首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have cloned a 4-kb region encompassing the Cu,Zn superoxide dismutase (Sod) gene from a genomic library of the Mediterranean fruit fly, Ceratitis capitata, using a cDNA probe from Drosophila melanogaster. The coding sequence of 462 bases is equally as long as that in Drosophila species. The rate of amino acid replacement over the past 100 million years is approximately the same in the Diptera and in mammals, thus excluding the hypothesis (proposed to account for an apparent acceleration in rate of evolution of Sod over geological time) that the evolution of the SOD protein is much higher in the mammals than in other organisms. The coding region is interrupted by two introns in Ceratitis, whereas only one occurs in Drosophila. Phylogenetic comparisons indicate that the second intron was present in the common dipteran ancestor, but was lost shortly after the divergence of the Drosophila lineage from other Diptera. Analysis of the exon/intron structure of Sod in various animal phyla, plants, and fungi indicates that intron insertions as well as deletions have occurred in the evolution of the Sod gene.  相似文献   

2.
In eukaryotic organisms, the largely cytosolic copper- and zinc-containing superoxide dismutase (Cu/Zn SOD) enzyme represents a key defense against reactive oxygen toxicity. Although much is known about the biology of this enzyme under aerobic conditions, less is understood regarding the effects of low oxygen levels on Cu/Zn SOD enzymes from diverse organisms. We show here that like bakers' yeast (Saccharomyces cerevisiae), adaptation of the multicellular Caenorhabditis elegans to growth at low oxygen levels involves strong downregulation of its Cu/Zn SOD. Much of this regulation occurs at the post-translational level where CCS-independent activation of Cu/Zn SOD is inhibited. Hypoxia inactivates the endogenous Cu/Zn SOD of C. elegans Cu/Zn SOD as well as a P144 mutant of S. cerevisiae Cu/Zn SOD (herein denoted Sod1p) that is independent of CCS. In our studies of S. cerevisiae Sod1p, we noted a post-translational modification to the inactive enzyme during hypoxia. Analysis of this modification by mass spectrometry revealed phosphorylation at serine 38. Serine 38 represents a putative proline-directed kinase target site located on a solvent-exposed loop that is positioned at one end of the Sod1p β-barrel, a region immediately adjacent to residues previously shown to influence CCS-dependent activation. Although phosphorylation of serine 38 is minimal when the Sod1p is abundantly active (e.g., high oxygen level), up to 50% of Sod1p can be phosphorylated when CCS activation of the enzyme is blocked, e.g., by hypoxia or low-copper conditions. Serine 38 phosphorylation can be a marker for inactive pools of Sod1p.  相似文献   

3.
4.
U Willhoeft  G Franz 《Génome》1996,39(5):884-889
The sex chromosomes of the tephritid fruit fly Ceratitis capitata (Wiedemann) are heteromorphic. The male-determining region was located on the Y chromosome by deletion mapping using unbalanced offspring from several translocation strains. In addition, we showed that only 15% of the Y chromosome is required for male determination and male fertility. Based on this result, we expected to find Y-chromosomal length polymorphism in natural populations. Using fluorescence in situ hybridization with two repetitive DNA probes that label the Y chromosome, no obvious size differences were detected in seven wild-type strains and three mutant strains. As the medfly is probably of East African origin, we also analyzed two wild-type strains established recently from pupae sampled in Kenya. The Y chromosomes show a polymorphism in the hybridization pattern of a repetitive Y-specific medfly clone. However, the overall size of the Y chromosome is similar to that of the other strains. Besides C. capitata, the tephritid fruit flies Ceratitis (Pterandrus) rosa Karsch and Trirhithrum coffeae Bezzi also emerged from pupae sampled in Kenya. Their karyotype was analyzed by C-banding. Furthermore, the ribosomal genes were mapped to the sex chromosomes in these two species. Key words : Ceratitis capitata, Tephritidae, C-Banding, FISH, rDNA.  相似文献   

5.
This study assesses whether the phylogenetic relationships between SODs from different organisms could assist in elucidating the functional relationships among these enzymes from evolutionarily distinct species. Phylogenetic trees and intron positions were compared to determine the relationships among these enzymes. Alignment of Cu/ZnSOD amino acid sequences indicates high homology among plant sequences, with some features that distinguish chloroplastic from cytosolic Cu/ZnSODs. Among eukaryotes, the plant SODs group together. Alignment of the Mn and FeSOD amino acid sequences indicates a higher degree of homology within the group of MnSODs (>70%) than within FeSODs (approximately 60%). Tree topologies are similar and reflect the taxonomic classification of the corresponding species. Intron number and position in the Cu/Zn Sod genes are highly conserved in plants. Genes encoding cytosolic SODs have seven introns and genes encoding chloroplastic SODs have eight introns, except the chloroplastic maize Sod1, which has seven. In Mn Sod genes the number and position of introns are highly conserved among plant species, but not among nonplant species. The link between the phylogenetic relationships and SOD functions remains unclear. Our findings suggest that the 5' region of these genes played a pivotal role in the evolution of function of these enzymes. Nevertheless, the system of SODs is highly structured and it is critical to understand the physiological differences between the SODs in response to different stresses in order to compare their functions and evolutionary history.  相似文献   

6.
A cDNA clone for the cytosolic Cu/Zn superoxide dismutase (Cu/Zn SOD) from Chinese cabbage (Brassica campestris ssp.pekinensis) was isolated and its DNA sequence was determined. The cDNA clone contains a complete coding sequence which encodes a protein of 152 amino acids and a 3-untranslated region including a poly A signal. The deduced amino acid sequence shows that it is highly homologous to the Cu/Zn SODs from other plants (60–90%). The lack of a putative chloroplast targeting transit peptide indicates that the clone represents a cytosolic form of Cu/Zn SOD. Genomic Southern hybridization suggests that cytosolic Cu/Zn SOD genes are present in 1 or 2 copies per genome.  相似文献   

7.
Actin Genes in the Mediterranean Fruit Fly, Ceratitis Capitata   总被引:1,自引:0,他引:1       下载免费PDF全文
We have undertaken the study of actin gene organization and expression in the genome of the Mediterranean fruit fly (medfly), Ceratitis capitata. Actin genes have been extensively characterized previously in a wide range of eukaryotic organisms, and they have valuable properties for comparative studies. These genes are typically highly conserved in coding regions, represented in multiple copies per genome and regulated in expression during development. We have isolated a gene in the medfly using the cloned Drosophila melanogaster 5C actin gene as a probe. This medfly gene detects abundant messages present during late larval and late pupal development as well as in thoracic and leg tissue preparations from newly emerged adults. This pattern of expression is consistent with what has been seen for actin genes in other organisms. Using either the D. melanogaster 5C actin gene or the medfly gene as a probe identifies five common cross reacting EcoRI fragments in genomic DNA, but only under less than fully stringent hybridization conditions.  相似文献   

8.
cDNAs for alcohol dehydrogenase (ADH) isozymes were cloned and sequenced from two tephritid fruit flies, the medfly Ceratitis capitata and the olive fly Bactrocera oleae. Because of the high sequence divergence compared with the Drosophila sequences, the medfly cDNAs were cloned using sequence information from the purified proteins, and the olive fly cDNAs were cloned by functional complementation in yeast. The medfly peptide sequences are about 83% identical to each other, and the corresponding mRNAs have the tissue distribution shown by the corresponding isozymes, ADH-1 and ADH-2. The olive fly peptide sequence is more closely related to medfly ADH-2. The tephritid ADHs share less than 40% sequence identity with Drosophila ADH and ADH-related genes but are >57% identical to the ADH of the flesh fly Sarcophaga peregrina, a more distantly related species. To explain this unexpected finding, it is proposed that the ADH: genes of the family Drosophilidae may not be orthologous to the ADH: genes of the other two families, Tephritidae and Sarcophagidae.  相似文献   

9.
10.
Mice lacking Cu,Zn superoxide dismutase (SOD1) show accelerated, age-related loss of muscle mass. Lack of SOD1 may lead to increased superoxide, reduced nitric oxide (NO), and increased peroxynitrite, each of which could initiate muscle fiber loss. Single muscle fibers from flexor digitorum brevis of wild-type (WT) and Sod1(-/-) mice were loaded with NO-sensitive (4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, DAF-FM) and superoxide-sensitive (dihydroethidium, DHE) probes. Gastrocnemius muscles were analyzed for SOD enzymes, nitric oxide synthases (NOS), and 3-nitrotyrosine (3-NT) content. A lack of SOD1 did not increase superoxide availability at rest because no increase in ethidium or 2-hydroxyethidium (2-HE) formation from DHE was seen in fibers from Sod1(-/-) mice compared with those from WT mice. Fibers from Sod1(-/-) mice had decreased NO availability (decreased DAF-FM fluorescence), increased 3-NT in muscle proteins indicating increased peroxynitrite formation and increased content of peroxiredoxin V (a peroxynitrite reductase), compared with WT mice. Muscle fibers from Sod1(-/-) mice showed substantially reduced generation of superoxide in response to contractions compared with fibers from WT mice. Inhibition of NOS did not affect DHE oxidation in fibers from WT or Sod1(-/-) mice at rest or during contractions, but transgenic mice overexpressing nNOS showed increased DAF-FM fluorescence and reduced DHE oxidation in resting muscle fibers. It is concluded that formation of peroxynitrite in muscle fibers is a major effect of lack of SOD1 in Sod1(-/-) mice and may contribute to fiber loss in this model, and that NO regulates superoxide availability and peroxynitrite formation in muscle.  相似文献   

11.
DNA sequence variation in a 1410-bp region including the Cu,Zn Sod locus was examined in 41 homozygous lines of Drosophila melanogaster. Fourteen lines were from Barcelona, Spain, 25 were from California populations and the other two were from laboratory stocks. Two common electromorphs, SOD(S) and SOD(F), are segregating in the populations. Our sample of 41 lines included 19 Sod(S) and 22 Sod(F) alleles (henceforward referred to as Slow and Fast alleles). All 19 Slow alleles were identical in sequence. Of the 22 Fast alleles sequenced, nine were identical in sequence and are referred to as the Fast A haplotypes. The Slow allele sequence differed from the Fast A haplotype at a single nucleotide site, the site that accounts for the amino acid difference between SOD(S) and SOD(F). There were nine other haplotypes among the remaining 13 Fast alleles sequenced. The overall level of nucleotide diversity (π) in this sample is not greatly different than that found at other loci in D. melanogaster. It is concluded that the Slow/Fast polymorphism is a recently arisen polymorphism, not an old balanced polymorphism. The large group of nearly identical haplotypes suggests that a recent mutation, at the Sod locus or tightly linked to it, has increased rapidly in frequency to around 50%, both in California and Spain. The application of a new statistical test demonstrates that the occurrence of such large numbers of haplotypes with so little variation among them is very unlikely under the usual equilibrium neutral model. We suggest that the high frequency of some haplotypes is due to natural selection at the Sod locus or at a tightly linked locus.  相似文献   

12.
13.
14.
15.
16.
Abstract: Some cases of autosomal-dominant familial amyotrophic lateral sclerosis (FALS) have been associated with mutations in SOD1 , the gene that encodes Cu/Zn superoxide dismutase (Cu/Zn SOD). We determined the concentrations (µg of Cu/Zn SOD/mg of total protein), specific activities (U/µg of total protein), and apparent turnover numbers (U/µmol of Cu/Zn SOD) of Cu/Zn SOD in erythrocyte lysates from patients with known SOD1 mutations. We also measured the concentrations and activities of Cu/Zn SOD in FALS patients with no identifiable SOD1 mutations, sporadic ALS (SALS) patients, and patients with other neurologic disorders. The concentration and specific activity of Cu/Zn SOD were decreased in all patients with SOD1 mutations, with mean reductions of 51 and 46%, respectively, relative to controls. In contrast, the apparent turnover number of the enzyme was not altered in these patients. For the six mutations studied, there was no correlation between enzyme concentration or specific activity and disease severity, expressed as either duration of disease or age of onset. No significant alterations in the concentration, specific activity, or apparent turnover number of Cu/Zn SOD were detected in the FALS patients with no identifiable SOD1 mutations, SALS patients, or patients with other neurologic disorders. That Cu/Zn SOD concentration and specific activity are equivalently reduced in erythrocytes from patients with SOD1 mutations suggests that mutant Cu/Zn SOD is unstable in these cells. That concentration and specific activity do not correlate with disease severity suggests that an altered, novel function of the enzyme, rather than reduction of its dismutase activity, may be responsible for the pathogenesis of FALS.  相似文献   

17.
In this paper, we report the chromosomal localization of ceratotoxins, a gene family encoding antibacterial female-specific peptides from the mediterranean fruit fly Ceratitis capitata. The analysis of both polytene and mitotic chromosomes by in situ hybridization shows that ceratotoxins are the first case of female-specific X-linked genes from the medfly C. capitata. Southern blot analysis reveals that the ceratotoxin gene family is not specifically amplified in the female reproductive accessory glands of C. capitata.  相似文献   

18.
The superoxide dismutase (Sod) steady-state mRNA levels in maizeseedlings and developing kernels were examined by RNA blot analysis,using Cu/Zn and Mn cDNA probes encoding the cytosolic and mitochondrialSOD isozymes, respectively. The cytosolic (Cu/Zn) Sod steady-statemRNA levels remained relatively constant for the various tissuesexamined. In contrast, the mRNA levels of the mitochondrial(Mn) SOD-3 isozyme increased in postgerminative scutella. Thesteady-state mRNA of the Atp2 gene, F1 ATPase ß subunit,was compared to the Sod3 (Mn) mRNA levels. Results of this comparativestudy suggest that the steady-state levels of mRNAs transcribedby nuclear genes encoding essential mitochondrial proteins areindependently regulated throughout development. (Received April 2, 1990; Accepted September 10, 1990)  相似文献   

19.
20.
Yeast overexpressing SOD1, the gene for Cu,Zn-superoxide dismutase (Cu,Zn-Sod), was used to determine how Sod1p overexpression influences the chronological lifespan [the survival of non-dividing stationary (G0) phase cells over time], the replicative lifespan (the number of buds produced by actively dividing yeast cells) and stress resistance. Increasing the level of active Cu,Zn-Sod in yeast was found to require either growth in the presence of high copper, or the simultaneous overexpression of both SOD1 and CCS1 (the latter being the gene that encodes the chaperone dedicated to Cu(2+)-loading of Sod1p in vivo). Dual SOD1 + CCS1 overexpression elevated the levels of Cu,Zn-Sod activity six- to eight-fold in vegetative cultures. It also increased the optimized survival of stationary cells up to two-fold, showing this chronological lifespan is ultimately limited by oxidative stress. In contrast, several detrimental effects resulted when the SOD1 gene was overexpressed in the absence of either high copper or a simultaneous overexpression of CCS1. Both the chronological and the replicative lifespans were shortened; the cells displayed an abnormally high level of endogenous oxidative stress, resulting in a high rate of spontaneous mutation. Such harmful effects were all reversed through the overexpression of CCS1. It is apparent therefore that they relate to the incomplete Cu(2+)-loading of the overexpressed Sod1p, most probably accumulation of a Cu(2+)-deficient Sod1p to appreciable levels in vivo. The same events may generate the detrimental effects that are frequently, though not universally, observed when Cu,Zn-Sod overexpression is attempted in metazoans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号