首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Varying‐coefficient models have become a common tool to determine whether and how the association between an exposure and an outcome changes over a continuous measure. These models are complicated when the exposure itself is time‐varying and subjected to measurement error. For example, it is well known that longitudinal physical fitness has an impact on cardiovascular disease (CVD) mortality. It is not known, however, how the effect of longitudinal physical fitness on CVD mortality varies with age. In this paper, we propose a varying‐coefficient generalized odds rate model that allows flexible estimation of age‐modified effects of longitudinal physical fitness on CVD mortality. In our model, the longitudinal physical fitness is measured with error and modeled using a mixed‐effects model, and its associated age‐varying coefficient function is represented by cubic B‐splines. An expectation‐maximization algorithm is developed to estimate the parameters in the joint models of longitudinal physical fitness and CVD mortality. A modified pseudoadaptive Gaussian‐Hermite quadrature method is adopted to compute the integrals with respect to random effects involved in the E‐step. The performance of the proposed method is evaluated through extensive simulation studies and is further illustrated with an application to cohort data from the Aerobic Center Longitudinal Study.  相似文献   

2.
The obesity epidemic represents an important public health issue in the United States. Studying obesity trends across age groups over time helps to identify crucial relationships between the disease and medical treatment allowing for the development of effective prevention policies. We aim to define subgroups of age and cohort effects in obesity prevalence over time by considering an optimization approach applied to the age‐period‐cohort (APC) model. We consider a heterogeneous regression problem where the regression coefficients are age dependent and belong to subgroups with unknown grouping information. Using the APC model, we apply the alternating direction method of multipliers (ADMM) algorithm to develop a two‐step algorithm for (1) subgrouping of cohort effects based on similar characteristics and (2) subgrouping age effects over time. The proposed clustering approach is illustrated for the United States population, aged 18–79, during the period 1990–2017.  相似文献   

3.
4.
Prenatal exposure to carcinogenic polycyclic aromatic hydrocarbons (c‐PAHs) through maternal inhalation induces higher risk for a wide range of fetotoxic effects. However, the most health‐relevant dose function from chronic gestational exposure remains unclear. Whether there is a gestational window during which the human embryo/fetus is particularly vulnerable to PAHs has not been examined thoroughly. We consider a longitudinal semiparametric‐mixed effect model to characterize the individual prenatal PAH exposure trajectory, where a nonparametric cyclic smooth function plus a linear function are used to model the time effect and random effects are used to account for the within‐subject correlation. We propose a penalized least squares approach to estimate the parametric regression coefficients and the nonparametric function of time. The smoothing parameter and variance components are selected using the generalized cross‐validation (GCV) criteria. The estimated subject‐specific trajectory of prenatal exposure is linked to the birth outcomes through a set of functional linear models, where the coefficient of log PAH exposure is a fully nonparametric function of gestational age. This allows the effect of PAH exposure on each birth outcome to vary at different gestational ages, and the window associated with significant adverse effect is identified as a vulnerable prenatal window to PAHs on fetal growth. We minimize the penalized sum of squared errors using a spline‐based expansion of the nonparametric coefficient function to draw statistical inferences, and the smoothing parameter is chosen through GCV.  相似文献   

5.
We derive a multivariate survival model for age of onset data of a sibship from an additive genetic gamma frailty model constructed basing on the inheritance vectors, and investigate the properties of this model. Based on this model, we propose a retrospective likelihood approach for genetic linkage analysis using sibship data. This test is an allele-sharing-based test, and does not require specification of genetic models or the penetrance functions. This new approach can incorporate both affected and unaffected sibs, environmental covariates and age of onset or age at censoring information and, therefore, provides a practical solution for mapping genes for complex diseases with variable age of onset. Small simulation study indicates that the proposed method performs better than the commonly used allele-sharing-based methods for linkage analysis, especially when the population disease rate is high. We applied this method to a type 1 diabetes sib pair data set and a small breast cancer data set. Both simulated and real data sets also indicate that the method is relatively robust to the misspecification to the baseline hazard function.  相似文献   

6.
In Taiwan, new H1N1 monovalent vaccines without adjuvant and with MF59® adjuvant were used in the nationwide vaccination campaign beginning on November 1, 2009. From November 2009 through February 2010, the authors identified recipients of H1N1 vaccines who were diagnosed with adverse events of special interest (AESIs) in a large-linked safety database, and used the self-controlled case series (SCCS) method to examine the risk of each AESI in the 0–42 days after H1N1 vaccination. Of the 3.5 million doses of H1N1 vaccines administered and captured in the linked database, the SCCS analysis of Guillain-Barré syndrome (GBS) found an incidence rate ratio of 3.81 (95% confidence interval 0.43–33.85) within 0–42 days after nonadjuvanted H1N1 vaccination and no cases after MF59®-adjuvanted H1N1 vaccination. The risks of other AESIs were, in general, not increased in any of the predefined postvaccination risk periods and age groups. The databases and infrastructure created for H1N1 vaccine safety evaluation may serve as a model for safety, effectiveness and coverage studies of licensed vaccines in Taiwan.  相似文献   

7.
Linear‐mixed models are frequently used to obtain model‐based estimators in small area estimation (SAE) problems. Such models, however, are not suitable when the target variable exhibits a point mass at zero, a highly skewed distribution of the nonzero values and a strong spatial structure. In this paper, a SAE approach for dealing with such variables is suggested. We propose a two‐part random effects SAE model that includes a correlation structure on the area random effects that appears in the two parts and incorporates a bivariate smooth function of the geographical coordinates of units. To account for the skewness of the distribution of the positive values of the response variable, a Gamma model is adopted. To fit the model, to get small area estimates and to evaluate their precision, a hierarchical Bayesian approach is used. The study is motivated by a real SAE problem. We focus on estimation of the per‐farm average grape wine production in Tuscany, at subregional level, using the Farm Structure Survey data. Results from this real data application and those obtained by a model‐based simulation experiment show a satisfactory performance of the suggested SAE approach.  相似文献   

8.
We propose a parametric regression model for the cumulative incidence functions (CIFs) commonly used for competing risks data. The model adopts a modified logistic model as the baseline CIF and a generalized odds‐rate model for covariate effects, and it explicitly takes into account the constraint that a subject with any given prognostic factors should eventually fail from one of the causes such that the asymptotes of the CIFs should add up to one. This constraint intrinsically holds in a nonparametric analysis without covariates, but is easily overlooked in a semiparametric or parametric regression setting. We hence model the CIF from the primary cause assuming the generalized odds‐rate transformation and the modified logistic function as the baseline CIF. Under the additivity constraint, the covariate effects on the competing cause are modeled by a function of the asymptote of the baseline distribution and the covariate effects on the primary cause. The inference procedure is straightforward by using the standard maximum likelihood theory. We demonstrate desirable finite‐sample performance of our model by simulation studies in comparison with existing methods. Its practical utility is illustrated in an analysis of a breast cancer dataset to assess the treatment effect of tamoxifen, adjusting for age and initial pathological tumor size, on breast cancer recurrence that is subject to dependent censoring by second primary cancers and deaths.  相似文献   

9.
This paper addresses the problem of estimating an age-at-death distribution or paleodemographic profile from osteological data. It is demonstrated that the classical two-stage procedure whereby one first constructs estimates of age-at-death of individual skeletons and then uses these age estimates to obtain a paleodemographic profile is not a correct approach. This is a consequence of Bayes' theorem. Instead, we demonstrate a valid approach that proceeds from the opposite starting point: given skeletal age-at-death, one first estimates the probability of assigning the skeleton into a specific osteological age-indicator stage. We show that this leads to a statistically valid method for obtaining a paleodemographic profile, and moreover, that valid individual age estimation itself requires a demographic profile and therefore is done subsequent to its construction. Individual age estimation thus becomes the last rather than the first step in the estimation procedure. A central concept of our statistical approach is that of a weight function. A weight function is associated with each osteological age-indicator stage or category, and provides the probability that a specific age indicator stage is observed, given age-at-death of the individual. We recommend that weight functions be estimated nonparametrically from a reference data set. In their entirety, the weight functions characterize the relevant stochastic properties of a chosen age indicator. For actual estimation of the paleodemographic profile, a parametric age distribution in the target sample is assumed. The maximum likelihood method is used to identify the unknown parameters of this distribution. As some components are estimated nonparametrically, one then has a semiparametric model. We show how to obtain valid estimates of individual age-at-death, confidence regions, and goodness-of-fit tests. The methods are illustrated with both real and simulated data.  相似文献   

10.
Exposure measurement error can result in a biased estimate of the association between an exposure and outcome. When the exposure–outcome relationship is linear on the appropriate scale (e.g. linear, logistic) and the measurement error is classical, that is the result of random noise, the result is attenuation of the effect. When the relationship is non‐linear, measurement error distorts the true shape of the association. Regression calibration is a commonly used method for correcting for measurement error, in which each individual's unknown true exposure in the outcome regression model is replaced by its expectation conditional on the error‐prone measure and any fully measured covariates. Regression calibration is simple to execute when the exposure is untransformed in the linear predictor of the outcome regression model, but less straightforward when non‐linear transformations of the exposure are used. We describe a method for applying regression calibration in models in which a non‐linear association is modelled by transforming the exposure using a fractional polynomial model. It is shown that taking a Bayesian estimation approach is advantageous. By use of Markov chain Monte Carlo algorithms, one can sample from the distribution of the true exposure for each individual. Transformations of the sampled values can then be performed directly and used to find the expectation of the transformed exposure required for regression calibration. A simulation study shows that the proposed approach performs well. We apply the method to investigate the relationship between usual alcohol intake and subsequent all‐cause mortality using an error model that adjusts for the episodic nature of alcohol consumption.  相似文献   

11.
Summary The rapid development of new biotechnologies allows us to deeply understand biomedical dynamic systems in more detail and at a cellular level. Many of the subject‐specific biomedical systems can be described by a set of differential or difference equations that are similar to engineering dynamic systems. In this article, motivated by HIV dynamic studies, we propose a class of mixed‐effects state‐space models based on the longitudinal feature of dynamic systems. State‐space models with mixed‐effects components are very flexible in modeling the serial correlation of within‐subject observations and between‐subject variations. The Bayesian approach and the maximum likelihood method for standard mixed‐effects models and state‐space models are modified and investigated for estimating unknown parameters in the proposed models. In the Bayesian approach, full conditional distributions are derived and the Gibbs sampler is constructed to explore the posterior distributions. For the maximum likelihood method, we develop a Monte Carlo EM algorithm with a Gibbs sampler step to approximate the conditional expectations in the E‐step. Simulation studies are conducted to compare the two proposed methods. We apply the mixed‐effects state‐space model to a data set from an AIDS clinical trial to illustrate the proposed methodologies. The proposed models and methods may also have potential applications in other biomedical system analyses such as tumor dynamics in cancer research and genetic regulatory network modeling.  相似文献   

12.
Undertaker is a program designed to help predict protein structure using alignments to proteins of known structure and fragment assembly. The program generates conformations and uses cost functions to select the best structures from among the generated conformations. This paper describes the use of Undertaker's cost functions for model quality assessment. We achieve an accuracy that is similar to other methods, without using consensus‐based techniques. Adding consensus‐based features further improves our approach substantially. We report several correlation measures, including a new weighted version of Kendall's τ (τ3) and show model quality assessment results superior to previously published results on all correlation measures when using only models with no missing atoms. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
Several epidemiology studies have investigated the impact of maternal exposure to methylmercury (MeHg) on childhood development of the central nervous system (CNS). In the present report, data from the Iraqi episode that occurred in 1970 from contaminated grain are integrated with those from a more recent study of a population with a high fish intake in the Seychelles Islands. The latter study had many more subjects whose mercury hair levels that were much lower and more representative of levels typically found in consumers whose MeHg exposure is from fish. The age of onset of talking (AOT), the age of onset of walking (AOW) and a combined measure (CM) that integrated the two were used as common scales of MeHg effect for the two studies. The first step of the analyses involved the construction of separate two‐dimensional cumulative frequency tables for each study for different groups spanning the range of hair levels and observed effect for each measure. Models were then fit to the values in the tables that were constructed from four components: (1) A dose‐effect function that related hair MeHg to the effect measure; (2) a frequency distribution describing population variability; (3) parameters to represent dose‐independent influences on effect; and (4) parameters to represent study dependent influences on effect. When the four submodels were assembled, a series of 1092 candidate models resulted which contained 3 to 7 parameters (e.g., slope, standard‐deviation, dose‐independent age of talking) whose value could be adjusted to improve the fit. After optimizing the fit of each model, a weighting algorithm that rewards for fit and penalizes for the number of parameters in the model was used to identify the best 200 models. The same algorithm was then used to assign a probability to each model in a probability tree. A two‐dimensional Monte‐Carlo simulation using the resulting function in combination with exposure values typical of U.S. consumers yielded predicted delays in AOT, AOW, and CM attributable to fish consumption in a variable and uncertain range of 0.000 to 1 day.  相似文献   

14.
We investigate a multistage carcinogenesis frailty model to incorporate inter-individual heterogeneity into carcinogenic response. Attention is focused on inference concerning the effects of different sources of population heterogeneity on cancer rates. The authors consider unobserved variability arising from either carcinogen exposure or background characteristics. Gamma and Inverse-Gaussian distributions are selected for frailty models, and the baseline hazard function is the generalized Armitage-Doll model (i.e. non-frailty model) in which exposure effects shift the age scale instead of acting multiplicatively on cancer rates. For illustration, we apply the method to solid cancer data from a cohort of atomic bomb survivors to examine some features of proposed models. The results show that the Gamma frailty model for the heterogeneity of baseline rates provides the best goodness-of-fit of the model and a non-zero frailty variance. Parameter estimates are, for the most part, comparable between the Gamma and Inverse-Gaussian frailty models. In a heterogeneous population the exposure effects on young adulthood cancer rates might be underestimated for the non-frailty model. Meaningful information regarding each source of heterogeneity has been provided by the proposed method. Therefore, the multistage carcinogenesis frailty model approach is useful for analyses of epidemiological cancer data to assess population heterogeneity and heterogeneity-influenced exposure effects.  相似文献   

15.
The goal of this article is to model multisubject task‐induced functional magnetic resonance imaging (fMRI) response among predefined regions of interest (ROIs) of the human brain. Conventional approaches to fMRI analysis only take into account temporal correlations, but do not rigorously model the underlying spatial correlation due to the complexity of estimating and inverting the high dimensional spatio‐temporal covariance matrix. Other spatio‐temporal model approaches estimate the covariance matrix with the assumption of stationary time series, which is not always feasible. To address these limitations, we propose a double‐wavelet approach for modeling the spatio‐temporal brain process. Working with wavelet coefficients simplifies temporal and spatial covariance structure because under regularity conditions, wavelet coefficients are approximately uncorrelated. Different wavelet functions were used to capture different correlation structures in the spatio‐temporal model. The main advantages of the wavelet approach are that it is scalable and that it deals with nonstationarity in brain signals. Simulation studies showed that our method could reduce false‐positive and false‐negative rates by taking into account spatial and temporal correlations simultaneously. We also applied our method to fMRI data to study activation in prespecified ROIs in the prefontal cortex. Data analysis showed that the result using the double‐wavelet approach was more consistent than the conventional approach when sample size decreased.  相似文献   

16.
We evaluate the efficiency of various heuristic strategies for allocating vaccines against COVID-19 and compare them to strategies found using optimal control theory. Our approach is based on a mathematical model which tracks the spread of disease among different age groups and across different geographical regions, and we introduce a method to combine age-specific contact data to geographical movement data. As a case study, we model the epidemic in the population of mainland Finland utilizing mobility data from a major telecom operator. Our approach allows to determine which geographical regions and age groups should be targeted first in order to minimize the number of deaths. In the scenarios that we test, we find that distributing vaccines demographically and in an age-descending order is not optimal for minimizing deaths and the burden of disease. Instead, more lives could be saved by using strategies which emphasize high-incidence regions and distribute vaccines in parallel to multiple age groups. The level of emphasis that high-incidence regions should be given depends on the overall transmission rate in the population. This observation highlights the importance of updating the vaccination strategy when the effective reproduction number changes due to the general contact patterns changing and new virus variants entering.  相似文献   

17.

Summary

Omission of relevant covariates can lead to bias when estimating treatment or exposure effects from survival data in both randomized controlled trials and observational studies. This paper presents a general approach to assessing bias when covariates are omitted from the Cox model. The proposed method is applicable to both randomized and non‐randomized studies. We distinguish between the effects of three possible sources of bias: omission of a balanced covariate, data censoring and unmeasured confounding. Asymptotic formulae for determining the bias are derived from the large sample properties of the maximum likelihood estimator. A simulation study is used to demonstrate the validity of the bias formulae and to characterize the influence of the different sources of bias. It is shown that the bias converges to fixed limits as the effect of the omitted covariate increases, irrespective of the degree of confounding. The bias formulae are used as the basis for developing a new method of sensitivity analysis to assess the impact of omitted covariates on estimates of treatment or exposure effects. In simulation studies, the proposed method gave unbiased treatment estimates and confidence intervals with good coverage when the true sensitivity parameters were known. We describe application of the method to a randomized controlled trial and a non‐randomized study.  相似文献   

18.
The workhorse of modern genetic analysis is the parametric linear model. The advantages of the linear modeling framework are many and include a mathematical understanding of the model fitting process and ease of interpretation. However, an important limitation is that linear models make assumptions about the nature of the data being modeled. This assumption may not be realistic for complex biological systems such as disease susceptibility where nonlinearities in the genotype to phenotype mapping relationship that result from epistasis, plastic reaction norms, locus heterogeneity, and phenocopy, for example, are the norm rather than the exception. We have previously developed a flexible modeling approach called symbolic discriminant analysis (SDA) that makes no assumptions about the patterns in the data. Rather, SDA lets the data dictate the size, shape, and complexity of a symbolic discriminant function that could include any set of mathematical functions from a list of candidates supplied by the user. Here, we outline a new five step process for symbolic model discovery that uses genetic programming (GP) for coarse-grained stochastic searching, experimental design for parameter optimization, graphical modeling for generating expert knowledge, and estimation of distribution algorithms for fine-grained stochastic searching. Finally, we introduce function mapping as a new method for interpreting symbolic discriminant functions. We show that function mapping when combined with measures of interaction information facilitates statistical interpretation by providing a graphical approach to decomposing complex models to highlight synergistic, redundant, and independent effects of polymorphisms and their composite functions. We illustrate this five step SDA modeling process with a real case-control dataset.  相似文献   

19.
Simulation methods were used to generate paired data from a simulated population that included the age‐based process of movement and the length‐based process of gear selection. The age‐based process caused bias in the estimates of growth parameters assuming random at length, even when relatively few age classes were affected. Methods that assumed random at age were biased by the subsequent inclusion of the length‐based process of gear selection. Additional knowledge of the age structure of the sampled area is needed to ensure an unbiased estimate of the growth parameters when using the length‐conditional approach in the presence of age‐based movement. Estimates of the variability in the length‐at‐age relationship were better estimated with the length‐conditional than the traditional method even when the assumptions of random at length were violated. Inclusion of paired observations of length and associated age inside the population dynamics model may be the most appropriate way of estimating growth.  相似文献   

20.
Advances in tracking technology have led to an exponential increase in animal location data, greatly enhancing our ability to address interesting questions in movement ecology, but also presenting new challenges related to data management and analysis. Step‐selection functions (SSFs) are commonly used to link environmental covariates to animal location data collected at fine temporal resolution. SSFs are estimated by comparing observed steps connecting successive animal locations to random steps, using a likelihood equivalent of a Cox proportional hazards model. By using common statistical distributions to model step length and turn angle distributions, and including habitat‐ and movement‐related covariates (functions of distances between points, angular deviations), it is possible to make inference regarding habitat selection and movement processes or to control one process while investigating the other. The fitted model can also be used to estimate utilization distributions and mechanistic home ranges. Here, we present the R package amt (animal movement tools) that allows users to fit SSFs to data and to simulate space use of animals from fitted models. The amt package also provides tools for managing telemetry data. Using fisher (Pekania pennanti) data as a case study, we illustrate a four‐step approach to the analysis of animal movement data, consisting of data management, exploratory data analysis, fitting of models, and simulating from fitted models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号