首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lin S 《Human heredity》2002,53(2):103-112
We have previously proposed a confidence set approach for finding tightly linked genomic regions under the setting of parametric linkage analysis. In this article, we extend the confidence set approach to nonparametric linkage analysis of affected sib pair (ASP) data based on their identity-by-descent (IBD) information. Two well-known statistics in nonparametric linkage analysis, the Two-IBD test (proportion of ASPs sharing two alleles IBD), and the Mean test (average number of alleles shared IBD in the ASPs), are used for constructing confidence sets. Some numerical analyses as well as a simulation study were carried out to demonstrate the utility of the methods. Our results show that the fundamental advantages of the confidence set approach in parametric linkage analysis are retained when the method is generalized to nonparametric analysis. Our study on the accuracy of confidence sets, in terms of choice of tests, underlying disease incidence data, and amount of data available, leads us to conclude, among other things, that the Mean test outperforms the Two-IBD test in most situations, with the reverse being true only for traits with small additive variance. Although we describe how to construct confidence sets based on only two familiar tests, one can construct confidence sets similarly using other allele sharing statistics.  相似文献   

2.
In 1972, Haseman and Elston proposed a pioneering regression method for mapping quantitative trait loci using randomly selected sib pairs. Recently, the statistical power of their method was shown to be increased when extremely discordant sib pairs are ascertained. While the precise genetic model may not be known, prior information that constrains IBD probabilities is often available. We investigate properties of tests that are robust against model uncertainty and show that the power gain from further constraining IBD probabilities is marginal. The additional linkage information contained in the trait values can be incorporated by combining the Haseman-Elston regression method and a robust allele sharing test.  相似文献   

3.
Jonckheere's test is a frequently used nonparametric trend test for the evaluation of preclinical studies and clinical dose-finding trials. In this paper, a modification of Jonckheere's test is proposed. If the exact permutation distribution is used for inference, the modified test can fill out the level of the type I error in a much more complete way and is substantially more powerful than the common Jonckheere test. If the asymptotic normality is used for inference, the modified test is slightly more powerful. In addition, a maximum test is investigated which is more robust concerning an a priori unknown dose-response shape. The robustness is advantageous, especially in a closed testing procedure. The different tests are applied to two example data sets.  相似文献   

4.
We present here four nonparametric statistics for linkage analysis that test whether pairs of affected relatives share marker alleles more often than expected. These statistics are based on simulating the null distribution of a given statistic conditional on the unaffecteds' marker genotypes. Each statistic uses a different measure of marker sharing: the SimAPM statistic uses the simulation-based affected-pedigree-member measure based on identity-by-state (IBS) sharing. The SimKIN (kinship) measure is 1.0 for identity-by-descent (IBD) sharing, 0.0 for no IBD status sharing, and the kinship coefficient when the IBD status is ambiguous. The simulation-based IBD (SimIBD) statistic uses a recursive algorithm to determine the probability of two affecteds sharing a specific allele IBD. The SimISO statistic is identical to SimIBD, except that it also measures marker similarity between unaffected pairs. We evaluated our statistics on data simulated under different two-locus disease models, comparing our results to those obtained with several other nonparametric statistics. Use of IBD information produces dramatic increases in power over the SimAPM method, which uses only IBS information. The power of our best statistic in most cases meets or exceeds the power of the other nonparametric statistics. Furthermore, our statistics perform comparisons between all affected relative pairs within general pedigrees and are not restricted to sib pairs or nuclear families.  相似文献   

5.
Liang KY  Chiu YF  Beaty TH 《Human heredity》2001,51(1-2):64-78
Multipoint linkage analysis is a powerful tool to localize susceptibility genes for complex diseases. However, the conventional lod score method relies critically on the correct specification of mode of inheritance for accurate estimation of gene position. On the other hand, allele-sharing methods, as currently practiced, are designed to test the null hypothesis of no linkage rather than estimate the location of the susceptibility gene(s). In this paper, we propose an identity-by-descent (IBD)-based procedure to estimate the location of an unobserved susceptibility gene within a chromosomal region framed by multiple markers. Here we deal with the practical situation where some of the markers might not be fully informative. Rather the IBD statistic at an arbitrary within the region is imputed using the multipoint marker information. The method is robust in that no assumption about the genetic mechanism is required other than that the region contains no more than one susceptibility gene. In particular, this approach builds upon a simple representation for the expected IBD at any arbitrary locus within the region using data from affected sib pairs. With this representation, one can carry out a parametric inference procedure to locate an unobserved susceptibility gene. In addition, here we derive a sample size formula for the number of affected sib pairs needed to detect linkage with multiple markers. Throughout, the proposed method is illustrated through simulated data. We have implemented this method including exploratory and formal model-fitting procedures to locate susceptibility genes, plus sample size and power calculations in a program, GENEFINDER, which will be made available shortly.  相似文献   

6.
To test for linkage between a trait and a marker, one can consider identical marker alleles in related individuals, for instance, sibs. For recessive diseases, it has been shown that some information may be gained from the identity by descent (IBD) of the two alleles of an affected inbred individual at the marker locus. The aim of this paper is to extend the sib-pair method of linkage analysis to the situation of sib pairs sampled from consanguineous populations. This extension takes maximum advantage of the information provided by both the IBD pattern between sibs and allelic identity within each sib of the pair. This is possible through the use of the condensed identity coefficients. Here, we propose a new test of linkage based on a chi2. We compare the performance of this test with that of the classical chi2 test based on the distribution of sib pairs sharing 0, 1, or 2 alleles IBD. For sib pairs from first-cousin matings, the proposed test can better detect the role of a disease-susceptibility (DS) locus. Its power is shown to be greater than that of the classical test, especially for models where the DS allele may be common and incompletely penetrant; that is to say for situations that may be encountered in multifactorial diseases. A study of the impact of inbreeding on the expected proportions of sib pairs sharing 0, 1, or 2 alleles IBD is also performed here. Ignoring inbreeding, when in fact inbreeding exists, increases the rate of type I errors in tests of linkage.  相似文献   

7.
A population association has consistently been observed between insulin-dependent diabetes mellitus (IDDM) and the "class 1" alleles of the region of tandem-repeat DNA (5'' flanking polymorphism [5''FP]) adjacent to the insulin gene on chromosome 11p. This finding suggests that the insulin gene region contains a gene or genes contributing to IDDM susceptibility. However, several studies that have sought to show linkage with IDDM by testing for cosegregation in affected sib pairs have failed to find evidence for linkage. As means for identifying genes for complex diseases, both the association and the affected-sib-pairs approaches have limitations. It is well known that population association between a disease and a genetic marker can arise as an artifact of population structure, even in the absence of linkage. On the other hand, linkage studies with modest numbers of affected sib pairs may fail to detect linkage, especially if there is linkage heterogeneity. We consider an alternative method to test for linkage with a genetic marker when population association has been found. Using data from families with at least one affected child, we evaluate the transmission of the associated marker allele from a heterozygous parent to an affected offspring. This approach has been used by several investigators, but the statistical properties of the method as a test for linkage have not been investigated. In the present paper we describe the statistical basis for this "transmission test for linkage disequilibrium" (transmission/disequilibrium test [TDT]). We then show the relationship of this test to tests of cosegregation that are based on the proportion of haplotypes or genes identical by descent in affected sibs. The TDT provides strong evidence for linkage between the 5''FP and susceptibility to IDDM. The conclusions from this analysis apply in general to the study of disease associations, where genetic markers are usually closely linked to candidate genes. When a disease is found to be associated with such a marker, the TDT may detect linkage even when haplotype-sharing tests do not.  相似文献   

8.
We derive a multivariate survival model for age of onset data of a sibship from an additive genetic gamma frailty model constructed basing on the inheritance vectors, and investigate the properties of this model. Based on this model, we propose a retrospective likelihood approach for genetic linkage analysis using sibship data. This test is an allele-sharing-based test, and does not require specification of genetic models or the penetrance functions. This new approach can incorporate both affected and unaffected sibs, environmental covariates and age of onset or age at censoring information and, therefore, provides a practical solution for mapping genes for complex diseases with variable age of onset. Small simulation study indicates that the proposed method performs better than the commonly used allele-sharing-based methods for linkage analysis, especially when the population disease rate is high. We applied this method to a type 1 diabetes sib pair data set and a small breast cancer data set. Both simulated and real data sets also indicate that the method is relatively robust to the misspecification to the baseline hazard function.  相似文献   

9.
We propose an analytical approximation method for the estimation of multipoint identity by descent (IBD) probabilities in pedigrees containing a moderate number of distantly related individuals. We show that in large pedigrees where cases are related through untyped ancestors only, it is possible to formulate the hidden Markov model of the Lander-Green algorithm in terms of the IBD configurations of the cases. We use a first-order Markov approximation to model the changes in this IBD-configuration variable along the chromosome. In simulated and real data sets, we demonstrate that estimates of parametric and nonparametric linkage statistics based on the first-order Markov approximation are accurate. The computation time is exponential in the number of cases instead of in the number of meioses separating the cases. We have implemented our approach in the computer program ALADIN (accurate linkage analysis of distantly related individuals). ALADIN can be applied to general pedigrees and marker types and has the ability to model marker-marker linkage disequilibrium with a clustered-markers approach. Using ALADIN is straightforward: It requires no parameters to be specified and accepts standard input files.  相似文献   

10.
A novel and robust method for the fine-scale mapping of genes affecting complex traits, which combines linkage and linkage-disequilibrium information, is proposed. Linkage information refers to recombinations within the marker-genotyped generations and linkage disequilibrium to historical recombinations before genotyping started. The identity-by-descent (IBD) probabilities at the quantitative trait locus (QTL) between first generation haplotypes were obtained from the similarity of the marker alleles surrounding the QTL, whereas IBD probabilities at the QTL between later generation haplotypes were obtained by using the markers to trace the inheritance of the QTL. The variance explained by the QTL is estimated by residual maximum likelihood using the correlation structure defined by the IBD probabilities. Unlinked background genes were accounted for by fitting a polygenic variance component. The method was used to fine map a QTL for twinning rate in cattle, previously mapped on chromosome 5 by linkage analysis. The data consisted of large half-sib families, but the method could also handle more complex pedigrees. The likelihood of the putative QTL was very small along most of the chromosome, except for a sharp likelihood peak in the ninth marker bracket, which positioned the QTL within a region <1 cM in the middle part of bovine chromosome 5. The method was expected to be robust against multiple genes affecting the trait, multiple mutations at the QTL, and relatively low marker density.  相似文献   

11.
An empirical comparison between three different methods for estimation of pair-wise identity-by-descent (IBD) sharing at marker loci was conducted in order to quantify the resulting differences in power and localization precision in variance components-based linkage analysis. On the examined simulated, error-free data set, it was found that an increase in accuracy of allele sharing calculation resulted in an increase in power to detect linkage. Linkage analysis based on approximate multi-marker IBD matrices computed by a Markov chain Monte Carlo approach was much more powerful than linkage analysis based on exact single-marker IBD probabilities. A "multiple two-point" approximation to true "multipoint" IBD computation was found to be roughly intermediate in power. Both multi-marker approaches were similar to each other in accuracy of localization of the quantitative trait locus and far superior to the single-marker approach. The overall conclusions of this study with respect to power are expected to also hold for different data structures and situations, even though the degree of superiority of one approach over another depends on the specific circumstances. It should be kept in mind, however, that an increase in computational accuracy is expected to go hand in hand with a decrease in robustness to various sources of errors.  相似文献   

12.
In this paper, we present a unified mathematical model for linkage analysis that allows for inbreeding among founders in all families. The identical by descent (IBD) configuration of each pedigree is modeled as a Markov process containing two parameters; the inverse inbreeding and kinship coefficient and a rate parameter proportional to the inverse expected length of chromosome segments shared IBD by two different founder haplotypes. We use hidden Markov models and define a forward-backward algorithm for computing the conditional IBD-distribution given marker data, thereby extending the multipoint method of Lander and Green [1987. Construction of multilocus genetic maps in humans, Proc. Natl. Acad. Sci. USA 84, 2363-2367] to situations where founders are inbred. Our methodology is valid for arbitrary pedigree structures. Simulation and theoretical approximations for nonparametric linkage (NPL) analysis based on affected sib pairs reveal that NPL scores are inflated and type 1 errors increased when the inbreeding coefficient or rate parameter is underestimated. When the parents are genotyped, we present a general way of modifying the score function to drastically reduce this effect.  相似文献   

13.

Method

Genome-wide expression profiling is a widely used approach for characterizing heterogeneous populations of cells, tissues, biopsies, or other biological specimen. The exploratory analysis of such data typically relies on generic unsupervised methods, e.g. principal component analysis (PCA) or hierarchical clustering. However, generic methods fail to exploit prior knowledge about the molecular functions of genes. Here, I introduce GO-PCA, an unsupervised method that combines PCA with nonparametric GO enrichment analysis, in order to systematically search for sets of genes that are both strongly correlated and closely functionally related. These gene sets are then used to automatically generate expression signatures with functional labels, which collectively aim to provide a readily interpretable representation of biologically relevant similarities and differences. The robustness of the results obtained can be assessed by bootstrapping.

Results

I first applied GO-PCA to datasets containing diverse hematopoietic cell types from human and mouse, respectively. In both cases, GO-PCA generated a small number of signatures that represented the majority of lineages present, and whose labels reflected their respective biological characteristics. I then applied GO-PCA to human glioblastoma (GBM) data, and recovered signatures associated with four out of five previously defined GBM subtypes. My results demonstrate that GO-PCA is a powerful and versatile exploratory method that reduces an expression matrix containing thousands of genes to a much smaller set of interpretable signatures. In this way, GO-PCA aims to facilitate hypothesis generation, design of further analyses, and functional comparisons across datasets.  相似文献   

14.
The Haseman-Elston (HE) regression method and its extensions are widely used in genetic studies for detecting linkage to quantitative trait loci (QTL) using sib pairs. The principle underlying the simple HE regression method is that the similarity in phenotypes between two siblings increases as they share an increasing number of alleles identical by descent (IBD) from their parents at a particular marker locus. In such a procedure, similarity was identified with the locations, that is, means of groups of sib pairs sharing 0, 1, and 2 alleles IBD. A more powerful, rank-based nonparametric test to detect increasing similarity in sib pairs is presented by combining univariate trend statistics not only of locations, but also of dispersions of the squared phenotypic differences of two siblings for three groups. This trend test does not rely on distributional assumptions, and is applicable to the skewed or leptokurtic phenotypic distributions, in addition to normal or near normal phenotypic distributions. The performances of nonparametric trend statistics, including nonparametric regression slope, are compared with the HE regression methods as genetic linkage strategies.  相似文献   

15.
A genomic screen of autism: evidence for a multilocus etiology.   总被引:32,自引:0,他引:32       下载免费PDF全文
We have conducted a genome screen of autism, by linkage analysis in an initial set of 90 multiplex sibships, with parents, containing 97 independent affected sib pairs (ASPs), with follow-up in 49 additional multiplex sibships, containing 50 ASPs. In total, 519 markers were genotyped, including 362 for the initial screen, and an additional 157 were genotyped in the follow-up. As a control, we also included in the analysis unaffected sibs, which provided 51 discordant sib pairs (DSPs) for the initial screen and 29 for the follow-up. In the initial phase of the work, we observed increased identity by descent (IBD) in the ASPs (sharing of 51.6%) compared with the DSPs (sharing of 50.8%). The excess sharing in the ASPs could not be attributed to the effect of a small number of loci but, rather, was due to the modest increase in the entire distribution of IBD. These results are most compatible with a model specifying a large number of loci (perhaps >/=15) and are less compatible with models specifying 相似文献   

16.
A S Sergeev 《Genetika》1991,27(11):2020-2033
One of the implicit assumptions of the single locus model, having been used so far in the analysis of linkage between the genetic marker locus and the disease predisposition locus, is the requirement of independent--from the rest of genotype--action of genotypes of the disease predisposition locus considered. In this communication, it is emphasized that the lack of this requirement makes problematical the theoretical substantiation of the affected sib-pair method in the linkage analysis. To remove this obstacle, explicit pointing out of independence of the action of the single locus genotypes on the rest of the genotype is necessary in formulating of the single locus model which, with due regard for this assumption, represents a special, perhaps, unique case of the gene action characterized by incomplete differential penetrances of the genotypes under conditions, when the genes of the rest of genotype involved to the disease, are fixed. In this connection, the mixed model of inheritance with the "major gene", proposed by Morton and MacLean (1974), is considered, on the basis of which the theoretical expectations of the proportions of the affected sib pairs, sharing the x = 2, 1, 0 haplotypes, identical by descent (IBD) in phenotypic matings with the h = 2, 1, 0 affected parents are derived. Based on the combinatorial analysis of IBD relationships in sib pairs and of the distribution of sibships of any size s greater than or equal to 2 by the numbers L = 2, 3, 4 haplotypes, inherited by s siblings, the empirical assessment of data on sibships of any size with r greater than or equal to 2 affected siblings is considered, which makes it possible to reduce the data observed on distribution of the numbers L in sibships, to that of the IBD relationships in the affected sib pairs. It is also pointed out that conditional probability approach, proposed by the author earlier, allows at the same time to obtain the empirical estimates of the recurrence risks, conditional both on phenotypes of siblings (r affected; s-r normal siblings), and on the number of L haplotypes inherited by sibships.  相似文献   

17.

Background

Populational linkage disequilibrium and within-family linkage are commonly used for QTL mapping and marker assisted selection. The combination of both results in more robust and accurate locations of the QTL, but models proposed so far have been either single marker, complex in practice or well fit to a particular family structure.

Results

We herein present linear model theory to come up with additive effects of the QTL alleles in any member of a general pedigree, conditional to observed markers and pedigree, accounting for possible linkage disequilibrium among QTLs and markers. The model is based on association analysis in the founders; further, the additive effect of the QTLs transmitted to the descendants is a weighted (by the probabilities of transmission) average of the substitution effects of founders'' haplotypes. The model allows for non-complete linkage disequilibrium QTL-markers in the founders. Two submodels are presented: a simple and easy to implement Haley-Knott type regression for half-sib families, and a general mixed (variance component) model for general pedigrees. The model can use information from all markers. The performance of the regression method is compared by simulation with a more complex IBD method by Meuwissen and Goddard. Numerical examples are provided.

Conclusion

The linear model theory provides a useful framework for QTL mapping with dense marker maps. Results show similar accuracies but a bias of the IBD method towards the center of the region. Computations for the linear regression model are extremely simple, in contrast with IBD methods. Extensions of the model to genomic selection and multi-QTL mapping are straightforward.  相似文献   

18.
Wang T  Elston RC 《Human heredity》2005,60(3):134-142
The lack of replication of model-free linkage analyses performed on complex diseases raises questions about the robustness of these methods to various biases. The confounding effect of population stratification on a genetic association study has long been recognized in the genetic epidemiology community. Because the estimation of the number of alleles shared identical by descent (IBD) does not depend on the marker allele frequency when founders of families are observed, model-free linkage analysis is usually thought to be robust to population stratification. However, for common complex diseases, the genotypes of founders are often unobserved and therefore population stratification has the potential to impair model-free linkage analysis. Here, we demonstrate that, when some or all of the founder genotypes are missing, population stratification can introduce deleterious effects on various model-free linkage methods or designs. For an affected sib pair design, it can cause excess false-positive discoveries even when the trait distribution is homogeneous among subpopulations. After incorporating a control group of discordant sib pairs or for a quantitative trait, two circumstances must be met for population stratification to be a confounder: the distributions for both the marker and the trait must be heterogeneous among subpopulations. When this occurs, the bias can result in either a liberal, and hence invalid, test or a conservative test. Bias can be eliminated or alleviated by inclusion of founders' or other family members' genotype data. When this is not possible, new methods need to be developed to be robust to population stratification.  相似文献   

19.
20.
Basically no methods are available for the analysis of quantitative traits in longitudinal genetic epidemiological studies. We introduce a nonparametric factorial design for longitudinal data on independent sib pairs, modelling the phenotypic quadratic differences as the dependent variable. Factors are the number of alleles shared identically by descent (IBD) and the age categories at which the dependent variable is measured, allowing for dependence due to age. To identify a linked marker a rank statistic tests the influence of IBD group on phenotypic quadratic differences. No assumptions are made on normality or variances of the dependent variable. We apply our method to 71 sib pairs from the Framingham Heart Study data provided at the Genetic Analysis Workshop 13. For all 15 available markers on chromosome 17 we analyzed the influence on systolic blood pressure. In addition, different selection strategies to sample from the whole data are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号