首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 177 毫秒
1.
During translation termination, class II release factor RF3 binds to the ribosome to promote rapid dissociation of a class I release factor (RF) in a GTP-dependent manner. We present the crystal structure of E. coli RF3*GDP, which has a three-domain architecture strikingly similar to the structure of EF-Tu*GTP. Biochemical data on RF3 mutants show that a surface region involving domains II and III is important for distinct steps in the action cycle of RF3. Furthermore, we present a cryo-electron microscopy (cryo-EM) structure of the posttermination ribosome bound with RF3 in the GTP form. Our data show that RF3*GTP binding induces large conformational changes in the ribosome, which break the interactions of the class I RF with both the decoding center and the GTPase-associated center of the ribosome, apparently leading to the release of the class I RF.  相似文献   

2.
Protein synthesis in bacteria is terminated by release factors 1 or 2 (RF1/2), which, on recognition of a stop codon in the decoding site on the ribosome, promote the hydrolytic release of the polypeptide from the transfer RNA (tRNA). Subsequently, the dissociation of RF1/2 is accelerated by RF3, a guanosine triphosphatase (GTPase) that hydrolyzes GTP during the process. Here we show that—in contrast to a previous report—RF3 binds GTP and guanosine diphosphate (GDP) with comparable affinities. Furthermore, we find that RF3–GTP binds to the ribosome and hydrolyzes GTP independent of whether the P site contains peptidyl-tRNA (pre-termination state) or deacylated tRNA (post-termination state). RF3–GDP in either pre- or post-termination complexes readily exchanges GDP for GTP, and the exchange is accelerated when RF2 is present on the ribosome. Peptide release results in the stabilization of the RF3–GTP–ribosome complex, presumably due to the formation of the hybrid/rotated state of the ribosome, thereby promoting the dissociation of RF1/2. GTP hydrolysis by RF3 is virtually independent of the functional state of the ribosome and the presence of RF2, suggesting that RF3 acts as an unregulated ribosome-activated switch governed by its internal GTPase clock.  相似文献   

3.
Ribosomes complexed with synthetic mRNA and peptidyl-tRNA, ready for peptide release, were purified by gel filtration and used to study the function of release factor RF3 and guanine nucleotides in the termination of protein synthesis. The peptide-releasing activity of RF1 and RF2 in limiting concentrations was stimulated by the addition of RF3 and GTP, stimulated, though to a lesser extent, by RF3 and a non-hydrolysable GTP analogue, and inhibited by RF3 and GDP or RF3 without guanine nucleotide. With short incubation times allowing only a single catalytic cycle of RF1 or RF2, peptide release activity was independent of RF3 and guanine nucleotide. RF3 hydrolysis of GTP to GDP + P(i) was dependent only on ribosomes and not on RF1 or RF2. RF3 affected neither the rate of association of RF1 and RF2 with the ribosome nor the catalytic rate of peptide release. A model is proposed which explains how RF3 recycles RF1 and RF2 by displacing the factors from the ribosome after the release of peptide.  相似文献   

4.
RF3 was initially characterized as a factor that stimulates translational termination in an in vitro assay. The factor has a GTP binding site and shows sequence similarity to elongation factors EF-Tu and EF-G. Paradoxically, addition of GTP abolishes RF3 stimulation in the classical termination assay, using stop triplets. We here show GTP hydrolysis, which is only dependent on the simultaneous presence of RF3 and ribosomes. Applying a new termination assay, which uses a minimessenger RNA instead of separate triplets, we show that GTP in the presence of RF3 stimulates termination at rate-limiting concentrations of RF1. We show that RF3 can substitute for EF-G in RRF-dependent ribosome recycling reactions in vitro. This activity is GTP-dependent. In addition, excess RF3 and RRF in the presence of GTP caused release of nonhydrolyzed fmet-tRNA. This supports previous genetic experiments, showing that RF3 might be involved in ribosomal drop off of peptidyl-tRNA. In contrast to GTP involvement of the above reactions, stimulation of termination with RF2 by RF3 was independent of the presence of GTP. This is consistent with previous studies, indicating that RF3 enhances the affinity of RF2 for the termination complex without GTP hydrolysis. Based on our results, we propose a model of how RF3 might function in translational termination and ribosome recycling.  相似文献   

5.
Translation termination is promoted by class 1 and class 2 release factors in all domains of life. While the role of the bacterial class 1 factors, RF1 and RF2, in translation termination is well understood, the precise contribution of the bacterial class 2 release factor, RF3, to this process remains less clear. Here, we use a combination of binding assays and pre-steady state kinetics to provide a kinetic and thermodynamic framework for understanding the role of the translational GTPase RF3 in bacterial translation termination. First, we find that GDP and GTP have similar affinities for RF3 and that, on average, the t1/2 for nucleotide dissociation from the protein is 1–2 min. We further show that RF3:GDPNP, but not RF3:GDP, tightly associates with the ribosome pre- and post-termination complexes. Finally, we use stopped-flow fluorescence to demonstrate that RF3:GTP enhances RF1 dissociation rates by over 500-fold, providing the first direct observation of this step. Importantly, catalytically inactive variants of RF1 are not rapidly dissociated from the ribosome by RF3:GTP, arguing that a rotated state of the ribosome must be sampled for this step to efficiently occur. Together, these data define a more precise role for RF3 in translation termination and provide insights into the function of this family of translational GTPases.  相似文献   

6.
Protein biosynthesis is a complex biochemical process involving a number of stages at which different translation factors specifically interact with ribosome. Some of these factors belong to GTP-binding proteins, or G-proteins. Due to their functioning, GTP is hydrolyzed to yield GDP and the inorganic phosphate ion Pi. Interaction with ribosome enhances GTPase activity of translation factors; i.e., ribosome plays a role of GTPase-activating protein (GAP). GTPases involved in translation interact with ribosome at every stage of protein biosynthesis. Initiation factor 2 (IF2) catalyzes initiator tRNA binding to the ribosome P site and subsequent binding of the 50S subunit to the initiation complex of the 30S subunit. Elongation factor Tu (EF-Tu) controls aminoacyl-tRNA delivery to the ribosome A site, while elongation factor G (EF-G) catalyzes translocation of the mRNA-tRNA complex by one codon on the ribosome. Release factor 3 (RF3) catalyzes the release of termination factors 1 or 2 (RF1 or RF2) from the ribosomal complex after completion of protein synthesis and peptidyl-tRNA hydrolysis. The functional properties of translational GTPases as related to other G-proteins, the putative mechanism of GTP hydrolysis, structural features, and the functional cycles of translational GTPases are considered.  相似文献   

7.
Zavialov AV  Buckingham RH  Ehrenberg M 《Cell》2001,107(1):115-124
The mechanism by which peptide release factor RF3 recycles RF1 and RF2 has been clarified and incorporated in a complete scheme for translation termination. Free RF3 is in vivo stably bound to GDP, and ribosomes in complex with RF1 or RF2 act as guanine nucleotide exchange factors (GEF). Hydrolysis of peptidyl-tRNA by RF1 or RF2 allows GTP binding to RF3 on the ribosome. This induces an RF3 conformation with high affinity for ribosomes and leads to rapid dissociation of RF1 or RF2. Dissociation of RF3 from the ribosome requires GTP hydrolysis. Our data suggest that RF3 and its eukaryotic counterpart, eRF3, have mechanistic principles in common.  相似文献   

8.
Termination of translation in higher organisms is a GTP-dependent process. However, in the structure of the single polypeptide chain release factor known so far (eRF1) there are no GTP binding motifs. Moreover, in prokaryotes, a GTP binding protein, RF3, stimulates translation termination. From these observations we proposed that a second eRF should exist, conferring GTP dependence for translation termination. Here, we have shown that the newly sequenced GTP binding Sup35-like protein from Xenopus laevis, termed eRF3, exhibits in vitro three important functional properties: (i) although being inactive as an eRF on its own, it greatly stimulates eRF1 activity in the presence of GTP and low concentrations of stop codons, resembling the properties of prokaryotic RF3; (ii) it binds and probably hydrolyses GTP; and (iii) it binds to eRF1. The structure of the C-domain of the X.laevis eRF3 protein is highly conserved with other Sup35-like proteins, as was also shown earlier for the eRF1 protein family. From these and our previous data, we propose that yeast Sup45 and Sup35 proteins belonging to eRF1 and eRF3 protein families respectively are also yeast termination factors. The absence of structural resemblance of eRF1 and eRF3 to prokaryotic RF1/2 and RF3 respectively, may point to the different evolutionary origin of the translation termination machinery in eukaryotes and prokaryotes. It is proposed that a quaternary complex composed of eRF1, eRF3, GTP and a stop codon of the mRNA is involved in termination of polypeptide synthesis in ribosomes.  相似文献   

9.
Termination of translation in eukaryotes is governed by two polypeptide chain release factors, eRF1 and eRF3 on the ribosome. eRF1 promotes stop-codon-dependent hydrolysis of peptidyl-tRNA, and eRF3 interacts with eRF1 and stimulates eRF1 activity in the presence of GTP. Here, we have demonstrated that eRF3 is a GTP-binding protein endowed with a negligible, if any, intrinsic GTPase activity that is profoundly stimulated by the joint action of eRF1 and the ribosome. Separately, neither eRF1 nor the ribosome display this effect. Thus, eRF3 functions as a GTPase in the quaternary complex with ribosome, eRF1, and GTP. From the in vitro uncoupling of the peptidyl-tRNA and GTP hydrolyses achieved in this work, we conclude that in ribosomes both hydrolytic reactions are mediated by the formation of the ternary eRF1-eRF3-GTP complex. eRF1 and the ribosome form a composite GTPase-activating protein (GAP) as described for other G proteins. A dual role for the revealed GTPase complex is proposed: in " GTP state," it controls the positioning of eRF1 toward stop codon and peptidyl-tRNA, whereas in "GDP state," it promotes release of eRFs from the ribosome. The initiation, elongation, and termination steps of protein synthesis seem to be similar with respect to GTPase cycles.  相似文献   

10.
Heterotrimeric G protein α subunits are activated upon exchange of GDP for GTP at the nucleotide binding site of Gα, catalyzed by guanine nucleotide exchange factors (GEFs). In addition to transmembrane G protein-coupled receptors (GPCRs), which act on G protein heterotrimers, members of the family cytosolic proteins typified by mammalian Ric-8A are GEFs for Gi/q/12/13-class Gα subunits. Ric-8A binds to Gα?GDP, resulting in the release of GDP. The Ric-8A complex with nucleotide-free Gαi1 is stable, but dissociates upon binding of GTP to Gαi1. To gain insight into the mechanism of Ric-8A-catalyzed GDP release from Gαi1, experiments were conducted to characterize the physical state of nucleotide-free Gαi1 (hereafter referred to as Gαi1[ ]) in solution, both as a monomeric species, and in the complex with Ric-8A. We found that Ric-8A-bound, nucleotide-free Gαi1 is more accessible to trypsinolysis than Gαi1?GDP, but less so than Gαi1[ ] alone. The TROSY-HSQC spectrum of [(15)N]Gαi1[ ] bound to Ric-8A shows considerable loss of peak intensity relative to that of [(15)N]Gαi1?GDP. Hydrogen-deuterium exchange in Gαi1[ ] bound to Ric-8A is 1.5-fold more extensive than in Gαi1?GDP. Differential scanning calorimetry shows that both Ric-8A and Gαi1?GDP undergo cooperative, irreversible unfolding transitions at 47° and 52°, respectively, while nucleotide-free Gαi1 shows a broad, weak transition near 35°. The unfolding transition for Ric-8A:Gαi1[ ] is complex, with a broad transition that peaks at 50°, suggesting that both Ric-8A and Gαi1[ ] are stabilized within the complex, relative to their respective free states. The C-terminus of Gαi1 is shown to be a critical binding element for Ric-8A, as is also the case for GPCRs, suggesting that the two types of GEF might promote nucleotide exchange by similar mechanisms, by acting as chaperones for the unstable and dynamic nucleotide-free state of Gα.  相似文献   

11.
ric-8 (resistance to inhibitors of cholinesterase 8) genes have positive roles in variegated G protein signaling pathways, including Gα(q) and Gα(s) regulation of neurotransmission, Gα(i)-dependent mitotic spindle positioning during (asymmetric) cell division, and Gα(olf)-dependent odorant receptor signaling. Mammalian Ric-8 activities are partitioned between two genes, ric-8A and ric-8B. Ric-8A is a guanine nucleotide exchange factor (GEF) for Gα(i)/α(q)/α(12/13) subunits. Ric-8B potentiated G(s) signaling presumably as a Gα(s)-class GEF activator, but no demonstration has shown Ric-8B GEF activity. Here, two Ric-8B isoforms were purified and found to be Gα subunit GDP release factor/GEFs. In HeLa cells, full-length Ric-8B (Ric-8BFL) bound endogenously expressed Gα(s) and lesser amounts of Gα(q) and Gα(13). Ric-8BFL stimulated guanosine 5'-3-O-(thio)triphosphate (GTPγS) binding to these subunits and Gα(olf), whereas the Ric-8BΔ9 isoform stimulated Gα(s short) GTPγS binding only. Michaelis-Menten experiments showed that Ric-8BFL elevated the V(max) of Gα(s) steady state GTP hydrolysis and the apparent K(m) values of GTP binding to Gα(s) from ~385 nm to an estimated value of ~42 μM. Directionality of the Ric-8BFL-catalyzed Gα(s) exchange reaction was GTP-dependent. At sub-K(m) GTP, Ric-BFL was inhibitory to exchange despite being a rapid GDP release accelerator. Ric-8BFL binds nucleotide-free Gα(s) tightly, and near-K(m) GTP levels were required to dissociate the Ric-8B·Gα nucleotide-free intermediate to release free Ric-8B and Gα-GTP. Ric-8BFL-catalyzed nucleotide exchange probably proceeds in the forward direction to produce Gα-GTP in cells.  相似文献   

12.
We have trapped elongation factor G (EF-G) from Escherichia coli in six, functionally defined states, representing intermediates in its unidirectional catalytic cycle, which couples GTP hydrolysis to tRNA–mRNA translocation in the ribosome. By probing EF-G with trypsin in each state, we identified a substantial conformational change involving its conserved switch I (sw1) element, which contacts the GTP substrate. By attaching FeBABE (a hydroxyl radical generating probe) to sw1, we could monitor sw1 movement (by ∼20 Å), relative to the 70S ribosome, during the EF-G cycle. In free EF-G, sw1 is disordered, particularly in GDP-bound and nucleotide-free states. On EF-G•GTP binding to the ribosome, sw1 becomes structured and tucked inside the ribosome, thereby locking GTP onto EF-G. After hydrolysis and translocation, sw1 flips out from the ribosome, greatly accelerating release of GDP and EF-G from the ribosome. Collectively, our results support a central role of sw1 in driving the EF-G cycle during protein synthesis.  相似文献   

13.
Protein biosynthesis is a complex biochemical process. It integrates multiple steps where different translation factors specifically interact with the ribosome in a precisely defined order. Among the translation factors one can find multiple GTP-binding or G-proteins. Their functioning is accompanied by GTP hydrolysis to the GDP and inorganic phosphate ion Pi. Ribosome stimulates the GTPase activity of the translation factors, thus playing a role analogues to GTPase-activating proteins (GAP). Translation factors--GTPases interact with the ribosome at all stages of protein biosynthesis. Initiation factor 2 (IF2) catalyse initiator tRNA binding to the ribosomal P-site and subsequent subunit joining. Elongation factor Tu (EF-Tu) is responsible for the aminoacyl-tRNA binding to the ribosomal A-site, while elongation factor G (EF-G) catalyses translocation of mRNA in the ribosome by one codon, accompanied by tRNA movement between the binding sites. In its turn, release factor 3 (RF3) catalyse dissociation of the ribosomal complex with release factors 1 or 2 (RF1 or RF2) following the peptide release. This review is devoted to the functional peculiarities of translational GTPases as related to other G-proteins. Particularly, to the putative GTPase activation mechanism, structure and functional cycles.  相似文献   

14.
Prokaryotic release factor RF3 is a stimulatory protein that increases the rate of translational termination by the decoding release factors RF1 and RF2. The favoured model for RF3 function is the recycling of RF1 and RF2 after polypeptide release by displacing the factors from the ribosome. In this study, we have demonstrated that RF3 also plays an indirect role in the decoding of stop signals of highly expressed genes and recoding sites by accentuating the influence of the base following the stop codon (+4 base) on termination signal strength. The efficiency of decoding strong stop signals (e.g. UAAU and UAAG) in vivo is markedly improved with increased RF3 activity, while weak signals (UGAC and UAGC) are only modestly affected. However, RF3 is not responsible for the +4 base influence on termination signal strength, since prfC- strains lacking the protein still exhibit the same qualitative effect. The differential effect of RF3 at stop signals can be mimicked by modest overexpression of decoding RF. These findings can be interpreted according to current views of RF3 as a recycling factor, which functions to maintain the concentration of free decoding RF at stop signals, some of which are highly responsive to changes in RF levels.  相似文献   

15.
Translation termination in eukaryotes is governed by two proteins, belonging to the class-1 (eRF1) and class-2 (eRF3) polypeptide release factors. eRF3 catalyzes hydrolysis of GTP to GDP and inorganic phosphate in the ribosome in the absence of mRNA, tRNA, aminoacyl-tRNA and peptidyl-tRNA but needs the presence of eRF1. It's known that eRF1 and eRF3 interact with each other in vitro and in vivo via their C-terminal regions. eRF1 consists of three domains - N, M, and C. In this study we examined the influence of individual domains of the human eRF1 on induction of the human eRF3 GTPase activity in the ribosome in vitro. It was shown that none of the N-, M-, C- and NM-domains induces eRF3 GTPase activity in presence of the ribosomes. MC-domain does induce GTPase activity of eRF3 but four times less efficient than full-length eRF1, therefore, MC-domain (and very likely M-domain) binds to the ribosome in the presence of eRF3. Based on these data and taking into account the data available in literature, a conclusion was drawn that the N domain of eRF1 is not essential for eRF1-dependent induction of the eRF3 GTPase activity. A working hypothesis is formulated, postulating that GTPase activity eRF3 during the translation termination is associated with the intermolecular interactions of GTP/GDP, GTPase center of the large ribosomal subunit (60S), MC-domain of eRF1, C-terminal region and GTP-binding domains of eRF3, but without participation of the N-terminal region of eRF3.  相似文献   

16.
ARF GTPases are activated by guanine nucleotide exchange factors (GEFs) of the Sec7 family that promote the exchange of GDP for GTP. Brefeldin A (BFA) is a fungal metabolite that binds to the ARF1*GDP*Sec7 complex and blocks GEF activity at an early stage of the reaction, prior to guanine nucleotide release. The crystal structure of the ARF1*GDP*Sec7*BFA complex shows that BFA binds at the protein-protein interface to inhibit conformational changes in ARF1 required for Sec7 to dislodge the GDP molecule. Based on a comparative analysis of the inhibited complex, nucleotide-free ARF1*Sec7 and ARF1*GDP, we suggest that, in addition to forcing nucleotide release, the ARF1-Sec7 binding energy is used to open a cavity on ARF1 to facilitate the rearrangement of hydrophobic core residues between the GDP and GTP conformations. Thus, the Sec7 domain may act as a dual catalyst, facilitating both nucleotide release and conformational switching on ARF proteins.  相似文献   

17.
Translation termination in eukaryotes is governed by two proteins belonging to class 1 (eRF1) and class 2 (eRF3) polypeptide release factors. eRF3 catalyzes hydrolysis of GTP to yield GDP and Pi in the ribosome in the absence of mRNA, tRNA, aminoacyl-tRNA, and peptidyl-tRNA and requires eRF1 for this activity. It is known that eRF1 and eRF3 interact with each other via their C-terminal regions both in vitro and in vivo. eRF1 consists of three domains—N, M, and C. In this study we examined the influence of the individual domains of the human eRF1 on induction of the human eRF3 GTPase activity in the ribosome in vitro. It was shown that none of the N, M, C, and NM domains induces the eRF3 GTPase activity in the presence of ribosomes. The MC domain does induce the eRF3 GTPase activity, but four times less efficiently than full-length eRF1. Therefore, we assumed that the MC domain (and very likely the M domain) binds to the ribosome in the presence of eRF3. Based on these data and taking into account the data available in the literature, a conclusion was drawn that the N domain of eRF1 is not essential for eRF1-dependent induction of the eRF3 GTPase activity. A working hypothesis is formulated that the eRF3 GTPase activity in the ribosome during translation termination is associated with the intermolecular interactions of GTP/GDP, the GTPase center of the large (60S) subunit, the MC domain of eRF1, and the C-terminal region and GTP-binding motifs of eRF3 but without participation of the N-terminal region of eRF1.  相似文献   

18.
A novel regulatory protein for rhoB p20, a ras p21-like GTP-binding protein (G protein), was partially purified from the cytosol fraction of rabbit intestine. This protein, designated as rhoB p20 GDP dissociation inhibitor (GDI), inhibited the dissociation of GDP from rhoB p20. rhoB p20 GDI also inhibited the binding of guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) to the GDP-bound form of rhoB p20 but not of that to the guanine nucleotide-free form. GDI did not affect the GTPase activity of rhoB p20 and by itself showed no GTP gamma S-binding activity. GDI was inactive for other ras p21/ras p21-like G proteins including c-Ha-ras p21, smg p21 and smg p25A. The Mr value of GDI was estimated to be about 27,000 from the S value. These results indicate that rabbit intestine contains a novel regulatory protein that inhibits the dissociation of GDP from and thereby the subsequent binding of GTP to rhoB p20.  相似文献   

19.
Eukaryotic translational termination is triggered by polypeptide release factors eRF1, eRF3, and one of the three stop codons at the ribosomal A-site. Isothermal titration calorimetry shows that (i) the separated MC, M, and C domains of human eRF1 bind to eRF3; (ii) GTP binding to eRF3 requires complex formation with either the MC or M + C domains; (iii) the M domain interacts with the N and C domains; (iv) the MC domain and Mg2+ induce GTPase activity of eRF3 in the ribosome. We suggest that GDP binding site of eRF3 acquires an ability to bind gamma-phosphate of GTP if altered by cooperative action of the M and C domains of eRF1. Thus, the stop-codon decoding is associated with the N domain of eRF1 while the GTPase activity of eRF3 is controlled by the MC domain of eRF1 demonstrating a substantial structural uncoupling of these two activities though functionally they are interrelated.  相似文献   

20.
Release factors RF1 and RF2 recognize stop codons present at the A-site of the ribosome and activate hydrolysis of peptidyl-tRNA to release the peptide chain. Interactions with RF3, a ribosome-dependent GTPase, then initiate a series of reactions that accelerate the dissociation of RF1 or RF2 and their recycling between ribosomes. Two regions of Escherichia coli RF1 and RF2 were identified previously as involved in stop codon recognition and peptidyl-tRNA hydrolysis. We show here that removing the N-terminal domain of RF1 or RF2 or exchanging this domain between the two factors does not affect RF specificity but has different effects on the activity of RF1 and RF2: truncated RF1 remains highly active and able to support rapid cell growth, whereas cells with truncated RF2 grow only poorly. Transplanting a loop of 13 amino acid residues from RF2 to RF1 switches the stop codon specificity. The interaction of the truncated factors with RF3 on the ribosome is defective: they fail to stimulate guanine nucleotide exchange on RF3, recycling is not stimulated by RF3, and nucleotide-free RF3 fails to stabilize the binding of RF1 or RF2 to the ribosome. However, the N-terminal domain seems not to be required for the expulsion of RF1 or RF2 by RF3:GTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号