首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Phytochemistry》1986,25(12):2783-2785
Sites of limonoid biosynthesis were located in Citrus limon. The stem was found to be the major site of nomilin biosynthesis from acetate. Epicotyl, hypocotyl and root tissues were also capable of biosynthesizing nomilin from acetate, but leaves, fruits and seeds did not show this capacity under the conditions used. All the tissues tested were capable of biosynthesizing other limonoids starting from nomilin. C. limon was capable of translocating nomilin from the stem to other sites.  相似文献   

2.
The ability of (all Z)-7,7-dimethyl-5,8,11,14-eico-satetraenoic acid, (all Z)-7,7-dimethyl-5,8,11-eicosatrienoic acid, (Z,Z)-7,7-dimethyl-5,8-eicosadienoic acid, (all Z)-10,10-dimethyl-5,8,11,14-eicosatetraenoic acid, (all Z)-10,10-dimethyl-5,8,11-eicosatrienoic acid, and rac-(Z,Z)-15-hydroxy-7,7-dimethyl-5,8-eicosadienoic acid to inhibit ionophore-induced slow-reacting substance of anaphylaxis (SRS-A) biosynthesis in rat peritoneal cells was studied. It was thought that compounds such as these might inhibit proton abstractions at the 7 or 10 carbon positions on arachidonic acid which are thought to be important in the mechanism of catalysis of Δ5-lipoxygenase(Δ5-LO). All compounds were found to be potent inhibitors of SRS-A biosynthesis in the in vitro rat peritoneal cell system (IC50 < 10 μM). In fact they were more potent inhibitors in the test system than standard Δ5-LO inhibitors such as NDGA and quercetin. To determine if the mechanism of inhibition of the dimethyl arachidonic acid analogs did involve gD5-LO inhibition these compounds were evaluated in an assay system utilizing the Δ5-LO from rat basophilic leukemia (RBL?1_cells. It was found, however, that these compounds were much less potent inhibitors of this enzyme (IC50 ~ 100 μM) than standard compounds such as NDGA (IC50 0.14 μM) and quercetin (IC50, 0.2 μM). The arachidonic acid analogs were subsequently found to be potent inhibitors of phospholipase A2 (PLA2) enzymes with IC50's between 10–20 μM as inhibitors of a snake venom enzyme. In fact these compounds are among the most potent inhibitors of PLA2 yet studied, having potencies better than standards such as p-bromophenacyl bromide (IC50, 87 μM) and U-10029A (IC50, 36 μM). These results suggest that the methylated arachidonic acid analogs may inhibit SRS-A biosynthesis through inhibiting PLA2.  相似文献   

3.

Background

5-lipoxygenase (5-LO) catalyses the transformation of arachidonic acid (AA) into leukotrienes (LTs), which are important lipid mediators of inflammation. LTs have been directly implicated in inflammatory diseases like asthma, atherosclerosis and rheumatoid arthritis; therefore inhibition of LT biosynthesis is a strategy for the treatment of these chronic diseases.

Methodology/Principal Findings

Analogues of caffeic acid, including the naturally-occurring caffeic acid phenethyl ester (CAPE), were synthesized and evaluated for their capacity to inhibit 5-LO and LTs biosynthesis in human polymorphonuclear leukocytes (PMNL) and whole blood. Anti-free radical and anti-oxidant activities of the compounds were also measured. Caffeic acid did not inhibit 5-LO activity or LT biosynthesis at concentrations up to 10 µM. CAPE inhibited 5-LO activity (IC50 0.13 µM, 95% CI 0.08–0.23 µM) more effectively than the clinically-approved 5-LO inhibitor zileuton (IC50 3.5 µM, 95% CI 2.3–5.4 µM). CAPE was also more effective than zileuton for the inhibition of LT biosynthesis in PMNL but the compounds were equipotent in whole blood. The activity of the amide analogue of CAPE was similar to that of zileuton. Inhibition of LT biosynthesis by CAPE was the result of the inhibition of 5-LO and of AA release. Caffeic acid, CAPE and its amide analog were free radical scavengers and antioxidants with IC50 values in the low µM range; however, the phenethyl moiety of CAPE was required for effective inhibition of 5-LO and LT biosynthesis.

Conclusions

CAPE is a potent LT biosynthesis inhibitor that blocks 5-LO activity and AA release. The CAPE structure can be used as a framework for the rational design of stable and potent inhibitors of LT biosynthesis.  相似文献   

4.
The transport of arginine into isolated barley (Hordeum vulgare L.) mesophyll vacuoles was investigated. In the absence of ATP, arginine uptake was saturable with a Km of 0.3 to 0.4 millimolar. Positively charged amino acids inhibited arginine uptake, lysine being most potent with a Ki of 1.2 millimolar. In the presence of free ATP, but not of its Mg-complex, uptake of arginine was drastically enhanced and a linear function of its concentration up to 16 millimolar. The nonhydrolyzable adenylyl imidodiphosphate, but no other nucleotide tested, could substitute for ATP. Therefore, it is suggested that this process does not require energy and does not involve the tonoplast ATPase. The ATP-dependent arginine uptake was strongly inhibited by p-chloromercuriphenylsulfonic acid. Furthermore, hydrophobic amino acids were inhibitory (I50 phenylalanine 1 millimolar). Similar characteristics were observed for the uptake of aspartic acid. However, rates of ATP-stimulated aspartic acid transport were 10-fold lower as compared to arginine transport. Uptake of aspartate in the absence of ATP was negligible.  相似文献   

5.
《Phytomedicine》2015,22(12):1120-1124
BackgroundAnimal experiment studies have revealed a positive association between intake of citrus fruits and bone health. Nomilin, a limonoid present in citrus fruits, is reported to have many biological activities in mammalian systems, but the mechanism of nomilin on bone metabolism regulation is currently unclear.PurposeTo reveal the mechanism of nomilin on osteoclastic differentiation of mouse primary bone marrow-derived macrophages (BMMs) and the mouse RAW 264.7 macrophage cell line into osteoclasts.Study designControlled laboratory study. Effects of nomilin on osteoclastic differentiation were studied in in vitro cell cultures.MethodsCell viability of RAW 264.7 cells and BMMs was measured with the Cell Counting Kit. TRAP-positive multinucleated cells were counted as osteoclast cell numbers. The number and area of resorption pits were measured as bone-resorbing activity. Osteoclast-specific genes expression was evaluated by quantitative real-time PCR; and proteins expression was evaluated by western blot.ResultsNomilin significantly decreased TRAP-positive multinucleated cell numbers compared with the control, and exhibited no cytotoxicity. Nomilin decreased bone resorption activity. Nomilin downregulated osteoclast-specific genes, NFATc1 and TRAP mRNA levels. Furthermore, nomilin suppressed MAPK signaling pathways.ConclusionThis study demonstrates clearly that nomilin has inhibitory effects on osteoclastic differentiation in vitro. These findings indicate that nomilin-containing herbal preparations have potential utility for the prevention of bone metabolic diseases.  相似文献   

6.
Nonactin, produced by Streptomyces griseus ETH A7796, is a macrotetrolide assembled from nonactic acid. It is an effective inhibitor of drug efflux in multidrug resistant erythroleukemia K562 cells at sub-toxic concentrations and has been shown to possess both antibacterial and antitumor activity. As total synthesis is impractical for the generation of nonactin analogs we have studied precursor-directed biosynthesis as an alternative as it is known that nonactic acid can serve as a nonactin precursor in vivo. To determine the scope of the approach we prepared and evaluated a furan-based nonactic acid derivative, 11. Although no new nonactin analogs were detected when 11 was administered to S. griseus fermentative cultures, a significant inhibition of nonactin biosynthesis was noted (IC50  100 μM). Cell mass, nonactic acid production and the generation of other secondary metabolites in the culture were unaffected by 11 demonstrating that 11 selectively inhibited the assembly of nonactin from nonactic acid. While we were unable to generate new nonactin analogs we have discovered, however, a useful inhibitor that we can use to probe the mechanism of nonactin assembly with the ultimate goal of developing more successful precursor-directed biosynthesis transformations.  相似文献   

7.
Radioactive tracer work showed that [14C]nomilin was converted to at least four metabolites in Citrus limon. One metabolite was identified as obacunone, showing that obacunone is biosynthesized from nomilin in C. limon.  相似文献   

8.
β-Carboline derivatives inhibited both indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase activities from various sources. Among them, norharman is most potent for both enzymes from mammalian sources. Kinetic studies revealed that norharman is uncompetitive (Ki = 0.12 mm) with l-tryptophan for rabbit intestinal indoleamine 2,3-dioxygenase, and linearly competitive (Ki = 0.29 mm) with l-tryptophan for mouse liver tryptophan 2,3-dioxygenase. In addition, some β-carbolines selectively inhibited one enzyme or the other. Pseudomonad tryptophan 2,3-dioxygenase was inhibited by a different spectrum of β-carbolines. Such a selective inhibition by the structure of substrate analogs is more evident by the use of indole derivatives. Indole-3-acetamide, indole-3-acetonitrile and indole-3-acrylic acid exhibited a potent inhibition for mammalian tryptophan 2,3-dioxygenase, while they moderately inhibited the pseudomonad enzyme. However, they showed no inhibition for indoleamine 2,3-dioxygenase. These results suggest the difference of the structures of the active sites among these enzymes from various sources.  相似文献   

9.
The binding of cAMP to the chemotactic cAMP receptor in intact Dictyostelium discoideum cells and isolated membranes is strongly inhibited by unsaturated fatty acids. In isolated membranes, cis-unsaturated fatty acids decreased the number of accessible cAMP binding sites, without significantly altering their affinity. Most potent were C18 and C20 cis-poly unsaturated fatty acids, like arachidonic acid, linoleic acid and linolenic acid. Trans-unsaturated fatty acid was less potent than its cis isomer, while saturated fatty acids did not affect the binding of cAMP to receptors at all. Oxidation reactions were not important for the effect of unsaturated fatty acids. When membranes were preincubated with millimolar concentrations of Ca2+, the effect of unsaturated fatty acids was strongly diminished. Mg2+ was ineffective. Ca2+, if presented after the incubation of membranes with unsaturated fatty acids, did not reverse the inhibitory effect. The specificity of the fatty acid effect, and the interference with Ca2+, but not Mg2+, suggest that the properties of the cAMP receptor are changed as a result of alterations in the lipid bilayer structure of the membrane.  相似文献   

10.
An ethylene-forming enzyme from Citrus unshiu fruits was purified some 630-fold. The enzyme catalysed ethylene formation from 1-aminocyclopropane-1-carboxylic acid in the presence of pyridoxal phosphate, β-indoleacetic acid, Mn2+ and 2,4-dichlorophenol. It behaved as a protein of MW 40 000 on Sephacryl S-200 gel filtration, and gave one band corresponding to a MW of 25 000 on SDS-PAGE. It had a specific activity of 0.025 μmol/min·mg protein. It exhibited IAA oxidase activity and had no guaiacol peroxidase or NADH oxidase activity. Its Km for ACC was 2.8 mM, and its pH optimum was 5.7. It was inhibited by potassium cyanide n-propyl gallate and Tiron. d-Mannose, histidine, iodoacetate, PCMB, dimethylfuran and superoxide dismutase showed no inhibition. β-Indoleacrylic acid against IAA competitively inhibited ethylene formation. Other IAA analogues, such as β-indolepropionic acid, β-indolecarboxylic acid and β-indolebutylic acid, slightly stimulated ethylene formation. β-Indoleacrylic acid against 1-aminocyclopropane-1-carboxylic acid non-competitively inhibited ethylene formation. Ascorbate was a potent inhibitor. The inhibitory effects, however, were not always reproduced in vivo. It is difficult to identify this enzyme system as a natural in vivo system from the above observations. Nevertheless, the possible in vivo participation of this in vitro enzyme system is discussed.  相似文献   

11.
GTP cyclohydrolase I (GTPCH) catalyzes the first step in pteridine biosynthesis in Nocardia sp. strain NRRL 5646. This enzyme is important in the biosynthesis of tetrahydrobiopterin (BH4), a reducing cofactor required for nitric oxide synthase (NOS) and other enzyme systems in this organism. GTPCH was purified more than 5,000-fold to apparent homogeneity by a combination of ammonium sulfate fractionation, GTP-agarose, DEAE Sepharose, and Ultragel AcA 34 chromatography. The purified enzyme gave a single band for a protein estimated to be 32 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular mass of the native enzyme was estimated to be 253 kDa by gel filtration, indicating that the active enzyme is a homo-octamer. The enzyme follows Michaelis-Menten kinetics, with a Km for GTP of 6.5 μM. Nocardia GTPCH possessed a unique N-terminal amino acid sequence. The pH and temperature optima for the enzyme were 7.8 and 56°C, respectively. The enzyme was heat stable and slightly activated by potassium ion but was inhibited by calcium, copper, zinc, and mercury, but not magnesium. BH4 inhibited enzyme activity by 25% at a concentration of 100 μM. 2,4-Diamino-6-hydroxypyrimidine (DAHP) appeared to competitively inhibit the enzyme, with a Ki of 0.23 mM. With Nocardia cultures, DAHP decreased medium levels of NO2 plus NO3. Results suggest that in Nocardia cells, NOS synthesis of nitric oxide is indirectly decreased by reducing the biosynthesis of an essential reducing cofactor, BH4.  相似文献   

12.
《Plant science》1986,46(3):159-167
The effects of abscisic acid (ABA), high osmotica, fluridone (an inhibitor of carotenoid biosynthesis), gibberellic acid (GA3) and an inhibitor of gibberellin biosynthesis, paclobutrazol (1-(4-chlorophenyl)-4,4-dimethyl-2-(1-24-triazol-1-yl)pentan-3-ol) on storage protein accumulation were studied in developing Vicia faba L. cotyledons cultured for 2 or 3 days in vitro. Extracts of these cotyledons were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions. ABA stimulated the accumulation of vicilin and legumin polypeptides. GA3 did not noticeably stimulate the accumulation of any polypeptide. There was stimulation of vicilin and legumin polypeptide accumulation by high osmoticum (18% sucrose), which was further enhacedd by ABA and inhibited by fluridone. The fluridone inhibition was reversed by ABA addition.The data provides evidence that ABA modulates the synthesis of V. faba storage proteins.  相似文献   

13.
The fungicide triarimol was tested for its effect on abscisic acid (ABA) accumulation in growing culturesof Cercospora rosicola. ABA accumulation was reduced by approximately 50% with 10?8 M triarimol. Growth ofC. rosicola, as measured by dry weight accumulation, was inhibited by triarimol concentrations at or greater than 10?7 M. These results are compared with those obtained with clomazone, ancymidol, and paclobutrazol, which inhibit ABA accumulation by 50% at concentrations of 5 × 10?5, 5 × 10?6, and 5 × 10?7 M, respectively. Triarimol, therefore, is among the most potent inhibitors of ABA biosynthesis reported to date. Feeding studies with [14C]mevalonic acid confirmed the inhibition of ABA biosynthesis by 5 × 10?8 M triarimol. These results support previous suggestions that one or more of the steps in the ABA biosynthetic pathway from mevalonic acid is catalyzed by cytochrome P-450. Feeding studies with 1′-deoxy-[2H]-ABA in resuspended cultures ofC. rosicola show that the conversion of this substrate is not inhibited by triarimol.  相似文献   

14.
mPGES-1 is inducible terminal synthase acting downstream of COX enzymes in arachidonic acid pathway, regulates the biosynthesis of pro-inflammatory prostaglandin PGE2. Cardiovascular side effect of coxibs and NSAIDs, selective for COX-2 inhibition, stimulated interest in mPGES-1, a therapeutic target with potential to deliver safe and effective anti-inflammatory drugs. The synthesis and structure activity relationship of a series of compounds from 2-aryl substituted quinazolin-4(3H)-one, pyrido[4,3-d]pyrimidin-4(3H)-one and pyrido[2,3-d]pyrimidin-4(3H)-one scaffolds as mPGES-1 inhibitor are discussed. A set of analogs (28, 48, 49) were identified with <10 nM potencies in the recombinant human mPGES-1 enzyme and in the A549 cellular assays. These analogs were also found to be potent in the human whole blood assay (<400 nM). Furthermore, the representative compound 48 was shown to be selective with other prostanoid synthases and was able to effectively regulate PGE2 biosynthesis in clinically relevant inflammatory settings, in comparison with celecoxib.  相似文献   

15.
Fatty acid biosynthesis is essential for bacterial survival. Components of this biosynthetic pathway have been identified as attractive targets for the development of new antibacterial agents. FabH, β-ketoacyl-acyl carrier protein (ACP) synthase III, is a particularly attractive target, since it is central to the initiation of fatty acid biosynthesis and is highly conserved among Gram positive and negative bacteria. Three series of Schiff bases containing thiazole template were synthesized and developed as potent inhibitors of FabH. This inhibitor class demonstrates strong antibacterial activity. Escherichia coli FabH inhibitory assay and docking simulation indicated that the compounds 11 and 18 were potent inhibitors of E. coli FabH.  相似文献   

16.
Reddy AR  Suhasini M  Das VS 《Plant physiology》1987,84(4):1447-1450
Cut shoots of guayule (Parthenium argentatum Gray) were treated with four inhibitors of the glycolate pathway (α-hydroxypyridinemethanesulfonic acid; isonicotinic acid hydrazide, glycine hydroxamate, and amino-oxyacetate, AOA) in order to evaluate the role of photorespiratory intermediates in providing precursors for the biosynthesis of rubber. Photorespiratory CO2 evolution in guayule leaves was severely inhibited by AOA. Application of each of the four inhibitors has resulted in a significantly decreased incorporation of 14C into rubber fractions suggesting that the glycolate pathway is involved in the biosynthesis of rubber in guayule. However, the application of each of the glycolate pathway inhibitors showed no significant effect on photosynthetic CO2 fixation in the leaves. The inhibitors individually also reduced the incorporation of labeled glycolate, glyoxylate, and glycine into rubber, while the incorporation of serine and pyruvate was not affected. The effective inhibition of incorporation of glycolate pathway intermediates in the presence of AOA was due to an inhibition of glycine decarboxylase and serine hydroxymethyltransferase. It is concluded that serine is a putative photorespiratory intermediate in the biosynthesis of rubber via pyruvate and acetyl coenzyme A.  相似文献   

17.
Mills WR 《Plant physiology》1980,65(6):1166-1172
The metabolism of 14C-labeled aspartic acid, diaminopimelic acid, malic acid and threonine by isolated pea (Pisum sativum L.) chloroplasts was examined. Light enhanced the incorporation of [14C] aspartic acid into soluble homoserine, isoleucine, lysine, methionine and threonine and protein-bound aspartic acid plus asparagine, isoleucine, lysine, and threonine. Lysine (2 millimolar) inhibited its own formation as well as that of homoserine, isoleucine and threonine. Threonine (2 millimolar) inhibited its own synthesis and that of homoserine but had only a small effect on isoleucine and lysine formation. Lysine and threonine (2 millimolar each) in combination strongly inhibited their own synthesis as well as that of homoserine. Radioactive [1,7-14C]diaminopimelic acid was readily converted into [14C]threonine in the light and its labeling was reduced by exogenous isoleucine (2 millimolar) or a combination of leucine and valine (2 millimolar each). The strong light stimulation of amino acid formation illustrates the point that photosynthetic energy is used in situ for amino acid and protein biosynthesis, not solely for CO2 fixation.  相似文献   

18.
Inhibition of the biosynthesis of complex N-glycans in the Golgi apparatus is one of alternative ways to suppress growth of tumor tissue. Eight N-benzyl substituted 1,4-imino-l-lyxitols with basic functional groups (amine, amidine, guanidine), hydroxyl and fluoro groups were prepared, optimized their syntheses and tested for their ability to inhibit several α-mannosides from the GH family 38 (GMIIb, LManII and JBMan) as models for human Golgi and lysosomal α-mannoside II. All compounds were found to be selective inhibitors of GMIIb. The most potent structure bearing guanidine group, inhibited GMIIb at the micromolar level (Ki = 19 ± 2 µM) while no significant inhibition (>2 mM) of LManII and JBMan was observed. Based on molecular docking and pKa calculations this structure may form two salt bridges with aspartate dyad of the target enzyme improving its inhibitory potency compared with other N-benzyl substituted derivatives published in this and previous studies.  相似文献   

19.
Tryptophan metabolites in the kynurenine pathway are up-regulated by pro-inflammatory cytokines or glucocorticoids, and are linked to anti-inflammatory and immunosuppressive activities. In addition, they are up-regulated in pathologies such as cancer, autoimmune diseases, and psychiatric disorders. The molecular mechanisms of how kynurenine pathway metabolites cause these effects are incompletely understood. On the other hand, pro-inflammatory cytokines also up-regulate the amounts of tetrahydrobiopterin (BH4), an enzyme cofactor essential for the synthesis of several neurotransmitter and nitric oxide species. Here we show that xanthurenic acid is a potent inhibitor of sepiapterin reductase (SPR), the final enzyme in de novo BH4 synthesis. The crystal structure of xanthurenic acid bound to the active site of SPR reveals why among all kynurenine pathway metabolites xanthurenic acid is the most potent SPR inhibitor. Our findings suggest that increased xanthurenic acid levels resulting from up-regulation of the kynurenine pathway could attenuate BH4 biosynthesis and BH4-dependent enzymatic reactions, linking two major metabolic pathways known to be highly up-regulated in inflammation.  相似文献   

20.
The effects of 14 sesquiterpene hydroquinones, including 8 marine sponge-derived avarols (18) and 6 semisynthetic derivatives (914), on lipid droplet accumulation and neutral lipid synthesis in Chinese hamster ovary (CHO) K1 cells were investigated. In intact CHO-K1 cell assays, avarol (1) markedly decreased the number and size of lipid droplets in CHO-K1 cells and exhibited the most potent inhibitory activity on the synthesis of cholesteryl ester (CE) and triglyceride (TG) with IC50 values of 5.74 and 6.80 µM, respectively. In enzyme assays, sterol O-acyltransferase (SOAT), the final enzyme involved in CE biosynthesis, and diacylglycerol acyltransferase (DGAT), the final enzyme involved in TG biosynthesis, were inhibited by 1 with IC50 values of 7.31 and 20.0 µM, respectively, which correlated well with those obtained in the intact cell assay. These results strongly suggest that 1 inhibited SOAT and DGAT activities in CHO-K1 cells, leading to a reduction in the accumulation of CE and TG in lipid droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号