首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Streptococcus suis is the most common cause of meningitis in pork consuming and pig rearing countries in South-East Asia. We performed a systematic review of studies on S. suis meningitis to define the clinical characteristics, predisposing factors and outcome.

Methodology

Studies published between January 1, 1980 and August 1, 2015 were identified from main literature databases and reference lists. Studies were included if they were written in West-European languages and described at least 5 adult patients with S. suis meningitis in whom at least one clinical characteristic was described.

Findings

We identified 913 patients with S. suis meningitis included in 24 studies between 1980 and 2015. The mean age was 49 years and 581 of 711 patients were male (82%). Exposure to pigs or pork was present in 395 of 648 patients (61%) while other predisposing factors were less common. 514 of 528 patients presented with fever (97%), 429 of 451 with headache (95%), 462 of 496 with neck stiffness (93%) and 78 of 384 patients (20%) had a skin injury in the presence of pig/pork contact. The case fatality rate was 2.9% and hearing loss was a common sequel occurring in 259 of 489 patients (53%). Treatment included dexamethasone in 157 of 300 (52%) of patients and was associated with reduced hearing loss in S. suis meningitis patients included in a randomized controlled trial.

Conclusion

S. suis meningitis has a clear association with pig and pork contact. Mortality is low, but hearing loss occurs frequently. Dexamethasone was shown to reduce hearing loss.  相似文献   

2.
Streptococcus suis, more particularly serotype 2, is a major swine pathogen and an emerging zoonotic agent worldwide that mainly causes meningitis, septicemia, endocarditis, and pneumonia. Although several potential virulence factors produced by S. suis have been identified in the last decade, the pathogenesis of S. suis infections is still not fully understood. In the present study, we showed that S. suis produces membrane vesicles (MVs) that range in diameter from 13 to 130 nm and that appear to be coated by capsular material. A proteomic analysis of the MVs revealed that they contain 46 proteins, 9 of which are considered as proven or suspected virulence factors. Biological assays confirmed that S. suis MVs possess active subtilisin-like protease (SspA) and DNase (SsnA). S. suis MVs degraded neutrophil extracellular traps, a property that may contribute to the ability of the bacterium to escape the host defense response. MVs also activated the nuclear factor-kappa B (NF-κB) signaling pathway in both monocytes and macrophages, inducing the secretion of pro-inflammatory cytokines, which may in turn contribute to increase the permeability of the blood brain barrier. The present study brought evidence that S. suis MVs may play a role as a virulence factor in the pathogenesis of S. suis infections, and given their composition be an excellent candidate for vaccine development.  相似文献   

3.
Streptococcus suis is an encapsulated Gram-positive bacterium, and the leading cause of sepsis and meningitis in young pigs resulting in considerable economic losses in the porcine industry. It is also considered an emerging zoonotic agent. In the environment, both avirulent and virulent strains occur in pigs, and virulent strains appear to cause disease in both humans and pigs. There is a need for a convenient, reliable and standardized animal model to assess S. suis virulence. A zebrafish (Danio rerio) larvae infection model has several advantages, including transparency of larvae, low cost, ease of use and exemption from ethical legislation up to 6 days post fertilization, but has not been previously established as a model for S. suis. Microinjection of different porcine strains of S. suis in zebrafish larvae resulted in highly reproducible dose- and strain-dependent larval death, strongly correlating with presence of the S. suis capsule and to the original virulence of the strain in pigs. Additionally we compared the virulence of the two-component system mutant of ciaRH, which is attenuated for virulence in both mice and pigs in vivo. Infection of larvae with the ΔciaRH strain resulted in significantly higher survival rate compared to infection with the S10 wild-type strain. Our data demonstrate that zebrafish larvae are a rapid and reliable model to assess the virulence of clinical porcine S. suis isolates.  相似文献   

4.
Streptococcus suis has emerged as an important zoonotic pathogen that causes meningitis, arthritis, septicemia and even sudden death in pigs and humans. Quorum sensing is the signaling network for cell-to-cell communication that bacterial cells can use to monitor their own population density through production and exchange of signal molecules. S-Ribosylhomocysteinase (LuxS) is the key enzyme involved in the activated methyl cycle. Autoinducer 2 (AI-2) is the adduct of borate and a ribose derivative and is produced from S-adenosylhomocysteine (SAH). AI-2 can mediate interspecies communication and in some species facilitate the bacterial behavior regulation such as biofilm formation and virulence in both Gram-positive and Gram-negative bacteria. Here, we reported the overexpression, purification and crystallographic structure of LuxS from S. suis. Our results showed the catalytically active LuxS exists as a homodimer in solution. Inductively coupled plasma-mass spectrometry (ICP-MS) revealed the presence of Zn2+ in LuxS. Although the core structure shares the similar topology with LuxS proteins from other bacterial species, structural analyses and comparative amino acid sequence alignments identified two key amino acid differences in S. suis LuxS, Phe80 and His87, which are located near the substrate binding site. The results of site-directed mutagenesis and enzymology studies confirmed that these two residues affect the catalytic activity of the enzyme. These in vitro results were corroborated in vivo by expression of the LuxS variants in a S. suis ΔluxS strain. The single and two amino acid of LuxS variant decreased AI-2 production and biofilm formation significantly compared to that of the parent strain. Our findings highlight the importance of key LuxS residues that influence the AI-2 production and biofilm formation in S.suis.  相似文献   

5.
【背景】2型猪链球菌(Streptococcus suis serotype 2, S. suis 2)可感染宿主引起严重的脑膜炎,对养猪业和人类公共卫生安全构成重大威胁。【目的】构建S. suis 2感染小鼠脑膜炎模型,并对其脑组织进行转录组学分析,为揭示S.suis2感染宿主后引起脑膜炎的分子机制和发现潜在的治疗靶点提供理论依据。【方法】采用S. suis 2感染小鼠,并对其脑组织进行病理组织学分析确认构建脑膜炎小鼠后,对其脑组织进行转录组学分析,对比S.suis2感染和未感染小鼠的差异表达基因,并对差异表达基因进行基因本体论(geneontology,GO)功能、京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)通路富集和韦恩分析。【结果】脑病理组织学分析结果显示,S. suis 2感染的小鼠脑膜中有大量的炎症细胞浸润,并且血管周围出现“袖套”现象,并能从感染小鼠的组织器官中再分离出攻毒的S. suis 2菌株,结果证明构建了S. suis 2感染脑膜炎小鼠模型。转录组学分析结果表明,感染S.suis2与未感染的...  相似文献   

6.
Bacteriocins are antimicrobial peptides of bacterial origin that are considered as a promising alternative to the use of conventional antibiotics. Recently, our laboratory reported the purification and characterization of two lantibiotics, suicin 90–1330 and suicin 3908, produced by the swine pathogen and zoonotic agent Streptococcus suis (serotype 2). In this study, a novel bacteriocin produced by S. suis has been identified and characterized. The producing strain S. suis 65 (serotype 2) was found to belong to the sequence type 28, that includes strains known to be weakly or avirulent in a mouse model. The bacteriocin, whose production was only possible following growth on solid culture medium, was purified to homogeneity by cationic exchange and reversed-phase high-pressure liquid chromatography. The bacteriocin, named suicin 65, was heat, pH and protease resistant. Suicin 65 was active against all S. suis isolates tested, including antibiotic resistant strains. Amino acid sequencing of the purified bacteriocin by Edman degradation revealed the presence of modified amino acids suggesting a lantibiotic. Using the partial sequence obtained, a blast was performed against published genomes of S. suis and allowed to identify a putative lantibiotic locus in the genome of S. suis 89–1591. From this genome, primers were designed and the gene cluster involved in the production of suicin 65 by S. suis 65 was amplified by PCR. Sequence analysis revealed the presence of ten open reading frames, including a duplicate of the structural gene. The structural genes (sssA and sssA’) of suicin 65 encodes a 25-amino acid residue leader peptide and a 26-amino acid residue mature peptide yielding an active bacteriocin with a deducted molecular mass of 3,005 Da. Mature suicin 65 showed a high degree of identity with class I type B lantibiotics (globular structure) produced by Streptococcus pyogenes (streptococcin FF22; 84.6%), Streptococcus macedonicus (macedocin ACA-DC 198; 84.6%), and Lactococcus lactis subsp. lactis (lacticin 481; 74.1%). Further studies will evaluate the ability of suicin 65 or the producing strain to prevent experimental S. suis infections in pigs.  相似文献   

7.

Background

Streptococcus suis infection, an emerging zoonosis, is an increasing public health problem across South East Asia and the most common cause of acute bacterial meningitis in adults in Vietnam. Little is known of the risk factors underlying the disease.

Methods and Findings

A case-control study with appropriate hospital and matched community controls for each patient was conducted between May 2006 and June 2009. Potential risk factors were assessed using a standardized questionnaire and investigation of throat and rectal S. suis carriage in cases, controls and their pigs, using real-time PCR and culture of swab samples. We recruited 101 cases of S. suis meningitis, 303 hospital controls and 300 community controls. By multivariate analysis, risk factors identified for S. suis infection as compared to either control group included eating “high risk” dishes, including such dishes as undercooked pig blood and pig intestine (OR1 = 2.22; 95%CI = [1.15–4.28] and OR2 = 4.44; 95%CI = [2.15–9.15]), occupations related to pigs (OR1 = 3.84; 95%CI = [1.32–11.11] and OR2 = 5.52; 95%CI = [1.49–20.39]), and exposures to pigs or pork in the presence of skin injuries (OR1 = 7.48; 95%CI = [1.97–28.44] and OR2 = 15.96; 95%CI = [2.97–85.72]). S. suis specific DNA was detected in rectal and throat swabs of 6 patients and was cultured from 2 rectal samples, but was not detected in such samples of 1522 healthy individuals or patients without S. suis infection.

Conclusions

This case control study, the largest prospective epidemiological assessment of this disease, has identified the most important risk factors associated with S. suis bacterial meningitis to be eating ‘high risk’ dishes popular in parts of Asia, occupational exposure to pigs and pig products, and preparation of pork in the presence of skin lesions. These risk factors can be addressed in public health campaigns aimed at preventing S. suis infection.  相似文献   

8.
Streptococcus suis has emerged as a causative agent of human meningitis and streptococcal toxic shock syndrome over the last years. The high pathogenicity of S. suis may be due in part to a laterally acquired pathogenicity island (renamed SsPI‐1), which can spontaneously excise and transfer to recipients. Cells harboring excised SsPI‐1 can potentially lose this island if cell division occurs prior to its reintegration; however, attempts to cure SsPI‐1 from the host cells have been unsuccessful. Here, we report that an SsPI‐1‐borne Epsilon/Zeta toxin–antitoxin system (designated SezAT) promotes SsPI‐1 stability in bacterial populations. The sezAT locus consists of two closely linked sezT and sezA genes encoding a toxin and its cognate antitoxin, respectively. Overproduction of SezT induces a bactericidal effect that can be neutralized by co‐expression of SezA, but not by its later action. When devoid of a functional SezAT system, large‐scale deletion of SsPI‐1 is straightforward. Thus, SezAT serves to ensure inheritance of SsPI‐1 during cell division, which may explain the persistence of epidemic S. suis. This report presents the first functional characterization of TA loci in S. suis, and the first biochemical evidence for the adaptive significance of the Epsilon/Zeta system in the evolution of pathogen virulence.  相似文献   

9.
Strains of serotype 2 Streptococcus suis are responsible for swine and human infections. Different serotype 2 genetic backgrounds have been defined using multilocus sequence typing (MLST). However, little is known about the genetic diversity within each MLST sequence type (ST). Here, we used whole-genome sequencing to test the hypothesis that S. suis serotype 2 strains of the ST25 lineage are genetically heterogeneous. We evaluated 51 serotype 2 ST25 S. suis strains isolated from diseased pigs and humans in Canada, the United States of America, and Thailand. Whole-genome sequencing revealed numerous large-scale rearrangements in the ST25 genome, compared to the genomes of ST1 and ST28 S. suis strains, which result, among other changes, in disruption of a pilus island locus. We report that recombination and lateral gene transfer contribute to ST25 genetic diversity. Phylogenetic analysis identified two main and distinct Thai and North American clades grouping most strains investigated. These clades also possessed distinct patterns of antimicrobial resistance genes, which correlated with acquisition of different integrative and conjugative elements (ICEs). Some of these ICEs were found to be integrated at a recombination hot spot, previously identified as the site of integration of the 89K pathogenicity island in serotype 2 ST7 S. suis strains. Our results highlight the limitations of MLST for phylogenetic analysis of S. suis, and the importance of lateral gene transfer and recombination as drivers of diversity in this swine pathogen and zoonotic agent.  相似文献   

10.
BackgroundStreptoccocus suis (S.suis) infection is a neglected zoonosis disease in humans mainly affects men of working age. We estimated the health and economic burden of S.suis infection in Thailand in terms of years of life lost, quality-adjusted life years (QALYs) lost, and productivity-adjusted life years (PALYs) lost which is a novel measure that adjusts years of life lived for productivity loss attributable to disease.MethodsA decision-analytic Markov model was developed to simulate the impact of S. suis infection and its major complications: death, meningitis and infective endocarditis among Thai people in 2019 with starting age of 51 years. Transition probabilities, and inputs pertaining to costs, utilities and productivity impairment associated with long-term complications were derived from published sources. A lifetime time horizon with follow-up until death or age 100 years was adopted. The simulation was repeated assuming that the cohort had not been infected with S.suis. The differences between the two set of model outputs in years of life, QALYs, and PALYs lived reflected the impact of S.suis infection. An annual discount rate of 3% was applied to both costs and outcomes. One-way sensitivity analyses and Monte Carlo simulation modeling technique using 10,000 iterations were performed to assess the impact of uncertainty in the model.Key resultsThis cohort incurred 769 (95% uncertainty interval [UI]: 695 to 841) years of life lost (14% of predicted years of life lived if infection had not occurred), 826 (95% UI: 588 to 1,098) QALYs lost (21%) and 793 (95%UI: 717 to 867) PALYs (15%) lost. These equated to an average of 2.46 years of life, 2.64 QALYs and 2.54 PALYs lost per person. The loss in PALYs was associated with a loss of 346 (95% UI: 240 to 461) million Thai baht (US$11.3 million) in GDP, which equated to 1.1 million Thai baht (US$ 36,033) lost per person.ConclusionsS.suis infection imposes a significant economic burden both in terms of health and productivity. Further research to investigate the effectiveness of public health awareness programs and disease control interventions should be mandated to provide a clearer picture for decision making in public health strategies and resource allocations.  相似文献   

11.

Background

Streptococcus suis can cause severe systemic infection in adults exposed to infected pigs or after consumption of undercooked pig products. S. suis is often misdiagnosed, due to lack of awareness and improper testing. Here we report the first fifty cases diagnosed with S. suis infection in northern Viet Nam.

Methodology/Principal Findings

In 2007, diagnostics for S. suis were set up at a national hospital in Hanoi. That year there were 43 S. suis positive cerebrospinal fluid samples, of which S. suis could be cultured in 32 cases and 11 cases were only positive by PCR. Seven patients were blood culture positive for S. suis but CSF culture and PCR negative; making a total of 50 patients with laboratory confirmed S. suis infection in 2007. The number of S. suis cases peaked during the warmer months.

Conclusions/Significance

S. suis was commonly diagnosed as a cause of bacterial meningitis in adults in northern Viet Nam. In countries where there is intense and widespread exposure of humans to pigs, S. suis can be an important human pathogen.  相似文献   

12.
Streptococcus suis is an important zoonotic agent causing severe diseases in pigs and humans. To date, 33 serotypes of S . suis have been identified based on antigenic differences in the capsular polysaccharide. The capsular polysaccharide synthesis (cps) locus encodes proteins/enzymes that are responsible for capsular production and variation in the capsule structures are the basis of S . suis serotyping. Multiplex and/or simplex PCR assays have been developed for 15 serotypes based on serotype-specific genes in the cps gene cluster. In this study, we developed a set of multiplex PCR (mPCR) assays to identify the 33 currently known S . suis serotypes. To identify serotype-specific genes for mPCR, the entire genomes of reference strains for the 33 serotypes were sequenced using whole genome high-throughput sequencing, and the cps gene clusters from these strains were identified and compared. We developed a set of 4 mPCR assays based on the polysaccharide polymerase gene wzy, one of the serotype-specific genes. The assays can identify all serotypes except for two pairs of serotypes: 1 and 14, and 2 and 1/2, which have no serotype-specific genes between them. The first assay identifies 12 serotypes (serotypes 1 to 10, 1/2, and 14) that are the most frequently isolated from diseased pigs and patients; the second identifies 10 serotypes (serotypes 11 to 21 except 14); the third identifies the remaining 11 serotypes (serotypes 22 to 31, and 33); and the fourth identifies a new cps cluster of S . suis discovered in this study in 16 isolates that agglutinated with antisera for serotypes 29 and 21. The multiplex PCR assays developed in this study provide a rapid and specific method for molecular serotyping of S . suis .  相似文献   

13.
【目的】猪链球菌(Streptococcus suis)是猪的重要病原菌,同时也是人畜共患病原。猪的扁桃体是猪链球菌主要定殖部位之一,是易感猪和人的重要传染源。因此,对屠宰场健康猪进行猪链球菌流行病学调查,具有重要的公共卫生学意义。【方法】本研究自2020年至2021年,从浙江某市屠宰场采集健康猪扁桃体样品,分离鉴定猪链球菌,采用血清型特异性PCR法分型,通过耐药基因检测、药敏试验、斑马鱼毒力实验分析其耐药及致病特征。【结果】131份健康猪扁桃体样品猪链球菌阳性率为62.59%(82/131),共分离猪链球菌68株,其中16型分离率最高,占比16.18%(11/68),其次为31型(11.76%,8/68)、9型(7.35%,5/68)、3型(7.35%,5/68)等。含2种及以上血清型的扁桃体样品占15.85%(13/82)。药敏试验表明,分离株主要对林可酰胺类(100%,68/68)、大环内酯类(98.53%,67/68)、四环素类(100%,68/68)抗生素耐药,所有菌株均属于多药耐药。值得关注的是,有18株菌对青霉素耐药、3株菌对头孢噻肟耐药、2株菌对利福平耐药、11株菌对利...  相似文献   

14.
The sensitivity of the two forms of nitrate reductase, NRI and NRII, obtained from the primary leaf of corn, to a limited action corn root proteinase has been examined. The corn inactivating protein (CIP) inhibited the overall reaction (NADH-NR) and the two partial reactions, cytochrome c reductase and reduced methyl viologen NR (MV-NR) of both forms of NR. NADH-cytochrome c reductase was more sensitive to the protease than MV-NR. NRII was less sensitive to inactivation than NRI. When NRI and NRII were inactivated and then subjected to native gel electrophoresis the protein bands associated with MV-NR activity shifted from an Rm value of 0.32 to 0.61 for NRI and from an Rm of 0.28 to 0.60 for NRII. For Chlorella NR these values are 0.32 and 0.70. The initial cleavage of the 116 kilodalton subunit of NRI yielded fragments of 84 and 80 kilodaltons after a 5 minute incubation with CIP. With longer incubation times smaller fragments were also identified. For the Chlorella NR the initial cleavage products are approximately 68 and 25 kilodaltons. Longer incubation times also led to smaller fragments. The products of hydrolysis by this limited action protease are quite different for the corn and Chlorella NRs.  相似文献   

15.
Streptococcus suis and Streptococcus equi subsp. zooepidemicus are capable of infecting humans and various animals, causing significant problems for the worldwide swine industry. As antibiotic resistance has increased, lysosomal enzymes encoded by phages have shown potential for use against pathogenic bacteria. In this study, a novel bacteriophage lysin, Ply30, encoded by the S. suis prophage phi30c, was recombinantly expressed and purified. Ply30 showed high bacteriolysis activity on S. suis and S. equi subsp. zooepidemicus in vitro. The ratio of the optical density at 600 nm (OD600) with treatment versus the OD600 with no treatment for most tested S. suis and S. equi subsp. zooepidemicus strains decreased from 1 to <0.3 and <0.5, respectively, within 1 h. The results of plate viability assays showed that treated bacteria suffered a 1- to 2-log decrease in CFU within 1 h. The optimal concentration of Ply30 was 50 μg/ml, and the optimal pH was 7. Moreover, Ply30 maintained high activity over a wide pH range (pH 6 to 10). The MICs of Ply30 against Streptococcus strains ranged from 16 to 512 μg/ml. In vivo, a 2-mg dose of Ply30 protected 90% (9/10 mice) of mice from infection with S. equi subsp. zooepidemicus and 80% (8/10 mice) of mice from infection with S. suis. Seven days after lysin Ply30 treatment, bacterial loads were significantly decreased in all tested organs and blood compared with those at 1 h postinfection without Ply30 treatment. Ply30 showed in vitro and in vivo antimicrobial efficiency and protected mice against two kinds of bacterial infections, indicating that Ply30 may be an effective therapeutic against streptococci.  相似文献   

16.
Streptococcus suis is a major endemic pathogen of pigs causing meningitis, arthritis, and other diseases. Zoonotic S. suis infections are emerging in humans causing similar pathologies as well as severe conditions such as toxic shock-like syndrome. Recently, we discovered an IdeS family protease of S. suis that exclusively cleaves porcine IgM and represents the first virulence factor described, linking S. suis to pigs as their natural host. Here we report the identification and characterization of a novel, unrelated protease of S. suis that exclusively targets porcine IgG. This enzyme, designated IgdE for immunoglobulin G-degrading enzyme of S. suis, is a cysteine protease distinct from previous characterized streptococcal immunoglobulin degrading proteases of the IdeS family and mediates efficient cleavage of the hinge region of porcine IgG with a high degree of specificity. The findings that all S. suis strains investigated possess the IgG proteolytic activity and that piglet serum samples contain specific antibodies against IgdE strongly indicate that the protease is expressed in vivo during infection and represents a novel and putative important bacterial virulence/colonization determinant, and a thus potential therapeutic target.  相似文献   

17.
The Gram-positive zoonotic bacterium Streptococcus suis (S. suis) is responsible for a wide range of diseases including meningitis in pigs and humans. The blood-cerebrospinal fluid (CSF) barrier is constituted by the epithelial cells of the choroid plexus, which execute barrier function also after bacteria have entered the central nervous system (CNS). We show that the bacterial capsule, a major virulence factor, strongly attenuates adhesion of S. suis to the apical side of porcine choroid plexus epithelial cells (PCPEC). Oligonucleotide microarray analysis and quantitative PCR surprisingly demonstrated that adherent wild-type and capsule-deficient S. suis influenced expression of a pronounced similar pattern of genes in PCPEC. Investigation of purified capsular material provided no evidence for a significant role of the capsule. Enriched among the regulated genes were those involved in “inflammatory response”, “defense response” and “cytokine activity”. These comprised several cytokines and chemokines including the interleukins 6 and 8, which could be detected on protein level. We show that after infection with S. suis the choroid plexus contributes to the immune response by actively producing cytokines and chemokines. Other virulence factors than the bacterial capsule may be relevant in inducing a strong inflammatory response in the CNS during S. suis meningitis.  相似文献   

18.
【背景】碳水化合物的利用与猪链球菌在宿主体内的定殖和致病性密切相关。感染期间,宿主细胞释放的糖原可能是猪链球菌重要的碳源。【目的】从转录组学角度解析猪链球菌全基因转录水平对外源糖原诱导的响应,特别是毒力基因。【方法】将猪链球菌2型强毒株分别用糖原和葡萄糖进行液体培养,通过高通量转录组测序,比较分析糖原对猪链球菌代谢通路和毒力基因差异表达的影响,并通过体外试验和攻毒试验进行验证。【结果】猪链球菌在糖原培养基中生长良好。转录组数据显示,糖原培养条件下的猪链球菌共有908个基因差异表达,基因组占比46.07%,其中501个基因上调表达,407个基因下调表达。富集分析结果表明,糖原影响了猪链球菌广泛的基础代谢过程,但糖酵解途径保持稳定。30个毒力基因的表达水平发生变化,重要的毒力因子SLY、ApuA、ArcABC等的基因转录水平大幅度升高(倍数>20)。糖原培养后的猪链球菌的溶血活性、黏附和侵入能力显著上升,对受试动物的毒力增强,证实猪链球菌能够响应糖原诱导,糖原能调控猪链球菌的致病性。【结论】外源糖原的利用显著影响了猪链球菌的基因表达谱,这种对碳源的响应是细菌对不断变化的生存环境的适应...  相似文献   

19.
Chi F  Bo T  Wu CH  Jong A  Huang SH 《PloS one》2012,7(4):e35862

Background

IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PSF is required for meningitic E. coli K1 penetration and leukocyte transmigration across the blood-brain barrier (BBB), which are the hallmarks of bacterial meningitis. However, it is unknown how vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB, which are required for bacteria-mediated pathogenicities.

Methodology/Principal Findings

IbeA-induced E. coli K1 invasion, polymorphonuclear leukocyte (PMN) transmigration and IKK/NF-κB activation are blocked by Caffeic acid phenethyl ester (CAPE), an inhibitor of NF-κB. IKKα/β phosphorylation is blocked by ERK inhibitors. Co-immunoprecipitation analysis shows that vimentin forms a complex with IκB, NF-κB and tubulins in the resting cells. A dissociation of this complex and a simultaneous association of PSF with NF-κB could be induced by IbeA in a time-dependent manner. The head domain of vimentin is required for the complex formation. Two cytoskeletal components, vimentin filaments and microtubules, contribute to the regulation of NF-κB. SiRNA-mediated knockdown studies demonstrate that IKKα/β phosphorylation is completely abolished in HBMECs lacking vimentin and PSF. Phosphorylation of ERK and nuclear translocation of NF-κB are entirely dependent on PSF. These findings suggest that vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB activation. PSF is essential for translocation of NF-κB and ERK to the nucleus.

Conclusion/Significance

These findings reveal previously unappreciated facets of the IbeA-binding proteins. Cooperative contributions of vimentin and PSF to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB may represent a new paradigm in pathogen-induced signal transduction and lead to the development of novel strategies for the prevention and treatment of bacterial meningitis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号