首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Langmuir isotherms and fluorescence and atomic force microscopy images of synthetic model lung surfactants were used to determine the influence of palmitic acid and synthetic peptides based on the surfactant-specific proteins SP-B and SP-C on the morphology and function of surfactant monolayers. Lung surfactant-specific protein SP-C and peptides based on SP-C eliminate the loss to the subphase of unsaturated lipids necessary for good adsorption and respreading by inducing a transition between monolayers and multilayers within the fluid phase domains of the monolayer. The morphology and thickness of the multilayer phase depends on the lipid composition of the monolayer and the concentration of SP-C or SP-C peptide. Lung surfactant protein SP-B and peptides based on SP-B induce a reversible folding transition at monolayer collapse that allows all components of surfactant to be retained at the interface during respreading. Supplementing Survanta, a clinically used replacement lung surfactant, with a peptide based on the first 25 amino acids of SP-B also induces a similar folding transition at monolayer collapse. Palmitic acid makes the monolayer rigid at low surface tension and fluid at high surface tension and modifies SP-C function. Identifying the function of lung surfactant proteins and lipids is essential to the rational design of replacement surfactants for treatment of respiratory distress syndrome.  相似文献   

2.
Epifluorescence microscopy combined with a surface balance was used to study monolayers of dipalmitoylphosphatidylcholine (DPPC)/egg phosphatidylglycerol (PG) (8:2, mol/mol) plus 17 wt % SP-B or SP-C spread on subphases containing SP-A in the presence or absence of 5 mM Ca(2+). Independently of the presence of Ca(2+) in the subphase, SP-A at a bulk concentration of 0.68 microg/ml adsorbed into the spread monolayers and caused an increase in the molecular areas in the films. Films of DPPC/PG formed on SP-A solutions showed a pressure-dependent coexistence of liquid-condensed (LC) and liquid-expanded (LE) phases. Apart from these surface phases, a probe-excluding phase, likely enriched in SP-A, was seen in the films between 7 mN/m < or = pi < or = 20 mN/m. In monolayers of SP-B/(DPPC/PG) spread on SP-A, regardless of the presence of calcium ions, large clusters of a probe-excluding phase, different from probe-excluding lipid LC phase, appeared and segregated from the LE phase at near-zero surface pressures and coexisted with the conventional LE and LC phases up to approximately 35 mN/m. Varying the levels of either SP-A or SP-B in films of SP-B/SP-A/(DPPC/PG) revealed that the formation of the probe-excluding clusters distinctive for the quaternary films was influenced by the two proteins. Concanavalin A in the subphase could not replace SP-A in its ability to modulate the textures of films of SP-B/(DPPC/PG). In films of SP-C/SP-A/(DPPC/PG), in the absence of calcium, regions consisting of a probe-excluding phase, likely enriched in SP-A, were detected at surface pressures between 2 mN/m and 20 mN/m in addition to the lipid LE and LC phases. Ca(2+) in the subphase appeared to disperse this phase into tiny probe-excluding particles, likely comprising Ca(2+)-aggregated SP-A. Despite their strikingly different morphologies, the films of DPPC/PG that contained combinations of SP-B/SP-A or SP-C/SP-A displayed similar distributions of LC and LE phases with LC regions occupying a maximum of 20% of the total monolayer area. Combining SP-A and SP-B reorganized the morphology of monolayers composed of DPPC and PG in a Ca(2+)-independent manner that led to the formation of a separate potentially protein-rich phase in the films.  相似文献   

3.
Spread binary monolayers of surfactant-associated proteins SP-B and SP-C were formed at the air-water interface. Surface pressure measurements showed no interactions between the hydrophobic proteins. The effects of a mixture of SP-B plus SP-C (2:1, w/w) on the properties of monolayers of dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), and DPPC:DPPG (7:3, mol:mol) were studied. During compression of ternary and quaternary films, containing less than 0.4 mol% or 5 weight% total protein, the proteins were not squeezed out and appeared to remain associated with the film until collapse at surface pressures of about 65-70 mN.m-1. At initial concentrations of total protein of about 0.9 mol% or 10 weight%, exclusion of protein-lipid complexes was observed at 40-50 mN.m-1. Larger amounts of phospholipid were removed by proteins from (SP-B:SP-C)/DPPG films than from (SP-B:SP-C)/DPPC ones. Separate squeeze-out of SP-B (or SP-B plus DPPC) at about 40 mN.m-1, followed by exclusion of SP-C (or SP-C plus DPPC) at about 50 mN.m-1, was observed in (SP-B:SP-C)/DPPC films. This led to a conclusion that there was independent behavior of SP-B and SP-C in (SP-B:SP-C)/DPPC monolayers. The quaternary (SP-B:SP-C)/(DPPC:DPPG) films showed qualitatively similar process of squeeze-out of the proteins. In the ternary mixtures of SP-B plus SP-C with DPPG separate exclusion of SP-B was not detected; rather, the data was consistent with exclusion of a (SP-B:SP-C)/DPPG complex at about 50 mN.m-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Pulmonary surfactant contains two families of hydrophobic proteins, SP-B and SP-C. Both proteins are thought to promote the formation of the phospholipid monolayer at the air-fluid interface of the lung. The Wilhelmy plate method was used to study the involvement of SP-B and SP-C in the formation of phospholipid monolayers. The proteins were either present in the phospholipid vesicles which were injected into the subphase or included in a preformed phospholipid monolayer. In agreement with earlier investigators, we found that SP-B and SP-C, present in phospholipid vesicles, were able to induce the formation of a monolayer, as became apparent by an increase in surface pressure. However, when the proteins were present in a preformed phospholipid monolayer (20 mN/m) at similar lipid to protein ratios, the rate of surface pressure increase after injection of pure phospholipid vesicles into the subphase at similar vesicle concentrations was 10 times higher. The process of phospholipid insertion from phospholipid vesicles into the protein-containing monolayers was dependent on (1) the presence of (divalent) cations, (2) the phospholipid concentration in the subphase, (3) the size of the phospholipid vesicles, (4) the protein concentration in the preformed monolayer, and (5) the initial surface pressure at which the monolayers were formed. Both in vesicles and in preformed monolayers, SP-C was less active than SP-B in promoting the formation of a phospholipid monolayer. The use of preformed monolayers containing controlled protein concentrations may allow more detailed studies on the mechanism by which the proteins enhance phospholipid monolayer formation from vesicles.  相似文献   

5.
The main function of pulmonary surfactant, a mixture of lipids and proteins, is to reduce the surface tension at the air/liquid interface of the lung. The hydrophobic surfactant proteins SP-B and SP-C are required for this process. When testing their activity in spread films in a captive bubble surfactometer, both SP-B and SP-C showed concentration dependence for lipid insertion as well as for lipid film refinement. Higher activity in DPPC refinement of the monolayer was observed for SP-B compared with SP-C. Further differences between both proteins were found, when subphase phospholipid vesicles, able to create a monolayer-attached lipid reservoir, were omitted. SP-C containing monolayers showed gradually increasing minimum surface tensions upon cycling, indicating that a lipid reservoir is required to prevent loss of material from the monolayer. Despite reversible cycling dynamics, SP-B containing monolayers failed to reach near-zero minimum surface tensions, indicating that the reservoir is required for stable films.  相似文献   

6.
Langmuir isotherms, fluorescence microscopy, and atomic force microscopy were used to study lung surfactant specific proteins SP-B and SP-C in monolayers of dipalmitoylphosphatidylglycerol (DPPG) and palmitoyloleoylphosphatidylglycerol (POPG), which are representative of the anionic lipids in native and replacement lung surfactants. Both SP-B and SP-C eliminate squeeze-out of POPG from mixed DPPG/POPG monolayers by inducing a two- to three-dimensional transformation of the fluid-phase fraction of the monolayer. SP-B induces a reversible folding transition at monolayer collapse, allowing all components of surfactant to remain at the interface during respreading. The folds remain attached to the monolayer, are identical in composition and morphology to the unfolded monolayer, and are reincorporated reversibly into the monolayer upon expansion. In the absence of SP-B or SP-C, the unsaturated lipids are irreversibly lost at high surface pressures. These morphological transitions are identical to those in other lipid mixtures and hence appear to be independent of the detailed lipid composition of the monolayer. Instead they depend on the more general phenomena of coexistence between a liquid-expanded and liquid-condensed phase. These three-dimensional monolayer transitions reconcile how lung surfactant can achieve both low surface tensions upon compression and rapid respreading upon expansion and may have important implications toward the optimal design of replacement surfactants. The overlap of function between SP-B and SP-C helps explain why replacement surfactants lacking in one or the other proteins often have beneficial effects.  相似文献   

7.
Taneva SG  Keough KM 《Biochemistry》2000,39(20):6083-6093
Surface balance techniques were used to study the interactions of surfactant protein SP-A with monolayers of surfactant components preformed at the air-water interface. SP-A adsorption into the monolayers was followed by monitoring the increase in the surface pressure Deltapi after injection of SP-A beneath the films. Monolayers of dipalmitoylphosphatidylcholine (DPPC):egg phosphatidylglycerol (PG) (8:2, mol/mol) spread at initial surface pressure pi(i) = 5 mN/m did not promote the adsorption of SP-A at a subphase concentration of 0.68 microg/mL as compared to its adsorption to the monolayer-free surface. Surfactant proteins, SP-B or SP-C, when present in the films of DPPC:PG spread at pi(i) = 5 mN/m, enhanced the incorporation of SP-A in the monolayers to a similar extent; the Deltapi values being dependent on the levels of SP-B or SP-C, 3-17 wt %, in the lipid films. Calcium in the subphase did not affect the intrinsic surface activity of SP-A but reduced the Deltapi values produced by the adsorption of the protein to all the preformed films independently of their compositions and charges. The divalent ions likely modified the interaction of SP-A with the monolayers through their effects on the conformation, self-association, and charge state of SP-A. Values of Deltapi produced by adsorption of SP-A to the films of DPPC:PG with or without SP-B or SP-C were a function of the initial surface pressure of the films, pi(i). In the range of pressures 5 相似文献   

8.
Rapid adsorption of surfactant material to the air/liquid interface of the lung is essential for maintaining normal lung function. The detailed mechanism of this process, however, remains unclear. In this study, we elucidate the influence of lipid saturation grade and headgroup charge of surface layer lipids on surfactant protein (SP)-induced vesicle insertion into monolayers spread at the air/water interface of a film balance. We used dipalmitoylphosphatidlycholine (DPPC),1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) as monolayer lipids doped with either hydrophobic surfactant-specific protein SP-B or SP-C (0.2 and 0.4 mol %, respectively). Vesicles consisting of DPPC/DPPG (4:1, mol ratio) were injected into a stirred subphase to quantify adsorption kinetics. Based on kinetic film balance and fluorescence measurements, a refined model describing distinct steps of vesicle adsorption to surfactant monolayers is presented. First, in a protein-independent step, lipids from vesicles bridged to the interfacial film by Ca2+ ions are inserted into defects of a disordered monolayer at low surface pressures. Second, in a SP-facilitated step, active material insertion involving an SP-B- or SP-C-induced flip-flop of lipids occurs at higher surface pressures. Negatively charged lipids obviously influence the threshold pressures at which this second protein-mediated adsorption mechanism takes place.  相似文献   

9.
To explore the role of lung surfactant proteins SP-B and SP-C in storing and redelivering lipid from lipid monolayers during the compression and re-expansion occurring in lungs during breathing, we simulate the folding of lipid monolayers with and without these proteins. We utilize the MARTINI coarse-grained force field to simulate monolayers containing pure dipalmitoylphosphatidylcholine (DPPC) and DPPC mixed with palmitoyloleoylphosphatidylglycerol (POPG), palmitic acid (PA), and/or peptides. The peptides considered include the 25-residue N-terminal fragment of SP-B (SP-B1-25), SP-C, and several SP-B1-25 mutants in which charged and hydrophilic residues are replaced by hydrophobic ones, or vice-versa. We observe two folding mechanisms: folding by the amplification of undulations and folding by nucleation about a defect. The first mechanism is observed in monolayers containing either POPG or peptides, while the second mechanism is observed only with peptides present, and involves the lipid-mediated aggregation of the peptides into a defect, from which the fold can nucleate. Fold nucleation from a defect displays a dependence on the hydrophobic character of the peptides; if the number of hydrophobic residues is decreased significantly, monolayer folding does not occur. The addition of POPG or peptides to the DPPC monolayer has a fluidizing effect, which assists monolayer folding. In contrast, the addition of PA has a charge-dependent condensing affect on DPPC monolayers containing SP-C. The peptides appear to play a significant role in the folding process, and provide a larger driving force for folding than POPG. In addition to promoting fold formation, the peptides also display fusogenic behavior, which can lead to surface refining.  相似文献   

10.
Pulmonary surfactant proteins, SP-B and SP-C, if present in preformed monolayers can induce lipid insertion from lipid vesicles into the monolayer after the addition of (divalent) cations [Oosterlaken-Dijksterhuis, M. A., Haagsman, H. P., van Golde, L. M. G., & Demel, R. A. (1991) Biochemistry 30, 8276-8287]. This model system was used to study the mechanisms by which SP-B and SP-C induce monolayer formation from vesicles. Lipid insertion proceeds irrespectively of the molecular class, and PG is not required for this process. In addition to lipids that are immediately inserted from vesicles into the monolayer, large amounts of vesicles are bound to the monolayer and their lipids eventually inserted when the surface area is expanded. SP-B and SP-C are directly responsible for the binding of vesicles to the monolayer. By weight, the vesicle binding capacity of SP-B is approximately 4 times that of SP-C. For vesicle binding and insertion, the formation of close contacts between monolayer and vesicles is essential. SP-B and SP-C show very similar surface properties. Both proteins form extremely stable monolayers (collapse pressures 36-37 mN/m) of alpha-helical structures oriented parallel to the interface. In monolayers consisting of DPPC and SP-B or SP-C, an increase in mean molecular area is observed, which is mainly attributed to the phospholipid. This will greatly enhance the insertion of new lipid material into the monolayer. The results of this study suggest that the surface properties and the hydrophobic nature of SP-B and SP-C are important for the protein-mediated monolayer formation.  相似文献   

11.
Surface activity and sensitivity to inhibition from phospholipase A2 (PLA2), lysophosphatidylcholine (LPC), and serum albumin were studied for a synthetic C16:0 diether phosphonolipid (DEPN-8) combined with 1.5% by weight of mixed hydrophobic surfactant proteins (SP)-B/C purified from calf lung surfactant extract (CLSE). Pure DEPN-8 had better adsorption and film respreading than the major lung surfactant phospholipid dipalmitoyl phosphatidylcholine and reached minimum surface tensions <1 mN/m under dynamic compression on the Wilhelmy balance and on a pulsating bubble surfactometer (37 degrees C, 20 cycles/min, 50% area compression). DEPN-8 + 1.5% SP-B/C exhibited even greater adsorption and had overall dynamic surface tension lowering equal to CLSE on the bubble. In addition, films of DEPN-8 + 1.5% SP-B/C on the Wilhelmy balance had better respreading than CLSE after seven (but not two) cycles of compression-expansion at 23 degrees C. DEPN-8 is structurally resistant to degradation by PLA2, and DEPN-8 + 1.5% SP-B/C maintained high adsorption and dynamic surface activity in the presence of this enzyme. Incubation of CLSE with PLA2 led to chemical degradation, generation of LPC, and reduced surface activity. DEPN-8 + 1.5% SP-B/C was also more resistant than CLSE to direct biophysical inhibition by LPC, and the two were similar in their sensitivity to biophysical inhibition by serum albumin. These findings indicate that synthetic surfactants containing DEPN-8 combined with surfactant proteins or related synthetic peptides have potential utility for treating surfactant dysfunction in inflammatory lung injury.  相似文献   

12.
Some properties of monolayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol (POPG) alone or of POPG in mixtures with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) have been measured near 35°C during dynamic compression and expansion at 3.6 cm2·s?1. (2) The mean values of minimum surface tension (corresponding to maximum surface pressure) which could be obtained with pure POPG monolayers at high compression ranged from 15 to 18 mN·m?1 in the presence of Na+, Ca2+ or low pH (2.0) in the subphase. (3) The presence of Ca2+ or low pH in the subphase increased the collapse plateau ratios obtained on cyclic compression. This might represent enhanced respreading into the monolayer of pure POPG from a collapsed form during reexpansion of the surface. (4) Monolayers containing 10% or 30% POPG and 90% or 70% DPPC could be compressed to surface tensions approaching zero. (5) In such mixed monolayers, 10% or 30% POPG did not appear to enhance respreading, as measured by collapse plateau ratios, in the presence of Na+ or Ca2+ in the subphase.  相似文献   

13.
Pulmonary surfactant contains at least three unique proteins: SP-A, SP-B and SP-C. SP-B and SP-C from bovine surfactant are markedly hydrophobic and have molecular masses between 3 and 26 kDa. We identify surfactant proteins under nonreducing conditions on polyacrylamide gels with approximate molecular mass of 5, 14, 26 kDa (SP-5, 14, 26) when organic solvent-soluble material is eluted from a Sephadex LH-20 size exclusion column followed by separation on a high-performance reverse-phase chromatography system. These bands correspond to monomeric SP-C, oligomeric SP-C and oligomeric SP-B, respectively. Computer analysis (Eisenberg-hydrophobic moment) of sequences for these proteins suggests that SP-B contains surface-seeking amphiphilic segments. In contrast, SP-C resembles a more hydrophobic transmembrane anchoring peptide. Dispersions containing dipalmitoylphosphatidylcholine, phosphatidylglycerol, palmitic acid and multimeric SP-B and SP-C duplicate the surface activity of natural surfactant when assayed in a pulsating bubble surfactometer. We speculate that oligomers of SP-B and monomers and oligomers of SP-C may act cooperatively in affecting surfactant function. An important function of SP-B and SP-C may be to affect the ordering of surfactant lipids so that rates of transport of surfactant lipids to the hypophase surface in the alveoli are enhanced.  相似文献   

14.
The pulmonary surfactant lines as a complex monolayer of lipids and proteins the alveolar epithelial surface. The monolayer dynamically adapts the surface tension of this interface to the varying surface areas during inhalation and exhalation. Its presence in the alveoli is thus a prerequisite for a proper lung function. The lipid moiety represents about 90% of the surfactant and contains mainly dipalmitoylphosphatidylcholine (DPPC) and phosphatidylglycerol (PG). The surfactant proteins involved in the surface tension adaption are called SP-A, SP-B and SP-C. The aim of the present investigation is to analyse the properties of monolayer films made from pure SP-C and from mixtures of DPPC, DPPG and SP-C in order to mimic the surfactant monolayer with minimal compositional requirement. Pressure-area diagrams were taken. Ellipsometric measurements at the air-water interface of a Langmuir film balance allowed measurement of the changes in monolayer thickness upon compression. Isotherms of pure SP-C monolayers exhibit a plateau between 22 and 25 mN/m. A further plateau is reached at higher compression. Structures of the monolayer formed during compression are reversible during expansion. Together with ellipsometric data which show a stepwise increase in film thickness (coverage) during compression, we conclude that pure SP-C films rearrange reversibly into multilayers of homogenous thickness.

Lipid monolayers collapse locally and irreversibly if films are compressed to approximately 0–4 nm2/molecule. In contrast, mixed DPPG/SP-C monolayers with less than 5 mol% protein collapse in a controlled and reversible way. The pressure-area diagrams exhibit a plateau at 20 mN/m, indicating partial demixing of SP-C and DPPG. The thickness isotherm obtained by ellipsometry indicates a transformation into multilayer structures. In DPPC/DPPG/SP-C mixtures again a reversible collapse was observed but without a drastic increase in surface layer thickness which may be due to the formation of protrusion under the surface. Thus lipid monolayers containing small amounts of SP-C may mimic the lung surfactant.  相似文献   

15.
The influence of the hydrophobic proteins SP-B and SP-C, isolated from pulmonary surfactant, on the morphology of binary monomolecular lipid films containing phosphocholine and phosphoglycerol (DPPC and DPPG) at the air-water interface has been studied using epifluorescence and dark-field microscopy. In contrast to previously published studies, the monolayer experiments used the entire hydrophobic surfactant protein fraction (containing both the SP-B and SP-C peptides) at physiologically relevant concentrations (approximately 1 wt %). Even at such low levels, the SP-B/C peptides induce the formation of a new phase in the surface monolayer that is of lower intrinsic order than the liquid condensed (LC) phase that forms in the pure lipid mixture. This presumably leads to a higher structural flexibility of the surface monolayer at high lateral pressure. Variation of the subphase pH indicates that electrostatic interaction dominates the association of the SP-B/C peptides with the lipid monolayer. As evidenced from dark-field microscopy, monolayer material is excluded from the DPPC/DPPG surface film on compression and forms three-dimensional, surface-associated structures of micron dimensions. Such exclusion bodies formed only with SP-B/C peptides. This observation provides the first direct optical evidence for the squeeze-out of pulmonary surfactant material in situ at the air-water interface upon increasing monolayer surface pressures.  相似文献   

16.
The lung surfactant proteins SP-B and SP-C are pivotal for fast and reversible lipid insertion at the air/liquid interface, a prerequisite for functional lung activity. We used a model system consisting of a preformed monolayer at the air/liquid interface supplemented with surfactant protein SP-B or SP-C and unilamellar vesicles injected into the subphase of a film balance. The content of SP-B or SP-C was similar to that found in lung lavage. In order to elucidate distinct steps of lipid insertion, we measured the time-dependent pressure increase as a function of the initial surface pressure, the temperature and the phosphatidylglycerol content by means of surface tension measurements and scanning force microscopy (SFM). The results of the film balance study are indicative of a two-step mechanism in which initial adsorption of vesicles to the protein-containing monolayer is followed by rupture and integration of lipid material. Furthermore, we found that vesicle adsorption on a preformed monolayer supplemented with SP-B or SP-C is strongly enhanced by negatively charged lipids as provided by DPPG and the presence of Ca2+ ions in the subphase. Hence, long-range electrostatic interactions are thought to play an important role in attracting vesicles to the surface, being the initial step in replenishment of lipid material. While insertion into the monolayer is independent of the type of protein SP-B or SP-C, initial adsorption is faster in the presence of SP-B than SP-C. We propose that the preferential interaction between SP-B and negatively charged DPPG leads to accumulation of negative charges in particular regions, causing strong adhesion between DPPG-containing vesicles and the monolayer mediated by Ca2+ ions, which eventually causes flattening and rupture of attached liposomes as observed by in situ SFM.  相似文献   

17.
Pulmonary surfactant contains two extremely hydrophobic proteins, SP-B and SP-C. We present a novel HPLC method for the preparation of these hydrophobic proteins. It is based on size-exclusion chromatography using the apolar stationary-phase butyl silica gel and isocratic elution with acidified chloroform/methanol. Samples for HPLC were prepared from sheep lung lavage fluid by centrifugation and extraction with chloroform/methanol. Amino acid analyses of the two protein fractions revealed sequences that are consistent with SP-B and SP-C, respectively. MALDI-TOF-MS analyses of the SP-B fraction showed one major peak of dimeric SP-B with m/z 17,361, and additional peaks of monomeric and oligomeric forms, which are predominantly even numbered. The SP-C fraction showed a peak at m/z 4200, consistent with the theoretical mass of the dipalmitoylated form of this protein. The biophysical activity of pure sheep SP-B and SP-C was evaluated by measuring the surface tension using axisymmetric drop shape analysis for captive bubbles. We found distinct surface pressure versus surface area isotherms of SP-B and SP-C indicating different biophysical activities for these surfactant proteins. The new preparative HPLC method is able to replace the established, time-consuming low-pressure liquid chromatography method for the isolation of SP-B and SP-C from lipids.  相似文献   

18.
Surfactant proteins B and C (SP-B and SP-C) are present in natural derived surfactant preparations used for treatment of respiratory distress syndrome. Herein the surface activity of an SP-C analogue (SP-C(LKS)), a hybrid peptide between SP-C and bacteriorhodopsin (SP-C/BR) and a model peptide (KL(4)) was studied with a captive bubble surfactometer (CBS). The peptides were mixed with either 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/phosphatidylglycerol (PG) (7:3, by weight) or DPPC/PG/palmitic acid (68:22:9, by weight) at a concentration of 1 mg/ml in HEPES buffer, pH 6.9 and a polypeptide/lipid weight ratio of 0.02--0.03. In some lipid/peptide preparations also 2% of SP-B was included. Adsorption, monitored as surface tension vs. time for 10 min after bubble formation did not show discernible differences for the whole set of preparations. Equilibrium surface tensions of approximately 25 mN/m were reached after 5--10 min for all preparations, although those with SP-C/BR appeared not to reach end point of adsorption within 10 min. Area compression needed to reach minimum surface tension of 0.5--2.0 mN/m was least for the KL(4) preparation, about 13% in the first cycle. 3% SP-C(LKS) in DPPC:PG (7:3, by weight) reached minimum surface tension upon 27% compression in the first cycle. If DPPC:PG:PA (68:22:9, by weight) was used instead only 16% area compression was needed and 14% if also 2% SP-B was included. 3% SP-C(LKS) in DPPC:PG (7:3, by weight)+2% SP-B needed 34% compression to reach minimum surface tension. The replenishment of material from a surface associated surfactant reservoir was estimated with subphase depletion experiments. With the 2% KL(4) preparation incorporation of excess material took place at a surface tension of 25--35 mN/m during stepwise bubble expansion and excess material equivalent to 4.3 monolayers was found. When 2% SP-B was added to 3% SP-C(LKS) in DPPC:PG (7:3, by weight) the number of excess monolayers increased from 1.5 to 3.6 and the incorporation took place at 30--40 mN/m. When SP-B was added to 3% SP-C(LKS) in DPPC:PG:PA (68:22:9, by weight) the number of excess monolayers increased from 0.5 to 3.4 and incorporation took place at 40--50 mN/m. With 2% SP-C/BR incorporation took place at 40--45 mN/m, frequent instability clicks were observed and excess material of approximately 1.1 monolayer was estimated.  相似文献   

19.
We have applied two-dimensional infrared (2D IR) and betanu correlation spectroscopy to in-situ IR spectroscopy of pulmonary surfactant proteins SP-B and SP-C in lipid-protein monolayers at the air-water interface. For both SP-B and SP-C, a statistical windowed autocorrelation method identified two separate surface pressure regions that contained maximum amide I intensity changes: 4-25 mN/m and 25-40 mN/m. For SP-C, 2D IR and betanu correlation analyses of these regions indicated that SP-C adopts a variety of secondary structure conformations, including alpha-helix, beta-sheet, and an intermolecular aggregation of extended beta-sheet structure. The main alpha-helix band split into two peaks at high surface pressures, indicative of two different helix conformations. At low surface pressures, all conformations of the SP-C molecule reacted identically to increasing surface pressure and reoriented in phase with each other. Above 25 mN/m, however, the increasing surface pressure selectively affected the coexisting protein conformations, leading to an independent reorientation of the protein conformations. The asynchronous 2D IR spectrum of SP-B showed the presence of two alpha-helix components, consistent with two separate populations of alpha-helix in SP-B-a hydrophobic fraction associated with the lipid chains and a hydrophilic fraction parallel to the membrane surface. The distribution of correlation intensity between the two alpha-helix cross peaks indicated that the more hydrophobic helix fraction predominates at low surface pressures whereas the more hydrophilic helix fraction predominates at high surface pressures. The different SP-B secondary structures reacted identically to increasing surface pressure, leading to a reorientation of all SP-B subunits in phase with one another.  相似文献   

20.
The interaction of the hydrophobic pulmonary surfactant protein SP-C with dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG) and DPPC:DPPG (7:3, mol:mol) in spread monolayers at the air-water interface has been studied. At low concentrations of SP-C (about 0.5 mol% or 3 weight%protein) the protein-lipid films collapsed at surface pressures of about 70 mN.m-1, comparable to those of the lipids alone. At initial protein concentrations higher than 0.8 mol%, or 4 weight%, the isotherms displayed kinks at surface pressures of about 50 mN.m-1 in addition to the collapse plateaux at the higher pressures. The presence of less than 6 mol%, or 27 weight%, of SP-C in the protein-lipid monolayers gave a positive deviation from ideal behavior of the mean areas in the films. Analyses of the mean areas in the protein-lipid films as functions of the monolayer composition and surface pressure showed that SP-C, associated with some phospholipid (about 8-10 lipid molecules per molecule of SP-C), was squeezed out from the monolayers at surface pressures of about 55 mN.m-1. The results suggest a potential role for SP-C to modify the composition of the monolayer at the air-water interface in the alveoli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号