首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Friedreich ataxia (FRDA) patients are homozygous for expanded GAA triplet-repeat alleles in the FXN gene. Primary neurodegeneration involving the dorsal root ganglia (DRG) results in progressive ataxia. While it is known that DRG are inherently sensitive to frataxin deficiency, recent observations also indicate that they show age-dependent, further expansion of the GAA triplet-repeat mutation. Whether somatic instability is progressive has not been systematically investigated in FRDA patients. "Small-pool" PCR analysis of approximately 2300 individual molecules from tissues of an 18-week fetus homozygous for expanded alleles revealed very low levels of instability compared with adult-derived tissues (4.2% versus 30.6%, p<0.0001). Mutation load in blood samples from multiple patients and carriers increased significantly with age, ranging from 7.5% at 18-weeks gestation to 78.7% at 49 years of age (R=0.91; p=0.0001). Therefore, somatic instability in FRDA occurs mostly after early embryonic development and progresses throughout life, lending further support to the role of postnatal somatic instability in disease pathogenesis.  相似文献   

4.
Colombo R  Carobene A 《Human genetics》2000,106(4):455-458
Friedreich ataxia (FRDA), the most frequently inherited ataxia, is due in the vast majority of cases to a large expansion of an intronic GAA repeat. Using linkage disequilibrium analysis based on haplotype data of seven polymorphic markers close to the frataxin gene, the age of FRDA founding mutational event(s) is estimated to be at least 682+/-203 generations (95% confidence interval: 564-801 g), a dating which is consistent with little or no negative selection and provides further evidence for an ancient spread of a pre-mutation (at-risk alleles) in western Europe.  相似文献   

5.
6.
Friedreich ataxia is a neurodegenerative disorder caused by the expansion of a GAA trinucleotide repeat sequence within the first intron of the FXN gene. Interruptions in the GAA repeat may serve to alleviate the inhibitory effects of the GAA expansion on FXN gene expression and to decrease pathogenicity. We have developed a simple and rapid PCR- and restriction enzyme-based assay to assess the purity of GAA repeat sequences.  相似文献   

7.
The Friedreich ataxia (FA) mutation has recently been identified as an unstable trinucleotide GAA repeat present 7-22 times in the normal population but amplified as many as > 1,000 times in FA. Since it is an autosomal recessive disease, FA does not show typical features observed in other dynamic mutation disorders, such as genetic anticipation. We have analyzed the GAA repeat in 104 FA patients and 163 carrier relatives previously defined by linkage analysis. The GAA expansion was detected in all patients, most (94%) of them being homozygous for the mutation. We have demonstrated that clinical variability in FA is related to the size of the expanded alleles: milder forms of the disease-late-onset FA and FA with retained reflexes-are associated with shorter expansions, especially with the smaller of the two expanded alleles. Absence of cardiomyopathy is also associated with shorter alleles. Dynamics of the GAA repeat has been investigated in 212 parent-offspring pairs. Meiotic instability showed a sex bias: paternally transmitted alleles tend to decrease in a linear way that depends on the paternal expansion size, whereas maternal alleles can either increase or decrease. A different pattern of intergenerational variation was also observed, depending on the genetic status of the sib: patients had shorter expansions than were seen in heterozygous carriers. This finding has been interpreted as a postzygotic event. Finally, we have observed that the size of the expansion remains constant in the population through carriers.  相似文献   

8.
9.
Friedreich ataxia (FA) is associated with the expansion of a GAA trinucleotide repeat in the first intron of the X25 gene. We found both alleles expanded in 67 FA patients from 48 Italian families. Five patients from three families were compound heterozygotes with expansion on one allele and an isoleucine-->phenylalanine change at position 154 on the other one. We found neither expansions nor point mutations in three patients. The length of FA alleles ranged from 201 to 1,186 repeat units, with no overlap with the normal range, and showed a negatively skewed distribution with a peak between 800 and 1,000 repeats. The FA repeat showed meiotic instability with a median variation of 150 repeats. The lengths of both larger and smaller alleles in each patient inversely correlated with age at onset of the disorder. Smaller alleles showed the best correlation, accounting for approximately 50% of the variation of age at onset. Mean allele length was significantly higher in patients with diabetes and in those with cardiomyopathy.  相似文献   

10.
11.
More than 15 human genetic diseases have been associated with the expansion of trinucleotide DNA repeats, which may involve the formation of non-duplex DNA structures. The slipped-strand nucleation of duplex DNA within GC-rich trinucleotide repeats may result in the changes of repeat length; however, such a mechanism seems less likely for the AT-rich (GAA)n·(TTC)n repeats. Using two-dimensional agarose gels, chemical probing and atomic force microscopy, we characterized the formation of non-B-DNA structures in the Friedreich ataxia-associated (GAA)n·(TTC)n repeats from the FRDA gene that were cloned with flanking genomic sequences into plasmids. For the normal genomic repeat length (n = 9) our data are consistent with the formation of a very stable protonated intramolecular triplex (H-DNA). Its stability at pH 7.4 is likely due to the high proportion of the T·A·T triads which form within the repeats as well as in the immediately adjacent AT-rich sequences with a homopurine· homopyrimidine bias. At the long normal repeat length (n = 23), a family of H-DNAs of slightly different sizes has been detected. At the premutation repeat length (n = 42) and higher negative supercoiling, the formation of a single H-DNA structure becomes less favorable and the data are consistent with the formation of a bi-triplex structure.  相似文献   

12.
13.
14.
15.
16.
M C Yao 《Cell》1981,24(3):765-774
The chromosomal DNA sequence adjacent to one end of the single ribosomal RNA gene (rDNA) in the micronucleus of Tetrahymena has been isolated by cloning. Using this sequence as a hybridization probe the organization of the same sequence in the somatic macronucleus has been examined. The restriction enzyme digestion maps of this sequence in the two nuclei are very different. Detailed mapping studies suggest that a chromosome break has occurred near the junction between the rDNA and the neighboring sequence during the formation of the macronucleus. As a result the flanking sequence is located near a free chromosome end in the macronucleus. The existence of such a linear DNA end has also been shown by digestion with the exonuclease Bal 31. In addition to the breakage, some sequences at this junction are found to be eliminated from the macronucleus. This observation has been interpreted in relation to the mechanism of rDNA amplification, which in Tetrahymena generates extrachromosomal rDNA molecules during macronucleus development.  相似文献   

17.
The human genome contains many simple tandem repeats that are widely dispersed and highly polymorphic. At least one group of simple tandem repeats, the DNA trinucleotide repeats, can dramaticallyexpand in size during transmission from one generation to the next to cause disease by a process known as dynamic mutation. We investigated the ability of trinucleotide repeats AAT and CAG to expand in size during DNA replication using a minimal in vitro system composed of the repeat tract, with and without unique flanking sequences, and DNA polymerase. Varying Mg2+concentration and temperature gave dramatic expansions of repeat size during DNA replication in vitro. Expansions of up to 1000-fold were observed. Mismatches partially stabilized the repeat tracts against expansion. Expansions were only detected when the primer was complementary to the repeat tract rather than the flanking sequence. The results imply that cellular environment and whether the growing strand contains a nick or gap are important factors for the expansion process in vivo.  相似文献   

18.
19.
20.
Friedreich's Ataxia (FA) is the commonest genetic cause of ataxia and is associated with the expansion of a GAA repeat in intron 1 of the frataxin gene. Iron accumulation in the mitochondria of patients with FA would result in hypersensitivity to oxidative stress. Mitochondrial DNA (mtDNA) could be considered a candidate modifier factor for FA disease, since mitochondrial oxidative stress is thought to be involved in the pathogenesis of this disease. We studied 25 Iranian patients (16 females and 9 males) from 12 unrelated families. DNA from each patient was extracted and frequency and length of (GAA)(n) repeat was analyzed using a long-range polymerase chain reaction (PCR) test. Also we investigated impact of GAA size on neurological findings, age of onset and disease development. In order to identify polymorphic sites and genetic background, the sequence of two hypervariable regions (HVR-I and HVR-II) of mtDNA was obtained from FA patients harbouring GAA trinucletide expansions. Alignment was made with the revised cambridge reference sequence (rCRS) and any differences recorded as single base substitution (SBS), insertions and deletions. Homozygous GAA expansion was found in 21 (84%) of all cases. In four cases (16%), no expansion was observed, ruling out the diagnosis of Friedreich's ataxia. In cases with GAA expansions, ataxia, scoliosis and pes cavus, cardiac abnormalities and some neurological findings occurred more frequently than in our patients without GAA expansion. Molecular analysis was imperative for diagnosis of Friedreich's ataxia, not only for typical cases, but also for atypical ones. Diagnosis bases only on clinical findings is limited, however, it aids in better screening for suspected cases that should be tested. Our results showed that the rate of D-loop variations was higher in FA patients than control (P<0.05). mtDNA deletions were present in 76% of our patients representing mtDNA damage, which may be due to iron accumulation in mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号