首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On modelling mean-covariance structures in longitudinal studies   总被引:4,自引:0,他引:4  
  相似文献   

2.
Prostate-specific antigen (PSA) is a biomarker commonly used to screen for prostate cancer. Several studies have examined PSA growth rates prior to prostate cancer diagnosis. However, the resulting estimates are highly variable. In this article we propose a non-linear Bayesian hierarchical model to combine longitudinal data on PSA growth from three different studies. Our model enables novel investigations into patterns of PSA growth that were previously impossible due to sample size limitations. The goals of our analysis are twofold: first, to characterize growth rates of PSA accounting for differences when combining data from different studies; second, to investigate the impact of clinical covariates such as advanced disease and unfavorable histology on PSA growth rates.  相似文献   

3.
    
Dropouts are common in longitudinal study. If the dropout probability depends on the missing observations at or after dropout, this type of dropout is called informative (or nonignorable) dropout (ID). Failure to accommodate such dropout mechanism into the model will bias the parameter estimates. We propose a conditional autoregressive model for longitudinal binary data with an ID model such that the probabilities of positive outcomes as well as the drop‐out indicator in each occasion are logit linear in some covariates and outcomes. This model adopting a marginal model for outcomes and a conditional model for dropouts is called a selection model. To allow for the heterogeneity and clustering effects, the outcome model is extended to incorporate mixture and random effects. Lastly, the model is further extended to a novel model that models the outcome and dropout jointly such that their dependency is formulated through an odds ratio function. Parameters are estimated by a Bayesian approach implemented using the user‐friendly Bayesian software WinBUGS. A methadone clinic dataset is analyzed to illustrate the proposed models. Result shows that the treatment time effect is still significant but weaker after allowing for an ID process in the data. Finally the effect of drop‐out on parameter estimates is evaluated through simulation studies.  相似文献   

4.
    
Ryu D  Li E  Mallick BK 《Biometrics》2011,67(2):454-466
We consider nonparametric regression analysis in a generalized linear model (GLM) framework for data with covariates that are the subject-specific random effects of longitudinal measurements. The usual assumption that the effects of the longitudinal covariate processes are linear in the GLM may be unrealistic and if this happens it can cast doubt on the inference of observed covariate effects. Allowing the regression functions to be unknown, we propose to apply Bayesian nonparametric methods including cubic smoothing splines or P-splines for the possible nonlinearity and use an additive model in this complex setting. To improve computational efficiency, we propose the use of data-augmentation schemes. The approach allows flexible covariance structures for the random effects and within-subject measurement errors of the longitudinal processes. The posterior model space is explored through a Markov chain Monte Carlo (MCMC) sampler. The proposed methods are illustrated and compared to other approaches, the \"naive\" approach and the regression calibration, via simulations and by an application that investigates the relationship between obesity in adulthood and childhood growth curves.  相似文献   

5.
GOLDSTEIN  H. 《Biometrika》1986,73(1):43-56
  相似文献   

6.
7.
    
  相似文献   

8.
    
A flexible approach is proposed for modelling the covariance matrix of a linear mixed model for longitudinal data. The method combines parametric modelling of the random effects part with flexible modelling of the serial correlation component. The approach is exemplified on weight gain data and on the evolution of height of children in their first year of life of the Jimma Infant Survival Study, an Ethiopian cohort study. The analyses show the usefulness of the approach.  相似文献   

9.
  总被引:1,自引:0,他引:1  
Thompson WK  Rosen O 《Biometrics》2008,64(1):54-63
Summary.   We propose a method for analyzing data which consist of curves on multiple individuals, i.e., longitudinal or functional data. We use a Bayesian model where curves are expressed as linear combinations of B-splines with random coefficients. The curves are estimated as posterior means obtained via Markov chain Monte Carlo (MCMC) methods, which automatically select the local level of smoothing. The method is applicable to situations where curves are sampled sparsely and/or at irregular time points. We construct posterior credible intervals for the mean curve and for the individual curves. This methodology provides unified, efficient, and flexible means for smoothing functional data.  相似文献   

10.
The main advantage of longitudinal studies is that they can distinguish changes over time within individuals (longitudinal effects) from differences among subjects at the start of the study (baseline characteristics, cross-sectional effects). Often, especially in observational studies, longitudinal trends are studied after correction for many potentially important baseline differences between subjects. We show that, in the context of linear mixed models, inference for longitudinal trends is in general biased if a wrong model for the baseline characteristics is used. However, we will argue that this bias is small in most practical situations and completely vanishes in the special case of a growth curve model for complete balanced data. In the latter case, inference for longitudinal trends is completely independent of additional baseline covariates that might have been omitted from the model.  相似文献   

11.
    
Yuan Y  Little RJ 《Biometrics》2009,65(2):478-486
Summary .  Selection models and pattern-mixture models are often used to deal with nonignorable dropout in longitudinal studies. These two classes of models are based on different factorizations of the joint distribution of the outcome process and the dropout process. We consider a new class of models, called mixed-effect hybrid models (MEHMs), where the joint distribution of the outcome process and dropout process is factorized into the marginal distribution of random effects, the dropout process conditional on random effects, and the outcome process conditional on dropout patterns and random effects. MEHMs combine features of selection models and pattern-mixture models: they directly model the missingness process as in selection models, and enjoy the computational simplicity of pattern-mixture models. The MEHM provides a generalization of shared-parameter models (SPMs) by relaxing the conditional independence assumption between the measurement process and the dropout process given random effects. Because SPMs are nested within MEHMs, likelihood ratio tests can be constructed to evaluate the conditional independence assumption of SPMs. We use data from a pediatric AIDS clinical trial to illustrate the models.  相似文献   

12.
    
The Generalised Estimating Equations (GEE) proposed by Liang and Zeger (1986) and Zeger and Liang (1986) have found considerable attention in the last decade (for an overview see e.g. Ziegler, and Blettner , 1998). Several self-made programs for solving the GEE are available. This paper presents a comparison of three GEE procedures that are already available in SAS PROC GENMOD, STATA procedure XTGEE and SUDAAN PROC MULTILOG. We show that the estimation results may be quite distinct due to different implementations. Summing up, it is pleasant that GEE is becoming established in commercial software packages. However, some aspects of the implementations should be improved.  相似文献   

13.
    
Zhu H  Ibrahim JG  Chi YY  Tang N 《Biometrics》2012,68(3):954-964
Summary This article develops a variety of influence measures for carrying out perturbation (or sensitivity) analysis to joint models of longitudinal and survival data (JMLS) in Bayesian analysis. A perturbation model is introduced to characterize individual and global perturbations to the three components of a Bayesian model, including the data points, the prior distribution, and the sampling distribution. Local influence measures are proposed to quantify the degree of these perturbations to the JMLS. The proposed methods allow the detection of outliers or influential observations and the assessment of the sensitivity of inferences to various unverifiable assumptions on the Bayesian analysis of JMLS. Simulation studies and a real data set are used to highlight the broad spectrum of applications for our Bayesian influence methods.  相似文献   

14.
  总被引:1,自引:0,他引:1  
Comulada WS  Weiss RE 《Biometrics》2007,63(2):610-617
A binomial outcome is a count s of the number of successes out of the total number of independent trials n=s+f, where f is a count of the failures. The n are random variables not fixed by design in many studies. Joint modeling of (s, f) can provide additional insight into the science and into the probability pi of success that cannot be directly incorporated by the logistic regression model. Observations where n= 0 are excluded from the binomial analysis yet may be important to understanding how pi is influenced by covariates. Correlation between s and f may exist and be of direct interest. We propose Bayesian multivariate Poisson models for the bivariate response (s, f), correlated through random effects. We extend our models to the analysis of longitudinal and multivariate longitudinal binomial outcomes. Our methodology was motivated by two disparate examples, one from teratology and one from an HIV tertiary intervention study.  相似文献   

15.
  总被引:1,自引:0,他引:1  
We propose a joint model for cognitive decline and risk of dementia to describe the pre-diagnosis phase of dementia. We aim to estimate the time when the cognitive evolution of subjects in the pre-dementia phase becomes distinguishable from normal evolution and to study whether the shape of cognitive decline depends on educational level. The model combines a piecewise polynomial mixed model with a random change point for the evolution of the cognitive test and a log-normal model depending on the random change point for the time to dementia. Parameters are estimated by maximum likelihood using a Newton-Raphson-like algorithm. The expected cognitive evolution given age to dementia is then derived and the marginal distribution of dementia is estimated to check the log-normal assumption.  相似文献   

16.
    
Longitudinal studies frequently incur outcome-related nonresponse. In this article, we discuss a likelihood-based method for analyzing repeated binary responses when the mechanism leading to missing response data depends on unobserved responses. We describe a pattern-mixture model for the joint distribution of the vector of binary responses and the indicators of nonresponse patterns. Specifically, we propose an extension of the multivariate logistic model to handle nonignorable nonresponse. This method yields estimates of the mean parameters under a variety of assumptions regarding the distribution of the unobserved responses. Because these models make unverifiable identifying assumptions, we recommended conducting sensitivity analyses that provide a range of inferences, each of which is valid under different assumptions for nonresponse. The methodology is illustrated using data from a longitudinal study of obesity in children.  相似文献   

17.

Background

Recent advances in genome technologies and the subsequent collection of genomic information at various molecular resolutions hold promise to accelerate the discovery of new therapeutic targets. A critical step in achieving these goals is to develop efficient clinical prediction models that integrate these diverse sources of high-throughput data. This step is challenging due to the presence of high-dimensionality and complex interactions in the data. For predicting relevant clinical outcomes, we propose a flexible statistical machine learning approach that acknowledges and models the interaction between platform-specific measurements through nonlinear kernel machines and borrows information within and between platforms through a hierarchical Bayesian framework. Our model has parameters with direct interpretations in terms of the effects of platforms and data interactions within and across platforms. The parameter estimation algorithm in our model uses a computationally efficient variational Bayes approach that scales well to large high-throughput datasets.

Results

We apply our methods of integrating gene/mRNA expression and microRNA profiles for predicting patient survival times to The Cancer Genome Atlas (TCGA) based glioblastoma multiforme (GBM) dataset. In terms of prediction accuracy, we show that our non-linear and interaction-based integrative methods perform better than linear alternatives and non-integrative methods that do not account for interactions between the platforms. We also find several prognostic mRNAs and microRNAs that are related to tumor invasion and are known to drive tumor metastasis and severe inflammatory response in GBM. In addition, our analysis reveals several interesting mRNA and microRNA interactions that have known implications in the etiology of GBM.

Conclusions

Our approach gains its flexibility and power by modeling the non-linear interaction structures between and within the platforms. Our framework is a useful tool for biomedical researchers, since clinical prediction using multi-platform genomic information is an important step towards personalized treatment of many cancers. We have a freely available software at: http://odin.mdacc.tmc.edu/~vbaladan.
  相似文献   

18.
    
A virologic marker, the number of HIV RNA copies or viral load, is currently used to evaluate antiviral therapies in AIDS clinical trials. This marker can be used to assess the antiviral potency of therapies, but is easily affected by drug exposures, drug resistance and other factors during the long-term treatment evaluation process. The study of HIV dynamics is one of the most important development in recent AIDS research for understanding the pathogenesis of HIV-1 infection and antiviral treatment strategies. Although many HIV dynamic models have been proposed by AIDS researchers in the last decade, they have only been used to quantify short-term viral dynamics and do not correctly describe long-term virologic responses to antiretroviral treatment. In other words, these simple viral dynamic models can only be used to fit short-term viral load data for estimating dynamic parameters. In this paper, a mechanism-based differential equation models is introduced for characterizing the long-term viral dynamics with antiretroviral therapy. We applied this model to fit different segments of the viral load trajectory data from a simulation experiment and an AIDS clinical trial study, and found that the estimates of dynamic parameters from our modeling approach are very consistent. We may conclude that our model can not only characterize long-term viral dynamics, but can also quantify short- and middle-term viral dynamics. It suggests that if there are enough data in the early stage of the treatment, the results from our modeling based on short-term information can be used to capture the performance of long-term care with HIV-1 infected patients.  相似文献   

19.
  总被引:2,自引:0,他引:2  
Huang Y  Dagne G 《Biometrics》2012,68(3):943-953
Summary It is a common practice to analyze complex longitudinal data using semiparametric nonlinear mixed-effects (SNLME) models with a normal distribution. Normality assumption of model errors may unrealistically obscure important features of subject variations. To partially explain between- and within-subject variations, covariates are usually introduced in such models, but some covariates may often be measured with substantial errors. Moreover, the responses may be missing and the missingness may be nonignorable. Inferential procedures can be complicated dramatically when data with skewness, missing values, and measurement error are observed. In the literature, there has been considerable interest in accommodating either skewness, incompleteness or covariate measurement error in such models, but there has been relatively little study concerning all three features simultaneously. In this article, our objective is to address the simultaneous impact of skewness, missingness, and covariate measurement error by jointly modeling the response and covariate processes based on a flexible Bayesian SNLME model. The method is illustrated using a real AIDS data set to compare potential models with various scenarios and different distribution specifications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号