-syringaresinol-O-β-d-glucopyranoside. The structure elucidation of these compounds was based on analyses of physical and spectroscopic data.  相似文献   

10.
11.
Poincianella pyramidalis (Fabaceae) is an endemic tree that grows in semiarid regions of Brazil. Phytochemical investigations on the bark roots of this plant led to the isolation of four new biflavonoids named (+)-5-hydroxy-7,4′-dimethoxyflavone-3α-2′′′-hydroxy-4′′′,4′′-dimethoxydihydrochalcone (1), (+)-5,7-dihydroxy-4′-methoxyflavone-3α-2′′′-hydroxy-4′′′,4′′-dimethoxydihydrochalcone (2), (−)-7-hydroxy-4′-methoxyflavone-3α-2′′′,4′′′-dihydroxy-4′′-methoxydihydrochalcone (3), (−)-7,4′-dihydroxy-flavanone-3,8-5′′,6′′,4′′-trihydroxy-flavone (4), and the previously identified compound 4,2′,4′,4′′,2′′′,4′′′-hexahydroxy-3,5′′′-bichalcone (rhuschalcone VI, 5). Their structures were determined by HR-ESI-MS and extensive analyses of NMR spectroscopic data.  相似文献   

12.
(+)-Cyclazosin [(+)-1] is one of most selective antagonists of the α1B-adrenoceptor subtype (selectivity ratios, α1B1A?=?13, α1B1D?=?38–39). To improve the selectivity, we synthesized and pharmacologically studied the blocking activity against α1-adrenoceptors of several homochiral analogues of (+)-cyclazosin featuring different substituents on the carbonyl or amine groups, namely (?)-2, (+)-3, (?)-4(?)-8, (+)-9. Moreover, we studied the activity of some their opposite enantiomers, namely (?)-1, (?)-3, (+)-6, and (?)-9, to evaluate the influence of stereochemistry on selectivity. The benzyloxycarbonyl and methyl (4aS,8aR) analogues (+)-3 and (?)-6 improved in a significant way the α1B selectivity of the progenitor compound: 4 and 14 time vs. the α1D subtype and 35 and 77 times vs. the α1A subtype, respectively. The study confirmed the importance of the hydrophobic cis-octahydroquinoxaline moiety of these molecules for the establishment of interactions with the α1-adrenoceptors as well that of their (4aS,8aR) stereochemistry to grant selectivity for the α1B subtype. Hypotheses on the mode of interaction of these compounds were advanced on the basis of molecular modeling studies performed on compound (+)-3.  相似文献   

13.
Liang YH  Ye M  Yang WZ  Qiao X  Wang Q  Yang HJ  Wang XL  Guo DA 《Phytochemistry》2011,72(14-15):1876-1882
One monomer flavan-3-ol, 4α-carboxymethyl-(+)-catechin methyl ester, two monomer flavan-3-ol glycosides, (+)-afzelechin-3-O-β-allopyranoside, (+)-afzelechin-6-C-β-glucopyranoside, two dimer flavan-3-ols, (-)-epiafzelechin-(4β→8)-4β-carboxymethyl-(-)-epicatechin methyl ester, and -(-)-epiafzelechin-(4β→8)-4α-carboxymethyl-(-)epiafzelechin ethyl ester, and one trimer flavan-3-ol, (-)-epiafzelechin-(4β→8)-(-)-epiafzelechin-(4β→8)-4β-carboxymethyl-(-)-epiafzelechin methyl ester, together with thirteen known flavan-3-ols were isolated from the rhizomes of Drynaria fortunei (Kunze) J.Sm (Polypodiaceae). The structures were established by analysis of their HRESIMS, 1D, 2D NMR spectroscopic, and CD data. In order to obtain improved resolution, the high-resolution NMR spectra of the dimers and trimer were measured at -40 °C.  相似文献   

14.
Three new phenolic compounds, eucalmaidin F (1), (3S)-5-guaiacyl-3-hydroxypentanoic acid (2), and 8-β-C-glucopyranosyl-5,7-dihydroxy-2-isobutylchromone (3), were isolated from the branches of E. maideni, together with 30?known compounds, including four phenylpropanoids, three lignans, four phloroglucinol glucosides, five dihydroflavonoids, seven simple phenolic compounds, six terpenoids, and glycerol. The new structures were established by spectroscopic studies (MS, and 1D- and 2D-NMR), chemical degradation, and modified Mosher's method. Compounds 3, guaiacylglycerol, 3-hydroxy-1-(4-hydroxyphenyl)propan-1-one, caffeic acid, (2E)-3-(4-hydroxyphenyl)prop-2-enoic acid, (7'S,8R,8'R)-lyoniresinol, (+)-lyoresinol 3α-O-α-L-rhamnopyranoside, garcimangosone, phlorocetophenone 2'-glucopyranoside, (+)-taxifolin 3α-O-α-L-rhamnopyranoside, (+)-aromadendrin, (+)-taxifolin, resveratrol, piceatannol, 3,4,5-trihydroxyphenol. Tachiaside, gallic acid, macrocapals A und G, and oleuropeic acid were evaluated for their cytotoxicities against five human cancer cell lines. Resveratrol, piceatannol, gallic acid, and macrocapal G exhibited moderate inhibitory effects on human myeloid heukemia HL-60 cell, with IC(50) values of 22.05, 22.05, 7.75, and 31.93?μM, respectively; and only macrocapal G showed inhibitory effect on hepatocellular carcinoma SMMC-7721 cell, with an IC(50) value of 26.75?μM.  相似文献   

15.
Four groups of colostrum-deprived pigs were immunized with Porcilis Gl?sser? (PG) or with subunit vaccines developed by us (rTbpA, NPAPT(M) or NPAPT(Cp)) against Gl?sser's disease, and they were challenged with 3×10(8)CFU of Haemophilus parasuis. A strong reduction in CD3(+)γδTCR(+) cells was seen in non-immunized control and scarcely protected (rTbpA) groups, suggesting that these cells could represent a target of H. parasuis infection. A significant increase in CD172α(+)CD163(+) cells was detected in all groups but PG, while a reduction in SLAIIDR(+) molecules expression was observed after challenge in control animals. Significant increases in CD3ε(+)CD8α(+)CD8β(+) and B cells were detected respectively in control and NPAPT groups, and in scarcely (rTbpA) and well-protected (NPAPT(M) and NPAPT(Cp)) groups. Finally, a greater response in CD4(+)CD8α(-) cells was observed in NPAPT(Cp) compared to NPAPT(M) and PG groups. These results state the potential of NPAPT antigen for developing effective vaccines against Gl?sser's disease.  相似文献   

16.
Isolation and structure determination of the minor alkaloids of Heliotropium curassavicum are described. These include the new pyrrolizidine alkaloids, heliocurassavine [isoretronecanol (?) curassavine], heliocoromandaline [isoretronecanol (+) viridiflorate], heliocurassavicine [isoretronecanol (?) trachelanthate], heliocurassavinine [laburnine (?) trachelanthate], curassavinine [supinidine (?) curassavate], coromandalinine [supinidine (+) viridifloratel, heliovinine [supinidine (?) trachelanthate] and curassanecine [1-(α-hydroxy-methyl)-8α pyrrolizidin-1β-ol]. Structures were established by high resolution 1H NMR, mass spectrometry and paper electrophoresis of the alkaloids and their hydrolysis products.  相似文献   

17.
The 4′-O-β-d-glucopyranoside and the 4′-O-α-l-rhamnopyranoside of 2,3-dihydro-7-hydroxy-2-(4′-hydroxy-3′- methoxyphenyl)-3-hydroxymethyl-5-benzofuranpropanol have been isolated and identified. Also isolated were two d-glucosides and an l-arabinoside of (+)-isolariciresinol and a l-rhamnoside, a d-xyloside and a d-glucoside of 1-(4-hydroxy-3-methoxyphenyl)- 2-[4-(3-hydroxypropyl)-2-hydroxyphenoxy]-1,3-propanediol.  相似文献   

18.
Three new compounds including one C21-steroidal glycoside, one methylglycoside, and one neolignan, named as Deoxyamplexicogenin A-3-O-yl-4-O-(4-O-α-l-cymaropyranosoyl-β-d-digitoxopyranosoyl)-β-d-canaropyranoside (1), Methyl-O-α-l-cymaropyranosoyl-(1  4)-β-D-digitoxopyranoside (2), and (+)-(7S, 8R, 7E)-5-hydroxy-3, 5′-dimethoxy-4′, 7-epoxy-8, 3′-neolign-7′-ene-9, 9′-diol 9′-ethyl ether (3), respectively, were isolated from the roots of Cynanchum stauntonii. The structure elucidations were achieved by in-depth spectroscopic examination, mainly including the experiments and analyses of multiple 1D- and 2D-NMR and HRESIMS and CD analysis and qualitative chemical tests. Cytotoxicity activities of compounds 13 were evaluated against five tumor cell lines (HCT-8, Bel-7402, BGC-823, A549, and A2780) in cell based assays where they were found to be inactive.  相似文献   

19.
20.
An investigation on the phytochemistry of the medicinal plant Stephania viridiflavens H.S. Lo et M. Yang led to isolate two new naturally occurring benzyltetrahydroisoquinoline alkaloids, (+)-1S, 2R-laudanidine-Nβ-oxide 2 and (+)-1S, 2S-laudanidine-Nα-oxide 3, along with four known benzyltetrahydroisoquinoline alkaloids: (+)-laudanidine 1, (+)-reticuline 4, (+)-1S, 2R-reticuline-Nβ-oxide 5 and (+)-1S, 2S-reticuline-Nα-oxide 6. The structure and the stereochemistry of these compounds were determined on the basis of spectroscopic methods and also confirmed by partial synthesis. To examine putative acetycholinesterase (AChE) inhibitory or cytotoxic activities, various bioassays were performed, the N-oxide derivatives (5 and 6) demonstrated more potent cytotoxicity than the corresponding free base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号