首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
l-Ribose is a rare and expensive sugar that can be used as a precursor for the production of l-nucleoside analogues, which are used as antiviral drugs. In this work, we describe a novel way of producing l-ribose from the readily available raw material l-arabinose. This was achieved by introducing l-ribose isomerase activity into l-ribulokinase-deficient Escherichia coli UP1110 and Lactobacillus plantarum BPT197 strains. The process for l-ribose production by resting cells was investigated. The initial l-ribose production rates at 39°C and pH 8 were 0.46 ± 0.01 g g−1 h−1 (1.84 ± 0.03 g l−1 h−1) and 0.27 ± 0.01 g g−1 h−1 (1.91 ± 0.1 g l−1 h−1) for E. coli and for L. plantarum, respectively. Conversions were around 20% at their highest in the experiments. Also partially purified protein precipitates having both l-arabinose isomerase and l-ribose isomerase activity were successfully used for converting l-arabinose to l-ribose.  相似文献   

2.
Kinetic comparisons of mesophilic and thermophilic aerobic biomass   总被引:1,自引:0,他引:1  
Kinetic parameters describing growth and decay of mesophilic (30°C) and thermophilic (55°C) aerobic biomass were determined in continuous and batch experiments by using oxygen uptake rate measurements. Biomass was cultivated on a single soluble substrate (acetate) in a mineral medium. The intrinsic maximum growth rate (μ max) at 55°C was 0.71±0.09 h−1, which is 1.5 times higher than the μ max at 30°C (0.48±0.11 h−1). The biomass decay rates increased from 0.004 h−1 at 30°C to 0.017 h−1 at 55°C. Monod constants were very low for both types of biomass: 9±2 mg chemical oxygen demand (COD) l−1at 30°C and 3±2 mg COD l−1at 55°C. Theoretical biomass yields were similar at 30 and 55°C: 0.5 g biomass COD (g acetate COD)−1. The observed biomass yields decreased under both temperature conditions as a function of the cell residence time. Under thermophilic conditions, this effect was more pronounced due to the higher decay rates, resulting in lower biomass production at 55°C compared to 30°C. Electronic Publication  相似文献   

3.
Tong P  Hong Y  Xiao Y  Zhang M  Tu X  Cui T 《Biotechnology letters》2007,29(2):295-301
A new basidiomycete, Trametes sp. 420, produced laccase at 6,810 U l−1 (268 mg, 25.4 U mg−1 protein for guaiacol) in glucose medium and 7,870 U l−1 (310 mg) in cellobiose medium with induction by 0.5 mM Cu2+ and 6 mM o-toluidine. Laccase isozyme E (LacE) was the sole laccase in the fermentation products. It was stable at pH 5–9 and below 70°C over 30 min. The K m values of LacE for four substrates (guaiacol ABTS, 2,6-dimethoxyphenol and syringaldazine) varied from 5 to 245 μM. The activity of LacE was strongly inhibited by NaN3 but not by EDTA or dimethylsulfoxide. LacE at 0.5 U l−1 could decolorize industrial dyes. The open reading frame of the lacE gene was 2,130 bp and was interrupted by 10 introns. It displayed a high homology to laccases from other fungi. Pingui Tong and Yuzhi Hong contributed equally to the study  相似文献   

4.
A new laccase gene (cotA) was cloned from Bacillus licheniformis and expressed in Escherichia coli. The recombinant protein CotA was purified and showed spectroscopic properties, typical for blue multi-copper oxidases. The enzyme has a molecular weight of ~65 kDa and demonstrates activity towards canonical laccase substrates 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine (SGZ) and 2,6-dimethoxyphenol (2,6-DMP). Kinetic constants K M and k cat for ABTS were of 6.5 ± 0.2 μM and 83 s−1, for SGZ of 4.3 ± 0.2 μM and 100 s−1, and for 2,6-DMP of 56.7 ± 1.0 μM and 28 s−1. Highest oxidizing activity towards ABTS was obtained at 85°C. However, after 1 h incubation of CotA at 70°C and 80°C, a residual activity of 43% and 8%, respectively, was measured. Furthermore, oxidation of several phenolic acids and one non-phenolic acid by CotA was investigated. CotA failed to oxidize coumaric acid, cinnamic acid, and vanillic acid, while syringic acid was oxidized to 2,6-dimethoxy-1,4-benzoquinone. Additionally, dimerization of sinapic acid, caffeic acid, and ferulic acid by CotA was observed, and highest activity of CotA was found towards sinapic acid.  相似文献   

5.
A thermoacidophilic elemental sulfur and chalcopyrite oxidizing enrichment culture VS2 was obtained from hot spring run-off sediments of an underground mine. It contained only archaeal species, namely a Sulfolobus metallicus-related organism (96% similarity in partial 16S rRNA gene) and Thermoplasma acidophilum (98% similarity in partial 16S rRNA gene). The VS2 culture grew in a temperature range of 35–76°C. Sulfur oxidation by VS2 was optimal at 70°C, with the highest oxidation rate being 99 mg S0 l−1 day−1. At 50°C, the highest sulfur oxidation rate was 89 mg l−1 day−1 (in the presence of 5 g Cl l−1). Sulfur oxidation was not significantly affected by 0.02–0.1 g l−1 yeast extract or saline water (total salinity of 0.6 M) that simulated mine water at field application sites with availability of only saline water. Chloride ions at a concentration above 10 g l−1 inhibited sulfur oxidation. Both granular and powdered forms of sulfur were bioavailable, but the oxidation rate of granular sulfur was less than 50% of the powdered form. Chalcopyrite concentrate oxidation (1% w/v) by the VS2 resulted in a 90% Cu yield in 30 days.  相似文献   

6.
A recombinant Escherichia coli strain was developed to produce guanosine 5′-diphosphate (GDP)-l-fucose, donor of l-fucose, which is an essential substrate for the synthesis of fucosyloligosaccharides. GDP-d-mannose-4, 6-dehydratase (GMD) and GDP-4-keto-6-deoxymannose 3, 5-epimerase 4-reductase (WcaG), the two crucial enzymes for the de novo GDP-l-fucose biosynthesis, were overexpressed in recombinant E. coli by constructing inducible overexpression vectors. Optimum expression conditions for GMD and WcaG in recombinant E. coli BL21(DE3) were 25°C and 0.1 mM isopropyl-β-d-thioglucopyranoside. Maximum GDP-l-fucose concentration of 38.9 ± 0.6 mg l−1 was obtained in a glucose-limited fed-batch cultivation, and it was enhanced further by co-expression of NADPH-regenerating glucose-6-phosphate dehydrogenase encoded by the zwf gene to achieve 55.2 ± 0.5 mg l−1 GDP-l-fucose under the same cultivation condition.  相似文献   

7.
The effect of light intensity (50–300 μmol photons m−2 s−1) and temperature (15–50°C) on chlorophyll a, carotenoid and phycobiliprotein content in Arthronema africanum biomass was studied. Maximum growth rate was measured at 300 μmol photons m−2 s−1 and 36°C after 96 h of cultivation. The chlorophyll a content increased along with the increase in light intensity and temperature and reached 2.4% of dry weight at 150 μmol photons m−2 s−1 and 36°C, but it decreased at higher temperatures. The level of carotenoids did not change significantly under temperature changes at illumination of 50 and 100 μmol photons m−2 s−1. Carotenoids were about 1% of the dry weight at higher light intensities: 150 and 300 μmol photons m−2 s−1. Arthronema africanum contained C-phycocyanin and allophycocyanin but no phycoerythrin. The total phycobiliprotein content was extremely high, more than 30% of the dry algal biomass, thus the cyanobacterium could be deemed an alternative producer of C-phycocyanin. A highest total of phycobiliproteins was reached at light intensity of 150 μmol photons m−2 s−1 and temperature of 36°C, C-phycocyanin and allophycocyanin amounting, respectively, to 23% and 12% of the dry algal biomass. Extremely low (<15°C) and high temperatures (>47°C) decreased phycobiliprotein content regardless of light intensity.  相似文献   

8.
Lee S  Kim J  Shin SG  Hwang S 《Biotechnology letters》2008,30(6):1011-1016
The biokinetics of glucose metabolism were evaluated in Aeromonas hydrophila during growth in an anaerobic biosystem. After approx 34 h growth, A. hydrophila metabolized 5,000 mg glucose l−1 into the end-products ethanol, acetate, succinate and formate. The maximum growth rate, μ m, half saturation coefficients, K s, microbial yield coefficient, Y, cell mass decay rate coefficient, k d, and substrate inhibition coefficient, K si were 0.25 ± 0.03 h−1, 118 ± 31 mg glucose l−1, 0.12 μg DNA mg glucose−1, 0.01 h−1, and 3,108 ± 1,152 mg glucose l−1, respectively. These data were used to predict the performance of a continuous growth system with an influent glucose concentration of 5,000 mg l−1. Results of the analysis suggest that A. hydrophila will metabolize glucose at greater than 95% efficiency when hydraulic retention times (HRTs) exceed 7 h, whereas the culture is at risk of washing out at an HRT of 6.7 h.  相似文献   

9.
Yao YF  Weng YM  Hu HY  Ku KL  Lin LL 《The protein journal》2006,25(6):431-441
A truncated Escherichia coli Novablue γ-glutamyltranspeptidase (EcGGT) gene lacking the first 48-bp coding sequence for part of the signal sequence was amplified by polymerase chain reaction and cloned into expression vector pQE-30 to generate pQE-EcGGT. The maximum production of His6-tagged enzyme by E. coli M15 (pQE-EcGGT) was achieved with 0.1 mM IPTG induction for 12 h at 20 °C. The overexpressed enzyme was purified to homogeneity by nickel-chelate chromatography to a specific transpeptidase activity of 4.25 U/mg protein and a final yield of 83%. The molecular masses of the subunits of the purified enzyme were estimated to be 41 and 21 kDa respectively by SDS-PAGE, indicating EcGGT still undergoes the post-translational cleavage even in the truncation of signal sequence. The optimum temperature and pH for the recombinant enzyme were 40 °C and 9, respectively. The apparent K m and V max values for γ-glutamyl-p-nitroanilide as γ-glutamyl donor in the transpeptidation reaction were 37.9 μM and 53.7 × 10−3 mM min−1, respectively. The synthesis of L-theanine was performed in a reaction mixture containing 10 mM L-Gln, 40 mM ethylamine, and 1.04 U His6-tagged EcGGT/ml, pH 10, and a conversion rate of 45% was obtained.  相似文献   

10.
We evaluated the combined effects of algal (Chlorella vulgaris) food levels (low, 0.5 × 106 (or 2.9 μg C ml−1); and high, 1 × 106 cells ml−1 (or 5.8 μg C ml−1)) and zinc concentrations (0, 0.125, and 0.250 mg l−1 of ZnCl2) on the competition between two common planktonic rotifers Anuraeopsis fissa and Brachionus rubens using their population growth. Median lethal concentration data (LC50) (mean ± 95% confidence intervals) showed that B. rubens was more resistant to zinc (0.554 ± 0.08 mg l−1) than A. fissa (0.315 ± 0.07 mg l−1). A. fissa when grown alone or with Zn was always numerically more abundant than B. rubens. When grown in the absence of zinc, under low- and high-food levels, the peak abundances of A. fissa varied from 251 ± 24 to 661 ± 77 ind. ml−1, respectively, and the corresponding maxima for B. rubens were 52 ± 3 and 102 ± 18 ind. ml−1. At a given food level, competition for food reduced the peak abundances of both rotifers considerably. Increase in Zn concentration also lowered the rotifer abundances. The impact of zinc on competition between the two-rotifer species was evident at low-food level, mainly for A. fissa. At zinc concentrations of 0 and 0.125 mg l−1, the populations of both rotifers continued to grow for about 10 days, but thereafter B. rubens began to decline. Role of zinc on the competitive outcome of the two species is discussed in relation to the changing algal densities in natural water bodies.  相似文献   

11.
The recombinant Pichia pastoris harboring an improved methionine adenosyltransferase (MAT) shuffled gene was employed to biosynthesize S-adenosyl-l-methionine (SAM). Two l-methionine (l-Met) addition strategies were used to supply the precursor: the batch addition strategy (l-Met was added separately at three time points) and the continuous feeding strategies (l-Met was fed continuously at the rate of 0.1, 0.2, and 0.5 g l−1 h−1, respectively). SAM accumulation, l-Met conversion rate, and SAM productivity with the continuous feeding strategies were all improved over the batch addition strategy, which reached 8.46 ± 0.31 g l−1, 41.7 ± 1.4%, and 0.18 ± 0.01 g l−1 h−1 with the best continuous feeding strategy (0.2 g l−1 h−1), respectively. The bottleneck for SAM production with the low l-Met feeding rate (0.1 g L−1 h−1) was the insufficient l-Met supply. The analysis of the key enzyme activities indicated that the tricarboxylic acid cycle and glycolytic pathway were reduced with the increasing l-Met feeding rate, which decreased the adenosine triphosphate (ATP) synthesis. The MAT activity also decreased as the l-Met feeding rate rose. The reduced ATP synthesis and MAT activity were probably the reason for the low SAM accumulation when the l-Met feeding rate reached 0.5 g l−1 h−1.  相似文献   

12.
In integrated multi-trophic aquaculture (IMTA), seaweeds have the capacity to reduce the environmental impact of nitrogen-rich effluents in coastal ecosystems. To establish such bioremediation systems, selection of suitable seaweed species is important. The distribution and productivity of seaweeds vary seasonally based on water temperature and photoperiod. In Korea, candidate genera such as Pophyra, Laminaria, and Undaria grow from autumn to spring. In contrast, Codium grows well at relatively high water temperatures in summer. Thus, aquaculture systems potentially could capitalize on Codium’s capacity for rapid growth in the warm temperatures of late summer and early fall. In this study, we investigated ammonium uptake and removal efficiency by Codium fragile. In laboratory experiments, we grew C. fragile under various water temperatures (10, 15, 20, and 25°C), irradiances (dark, 10, and 100 μmol photons m−2 s−1), and initial ammonium concentrations (150 and 300 μM); in all cases, C. fragile exhausted the ammonium supply for 6 h. At 150 μM of , ammonium removal efficiency was greatest (99.5 ± 2.6%) when C. fragile was incubated at 20°C under 100 μmol photons m−2 s−1. At 300 μM of , removal efficiency was greatest (86.3 ± 2.1%) at 25°C under 100 μmol photons m−2 s−1. Ammonium removal efficiency was significantly greater at 20 and 25°C under irradiance of 100 μmol photons m−2 s−1 than under other conditions tested.  相似文献   

13.
A gene encoding glutamate racemase has been cloned from Aquifex pyrophilus, a hyperthermophilic bacterium, and expressed in Escherichia coli. The A. pyrophilus glutamate racemase is composed of 254 amino acids and shows high homology with glutamate racemase from Escherichia coli, Bacillus subtilis, or Lactobacillus brevis. This racemase converts l- or d-glutamate to d- or l-glutamate, respectively, but not other amino acids such as alanine, aspartate, and glutamine. The cloned gene was expressed and the protein was purified to homogeneity. The A. pyrophilus racemase is present as a dimer but it oligomerizes as the concentration of salt is increased. The K m and kcat values of the overexpressed A. pyrophilus glutamate racemase for the racemization of l-glutamate to the d-form and the conversion of d-glutamate to the l-form were measured as 1.8 ± 0.4 mM and 0.79 ± 0.06 s−1 or 0.50 ± 0.07 mM and 0.25 ± 0.01 s−1, respectively. Complete inactivation of the racemase activity by treatment with cysteine-modifying reagents suggests that cysteine residues may be important for activity. The protein shows strong thermostability in the presence of phosphate ion, and it retains more than 50% of its activity after incubation at 85°C for 90 min. Received: September 11, 1998 / Accepted: January 12, 1999  相似文献   

14.
A microorganism with the ability to catalyze the resolution of racemic phenyloxirane was isolated and identified as Aspergillus niger SQ-6. Chiral capillary electrophoresis was successfully applied to separate both phenyloxirane and phenylethanediol. The epoxide hydrolase (EH) involved in this resolution process was (R)-stereospecific and constitutively expressed. When whole cells were used during the biotransformation process, the optimum temperature and pH for stereospecific vicinal diol production were 35°C and 7.0, respectively. After a 24-h conversion, the enantiomer excess of (R)-phenylethanediol produced was found to be >99%, with a conversion rate of 56%. In fed-batch fermentations at 30°C for 44 h, glycerol (20 g L−1) and corn steep liquor (CSL) (30 g L−1) were chosen as the best initial carbon and nitrogen sources, and EH production was markedly improved by pulsed feeding of sucrose (2 g L−1 h−1) and continuous feeding of CSL (1 g L−1 h−1) at a fermentation time of 28 h. After optimization, the maximum dry cell weight achieved was 24.5±0.8 g L−1; maximum EH production was 351.2±13.1 U L−1 with a specific activity of 14.3±0.5 U g−1. Partially purified EH exhibited a temperature optimum at 37°C and pH optimum at 7.5 in 0.1 M phosphate buffer. This study presents the first evidence for the existence of a predicted epoxide racemase, which might be important in the synthesis of epoxide intermediates.  相似文献   

15.
Summary Several rose species (Rosa rugosa, R. wichuraiana, R. setigera, R. laevigata, R. banksiae, R. roxburghii, R. odorata) and interspecific hybrids were cultured to determine the appropriate concentrations of nutrients and growth regulators for shoot proliferation and root initiation. Cultured shoot tips and lateral buds from different genotypes proliferated multiple shoots on a basal medium [Murashige and Skoog (MS) salts, vitamins, glycine, sucrose, and agar] supplemented with 0 μM to 17.8 μM (4 mg·l−1) 6-benzyladenine (BA) and 0 μM to 0.54 μM (0.1 mg·l−1) naphthalene, acetic acid (NAA). The ability of the explants to proliferate shoots and initiate roots was affected by the genotype, the nodal position of the explant, the strength of the MS basal salts, and the growth regulators used. The buds nearest the apex exhibited the slowest rate of development. Most species had the highest shoot proliferation when cultured on basal MS medium supplemented with 8.9 μM (2 mg·l−1) BA, but the degree varied by species. Root development was enhanced by lowering the concentration of MS salts. With difficult-to-root species, rooting was improved by supplementing the media with 11.4 μM (2 mg·l−1) indole-3-acetic acid (IAA) or by giving them a 7-d dark treatment at 10°C.  相似文献   

16.
The G2ALT gene was cloned and sequenced from the thermophilic bacterium Anoxybacillus gonensis G2. The gene is 666 bp long and encodes a protein 221 amino acids in length. The gene was overexpressed in E. coli and purified to homogeneity and biochemically characterized. The enzyme has a molecular mass of 24.5 kDa and it could be classified as a member of the family of bacterial aluminium resistance proteins based on homology searches. When this fragment was expressed in E. coli, it endowed E. coli with Al tolerance to 500 μM. The purified G2ALT protein is active at a broad pH range (pH 4.0–10.0) and temperature range (25°C–80°C) with optima of 6.0 and the apparent optimal temperature of 73°C respectively. Under optimal conditions, G2ALT exhibited a low ATPase activity with K m and V max values of 10±0.55 μM and 26.81±0.13 mg Pi released/min/mg enzyme, respectively. The ATPase activity of G2ALT requires Mg2+ and Na+ ions, while Zn2+ and Al3+ stimulate the activity. Cd2+ and Ag+ reduced the activity and Li+, Cu2+, and Co2+ inhibited the activity. Known inhibitors of most ATPases, like such as β-mercaptoethanol and ouabain, also inhibited the activity of the G2ALT. These biochemical characterizations suggested that G2ALT belongs to the PP-loop ATPase superfamily and it can be responsible for aluminium tolerance in A. gonensis G2.  相似文献   

17.
The changes in foliar concentrations of volatile terpenes in response to water stress, fertilization and temperature were analyzed in Pinus halepensis and Quercus ilex. The most abundant terpenes found in both species were α-pinene and Δ3-carene. β-Pinene and myrcene were also abundant in both species. P. halepensis concentrations were much greater than those of Q. ilex in agreement with the lack of storage in the latter species (15205.60 ± 1140.04 vs. 0.54 ± 0.08 μg g−1 [d.m.]). The drought treatment (reduction to 1/3 of full watering) significantly increased the total terpene concentrations in both species (54% in P. halepensis and 119% in Q. ilex). The fertilization treatment (addition of either 250 kg N ha−1 or 250 kg P ha−1 or both) had no significant effects on terpene foliar concentrations. The terpene concentrations increased from 0.25 μg g−1 [d.m.] at 30°C to 0.70 μg g−1 [d.m.] at 40°C in Q. ilex (the non-storing species) and from 2,240 μg g−1 [d.m.] at 30°C to 15,621 μg g−1 [d.m.] at 40°C in P. halepensis (the storing species). Both species presented negative relationship between terpene concentrations and relative water contents (RWC). The results of this study show that higher terpene concentrations can be expected in the warmer and drier conditions predicted for the next decades in the Mediterranean region.  相似文献   

18.
Laccases (benzenediol oxygen oxidoreductase; EC 1.10.3.2) have many biotechnological applications because of their oxidation ability towards a wide range of phenolic compounds. Within recent years, researchers have been highly interested in the identification and characterization of laccases from bacterial sources. In this study, we have isolated and cloned a gene encoding laccase (CotA) from Bacillus sp. HR03 and then expressed it under microaerobic conditions and decreased temperature in order to obtain high amounts of soluble protein. The laccase was purified and its biochemical properties were investigated using three common laccase substrates, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine (SGZ) and 2,6-dimethoxyphenol (2,6-DMP). K M and k cat were calculated 535 μM and 127 s−1 for ABTS, 53 μM and 3 s−1 for 2, 6-DMP and 5 μM and 20 s−1 for SGZ when the whole reactions were carried out at room temperature. Laccase activity was also studied when the enzyme was preincubated at 70 and 80°C. With SGZ as the substrate, the activity was increased three-fold after 50 min preincubation at 70°C and 2.4-fold after 10 min preincubation at 80°C. Preincubation of the enzyme in 70°C for 30 min raised the activity four-fold with ABTS as the substrate. Also, l-dopa was used as a substrate. The enzyme was able to oxidize l-dopa with the K M and k cat of 1,493 μM and 194 s−1, respectively.  相似文献   

19.
Chlorogenic acid, 3’-O-caffeoyl D-quinic acid, is an inherent ligand present inHelianthus annuus L. The effect of pH on chlorogenic acid binding to helianthinin suggests that maximum binding occurs at pH 6.0. The protein-polyphenol complex precipitates as a function of time. The association constant of the binding of chlorogenic acid to helianthinin, determined by equilibrium dialysis, at 31°C has a value of 3.5 ± 0.1 × 104M−-1 resulting in a ΔG value of − 6.32 ± 0.12 kcal /mol. The association constantK ais 1.0 ± 0.1 × 104M−1 as determined by ultraviolet difference spectral titration at 25°C with ΔG° of -5.46 ± 0.06 kcal/mol. From fluorescence spectral titration at 28°C, theK avalue is 1.38 ± 0.1 × 1 0 4M−1 resulting in a ΔG of − 5.70 ± 0.05 kcal/mol. The total number of binding sites on the protein are 420 ± 50 as calculated from equilibrium dialysis. Microcalorimetric data of the ligand-protein interaction at 23°C suggests mainly two classes of binding. The thermal denaturation temperature,T mof the protein decreases from 76°C to 72°C at 1 × 10−3M chlorogenic acid concentration upon complexation. This suggests that the complexation destabilizes the protein. The effect of temperature onK aof chlorogenic acid shows a nonlinear increase from 10.2°C to 45°C. Chemical modification of both lysyl and tryptophanyl residues of the protein decreases the strength of binding of chlorogenic acid. Lysine, tryptophan and tyrosine of protein are shown to be present at the binding site. Based on the above data, it is suggested that charge-transfer complexation and entropically driven hydrophobic interaction are the predominant forces that are responsible for binding of chlorogenic acid to the multisubunit protein, helianthinin. Publication No. 324.  相似文献   

20.
The effects of light intensity and temperature on Arthrospira platensis growth and production of extracellular polymeric substances (EPS) in batch culture were evaluated using a three-level, full-factorial design and response surface methodology. Three levels were tested for each parameter (temperature: 30, 35, 40°C; light intensity: 50, 115, 180 μmol photons m−2 s−1). Both growth and EPS production are influenced mainly by the temperature factor but the interaction term temperature*light intensity also had a significant effect. In addition, conditions optimising EPS production are different from those optimising growth. The highest growth rate (0.414 ± 0.003 day−1) was found at the lowest temperature (30°C) and highest light intensity (180 μmol photons m−2 s−1) tested, no optima were detectable within the given test range. Obviously, optima for growth must be at a temperature lower than 30°C and a light intensity higher than 180 μmol photons m−2 s−1. For EPS production, light intensity had a positive linear effect (optimum obviously higher than 180 μmol photons m−2 s−1), but for the temperature parameter a maximum effect was detectable at 35°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号