首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specific adhesion of Eshcherichia coli with surface-exposed cellulose-binding domain (CBD) to cellulosic materials was investigated. Whole-cell immobilization was very specific, forming essentially a monolayer of cells onto the different supports. Cells with surface-exposed CBD bound specifically and tightly to cellulose supports at a wide range of pH. In contrast to CBD, which shows the highest binding to cellulose at 4 degrees C, highest cell loading was observed at 37 degrees C. The extent of immobilization was dependent on the amount of surface-exposed CBD. Cells binding increased with increasing amount of CBD until binding was saturated. Even induction of very low level of CBD (0.05 mM IPTG) was sufficient to provide specific and tight binding to cellulose support. Because optimal binding can be obtained under physiological conditions such as pH 7 and 37 degrees C, the results demonstrate the general utility of surface-exposed CBD as an efficient means of whole-cell immobilization.  相似文献   

2.
A genetically engineered Escherichia coli cell expressing both organophosphorus hydrolase (OPH) and a cellulose-binding domain (CBD) on the cell surface was constructed, enabling the simultaneous hydrolysis of organophosphate nerve agents and immobilization via specific adsorption to cellulose. OPH was displayed on the cell surface by use of the truncated ice nucleation protein (INPNC) fusion system, while the CBD was surface anchored by the Lpp-OmpA fusion system. Production of both INPNC-OPH and Lpp-OmpA-CBD fusion proteins was verified by immunoblotting, and the surface localization of OPH and the CBD was confirmed by immunofluorescence microscopy. Whole-cell immobilization with the surface-anchored CBD was very specific, forming essentially a monolayer of cells on different supports, as shown by electron micrographs. Optimal levels of OPH activity and binding affinity to cellulose supports were achieved by investigating expression under different induction levels. Immobilized cells degraded paraoxon rapidly at an initial rate of 0.65 mM/min/g of cells (dry weight) and retained almost 100% efficiency over a period of 45 days. Owing to its superior degradation capacity and affinity to cellulose, this immobilized-cell system should be an attractive alternative for large-scale detoxification of organophosphate nerve agents.  相似文献   

3.
A genetically engineered Escherichia coli cell expressing both organophosphorus hydrolase (OPH) and a cellulose-binding domain (CBD) on the cell surface was constructed, enabling the simultaneous hydrolysis of organophosphate nerve agents and immobilization via specific adsorption to cellulose. OPH was displayed on the cell surface by use of the truncated ice nucleation protein (INPNC) fusion system, while the CBD was surface anchored by the Lpp-OmpA fusion system. Production of both INPNC-OPH and Lpp-OmpA-CBD fusion proteins was verified by immunoblotting, and the surface localization of OPH and the CBD was confirmed by immunofluorescence microscopy. Whole-cell immobilization with the surface-anchored CBD was very specific, forming essentially a monolayer of cells on different supports, as shown by electron micrographs. Optimal levels of OPH activity and binding affinity to cellulose supports were achieved by investigating expression under different induction levels. Immobilized cells degraded paraoxon rapidly at an initial rate of 0.65 mM/min/g of cells (dry weight) and retained almost 100% efficiency over a period of 45 days. Owing to its superior degradation capacity and affinity to cellulose, this immobilized-cell system should be an attractive alternative for large-scale detoxification of organophosphate nerve agents.  相似文献   

4.
Lehtiö J  Teeri TT  Nygren PA 《Proteins》2000,41(3):316-322
A disulfide bridge-constrained cellulose binding domain (CBD(WT)) derived from the cellobiohydrolase Cel7A from Trichoderma reesei has been investigated for use in scaffold engineering to obtain novel binding proteins. The gene encoding the wild-type 36 aa CBD(WT) domain was first inserted into a phagemid vector and shown to be functionally displayed on M13 filamentous phage as a protein III fusion protein with retained cellulose binding activity. A combinatorial library comprising 46 million variants of the CBD domain was constructed through randomization of 11 positions located at the domain surface and distributed over three separate beta-sheets of the domain. Using the enzyme porcine alpha-amylase (PPA) as target in biopannings, two CBD variants showing selective binding to the enzyme were characterized. Reduction and iodoacetamide blocking of cysteine residues in selected CBD variants resulted in a loss of binding activity, indicating a conformation dependent binding. Interestingly, further studies showed that the selected CBD variants were capable of competing with the binding of the amylase inhibitor acarbose to the enzyme. In addition, the enzyme activity could be partially inhibited by addition of soluble protein, suggesting that the selected CBD variants bind to the active site of the enzyme.  相似文献   

5.
Improved immobilization of fusion proteins via cellulose-binding domains   总被引:2,自引:0,他引:2  
Cellulose-binding domains (CBDs) are structurally and functionally independent, noncatalytic modules found in many cellulose or hemicellulose degrading enzymes. Recent biotechnological applications of the CBDs include facilitated protein immobilization on cellulose supports. In some occasions there have been concerns about the stability of the CBD driven immobilization. Here we have studied the chromatographic behavior of variants of the Trichoderma reesei cellobiohydrolase I CBD belonging to family I. Both CBDs fused to antibody fragments and isolated CBDs were studied and compared. Tritium labeling by reductive methylation was used as a sensitive detection method. The fusion protein as well as the isolated CBD was found to leak from the column at a rate of 0.3-0.5% of the immobilized protein per column volume. However, the leakage could be overcome by using two CBDs instead of a single CBD for the immobilization. In this way leakage was reduced to less than 0.01% per column volume. The improved immobilization could also be seen as a decreased migration of the protein down the column in extended washes.  相似文献   

6.
Dodecapeptides that exhibit a high affinity specific to a polystyrene surface (PS-tags) were screened using an Escherichia coli random peptide display library system, and the compounds were used as a peptide tag for the site-specific immobilization of proteins. The various PS-tags obtained after 10 rounds of biopanning selection were mainly composed of basic and aliphatic amino acid residues, most of which were arranged in close proximity to one another. Mutant-type glutathione S-transferases (GSTs) fused with the selected PS-tags, PS19 (RAFIASRRIKRP) and PS23 (AGLRLKKAAIHR) at their C-terminus, GST-PS19 and GST-PS23, when adsorbed on the PS latex beads had a higher affinity than the wild-type GST, and the specific remaining activity of the immobilized mutant-type GSTs was approximately 10 times higher than that of the wild-type GST. The signal intensity detected for GST-PS19 and GST-PS23 adsorbed on hydrophilic and hydrophobic PS surfaces using an anti-peptide antibody specific for the N-terminus peptide of GST was much higher than that for the wild-type GST. These findings indicate that the mutant-type GSTs fused with the selected peptide tags, PS19 and PS23, could be site-specifically immobilized on the surface of polystyrene with their N-terminal regions directed toward the solution. Thus, the selected peptide tags would be useful for protein immobilization in the construction of enzyme-linked immunosorbent assay (ELISA) systems and protein-based biochips.  相似文献   

7.
Using molecular genetic techniques, a fusion protein has been produced which contains the cellulose-binding domain (CBD) of an exoglucanase (Cex) from Cellulomonas fimi fused to a beta-glucosidase (Abg) from Agrobacterium sp. The CBD functions as an affinity tag for the simultaneous purification and immobilization of the enzyme on cellulose. Binding to cellulose was stable for prolonged periods at temperatures from 4 degrees C to at least 50 degrees C, at ionic strengths from 10 mM to greater than 1 M, and at pH values below 8. The fusion protein can be desorbed from cellulose with distilled water or at pH greater than 8. Immobilized enzyme columns of the fusion protein bound to cotton fibers exhibited stable beta-glucosidase activity for at least 10 days of continuous operation at temperatures up to 37 degrees C. At higher temperatures, the bound enzyme lost activity. The thermal stability of the fusion protein was greatly improved by immobilization. Immobilization did not alter the pH stability. Except for its ability to bind to cellulose, the properties of the fusion protein were virtually the same as those of the native enzyme.  相似文献   

8.
A family I cellulose-binding domain (CBD) and a serine- and threonine-rich linker peptide were cloned from the fungi Aspergillus japonicus and Aspergillus aculeatus. A glutathione S-transferase (GST) fusion protein comprising GST and a peptide linker with the CBD fused to its C-terminus, was expressed in Escherichia coli. The renatured GST-CBD recovered from inclusion bodies had a molecular mass of 36.5 kDa which agrees with the 29 kDa of the GST plus the calculated 7.5 kDa of the linker with the CBD. The isolated GST-CBD protein adsorbed to both bacterial microcrystalline cellulose and carboxymethyl cellulose. Deletion of the linker peptide caused a decrease in cellulose adsorbance and a higher sensitivity to protease digestion.  相似文献   

9.
To improve the cellulolytic activity of a yeast strain displaying endoglucanase IotaIota (EG II) from Trichoderma reesei, a combinatorial library of the cellulose-binding domain (CBD) of EG II was constructed by using cell surface engineering. When EG II degrades celluloses, CBD binds to cellulose, and its catalytic domain cleaves the glycosidic bonds of cellulose. CBD had a flat face, composed of five amino acids for binding. It was supposed that the three hydrophobic amino acid residues of the five amino acid residues were essential for binding to cellulose. Therefore, by improving the two remaining amino acid residues, construction of mutants with a combinatorial library of the two amino acids in CBD was carried out and binding ability and hydrolysis activity were measured. In the first screening by halo assay using the Congo Red staining method, about 200 of the 2000 colonies formed clear halos, and then five colonies with the clearest halos were finally selected. In the second screening, the binding ability of the five mutants to phosphoric acid-swollen Avicel was measured. In addition, the measurement of hydrolysis activity toward carboxymethylcellulose (CMC) using the screened mutants was carried out. As a result, the mutated EG II exhibiting higher binding ability (1.5-fold) had higher hydrolysis activity (1.3-fold) compared to the parent EG II-displaying yeast cell, demonstrating that CBD has confirmatively some effect on the cellulase activity through its binding ability of the enzyme to cellulose.  相似文献   

10.
The design, construction, and characterization of a prototype-regenerable glucose biosensor based on the reversible immobilization of glucose oxidase (GOx) using cellulose binding domain (CBD) technology is described. GOx, chemically linked to CBD, is immobilized by binding to a cellulose matrix on the sensor-indicating electode. Enzyme immobilization can be reversed by perfusing the cellulose matrix with a suitable eluting solution. An autocavable sensor membrane system is employed which is shown to be practical for use in real microbial fermentations. The prototype glucose biosensor was used without failure or deterioration during fed-batch fermentations of Escherichia coli reaching a maximum cell density of 85 g (dry weight)/L. Medium glucose concentration based on sensor output correlated closely with off-line glucose analysis and was controlled manually at 0.44 +/- 0.2 g/L for 2 h based on glucose sensor output. The sensor enzyme component could be eluted and replaced without interrupting the fermentation. To our knowledge, no other in situ biosensor has been used for such an extended period of time in such a high-cell-density fermentation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
Aims: Immobilization of whole cells can be used to accumulate cells in a bioreactor and thus increase the cell density and potentially productivity, also. Cellulose is an excellent matrix for immobilization purposes because it does not require chemical modifications and is commercially available in many different forms at low price. The aim of this study was to construct a Lactococcus lactis strain capable of immobilizing to a cellulosic matrix. Methods and Results: In this study, the Usp45 signal sequence fused with the cellulose‐binding domain (CBD) (112 amino acids) of XylA enzyme from Cellvibrio japonicus was fused with PrtP or AcmA anchors derived from L. lactis. A successful surface display of L. lactis cells expressing these fusion proteins under the P45 promoter was achieved and detected by whole‐cell ELISA. A rapid filter paper assay was developed to study the cellulose‐binding capability of these recombinant strains. As a result, an efficient immobilization to filter paper was demonstrated for the L. lactis cells expressing the CBD‐fusion protein. The highest immobilization (92%) was measured for the strain expressing the CBD in fusion with the 344 amino acid PrtP anchor. Conclusions: The result from the binding tests indicated that a new phenotype for L. lactis with cellulose‐binding capability was achieved with both PrtP (LPXTG type anchor) and AcmA (LysM type anchor) fusions with CBD. Significance and Impact of the Study: We demonstrated that an efficient immobilization of recombinant L. lactis cells to cellulosic matrix is possible. This is a step forward in developing efficient immobilization systems for lactococcal strains for industrial‐scale fermentations.  相似文献   

12.
Protein genes Ag85A, Esat-6, and Cfp10 of Mycobacterium tuberculosis were sequenced using the database GenBank to implement selection and synthesis of primer pairs of given genes. PCR was used to obtain target amplicons of the genes. Chromosome DNA of M. tuberculosis H37Rv was used as the DNA amplification matrix. The PCR products were obtained using the plasmid pQE6, cloned, and amplified in the Escherichia coli M15 strain. Chimere products containing mycobacterial genes and cellulose binding protein domain (CBD), were obtained using the plasmid treated with restriction endonucleases. CBD fragment obtained using similar treatment of the ptt10 plasmid. The plasmids containing merged sequences of mycobacterial genes-antigenes and CBD were selected. The 3 mycobacterial genes were expressed in the E. coli M15 cells resulting in biosynthesis of corresponding recombinant proteins of expected molecular weight. Concentration of CBD, Cfp10-CBD, Ag85A-CBD, and ESAT6-CBD was 20%, 15%, and 15% total protein, respectively. The resulting chimere proteins provide high affinity for cellulose and high stability. Immobilization of CBD-containing recombinant proteins proceeds as one-stage process providing target protein purification and adsorption on cellulose. The vaccines produced using this technology are inexpensive because of low cost of cellulose sorbents as well as simultaneous use of cellulose for purification and immobilization of protein. Many cellulose preparations are not toxic, biocompatible, and widely used in medicine.  相似文献   

13.
We have previously selected a peptide insert FPCDRLSGYWERGIPSPCVR recognizing the Puumala virus (PUUV) G2-glycoprotein-specific neutralizing monoclonal antibody (MAb) 1C9 with Kd of 2.85 x 10(-8) from a random peptide library X2CX14CX2 expressed on the pIII protein of the filamentous phage fd-tet. We have now created a second-generation phage-displayed peptide library in which each amino acid of the peptide was mutated randomly to another with a certain probability. Peptides were selected for higher affinity for MAb 1C9 and for a common binding motif for MAb 4G2 having an overlapping epitope with MAb 1C9 in G2 glycoprotein. The resulting peptides were synthesized as spots on cellulose membrane. Amino acid changes which improved the reactivity of the peptides to MAb 1C9 were combined in the peptide ATCDKLFGYYERGIPLPCAL with Kd of 1.49 x 10(-9) in biosensor measurements. Our results show that the binding properties of peptides, the affinity and the specificity can be improved and the binding specificity determining amino acids and structural factors can be analyzed by combining binding assays with synthetic peptides on membrane with the use of second-generation phage display libraries.  相似文献   

14.
CenA is a bacterial cellulase (beta-1,4-glucanase) comprised of a globular catalytic domain joined to an extended cellulose-binding domain (CBD) by a short linker peptide. The adsorption of CenA and its two isolated domains to crystalline cellulose was analyzed. CenA and CBD.PTCenA' (the CBD plus linker) adsorbed rapidly to cellulose at 30 degrees C, and no net desorption of protein was observed during the following 16.7 h. There was no detectable adsorption of the catalytic domain. Scatchard plots of adsorption data for CenA and for CBD.PTCenA were nonlinear (concave upward). The adsorption of CenA and CBD.PTCenA exceeded 7 and 8 mumol/g cellulose, respectively, but saturation was not attained at the highest total protein concentrations employed. A new model for adsorption was developed to describe the interaction of a large ligand (protein) with a lattice of overlapping potential binding sites (cellobiose residues). A relative equilibrium association constant (Kr) of 40.5 and 45.3 liter.g cellulose-1 was estimated for CenA and CBD.PTCenA, respectively, according to this model. A similar Kr value (33.3 liter.g-1) was also obtained for Cex, a Cellulomonas fimi enzyme which contains a related CBD but which hydrolyzes both beta 1,4-xylosidic and beta-1,4-glucosidic bonds. It was estimated that the CBD occupies approximately 39 cellobiose residues on the cellulose surface.  相似文献   

15.
Chimeric proteins combining the catalytic N-terminal region of native EngD with its proline-threonine-threonine (PT) linker region, hydrophilic domain (HLD) and cellulose binding domain (CBD) of cellulose binding protein A (CbpA) from Clostridium cellulovorans were constructed, expressed, and analyzed. The chimeric proteins with CBD(CbpA) all demonstrated strong affinity to Avicel. The chimeric protein with the PT region of EngD and the HLD had the best catalytic activity and the highest estimated percentage of soluble protein amongst the chimeric proteins. Native EngD and two of the chimeric proteins (EngD-PT-HLD-CBD and EngD-CBD) were purified and their characteristics analyzed. Their binding affinities to Avicel as well as their enzymatic activities against various substrates were found to be consistent with the results we saw from protein lysate samples, which was good binding to Avicel but a decrease in solubility and catalytic activities in chimeric proteins without PT and/or HLD. The reasons for these are discussed. These fusion proteins may be important in applications, such as immobilization to solid cellulose substrate for purification of proteins and enrichment/aggregation of protein complexes.  相似文献   

16.
A laboratory method for obtaining immunoaffinity medium for chromatographic purification of recombinant human interferon alpha2b (IFN-alpha2b) is described. The method is based on oriented and non-covalent immobilization of recombinant antibody fragments on cellulose. The single-chain fragment variable (ScFv) against human IFN-alpha2b was genetically fused to cellulose-binding domain (CBD) from Clostridium thermocellum cellulosome and expressed in Escherichia coli. After the isolation of the target protein in functionally active form from bacteria cells its bioaffinity immobilization on several forms of cellulose powders has been carried out. The crystalline microgranular cellulose with immobilized ScFv-CBD-fusion protein was used as affinity medium to perform the purification of recombinant human IFN-alpha2b directly from clarified extract of E. coli cells.  相似文献   

17.
The sequence Arg-Gly-Asp (RGD) in extracellular matrix proteins such as fibronectin, collagen, and laminin mediates cell attachment by interacting with proteins of the integrin family of cell surface receptors. A gene fusion encoding the RGD-containing peptide, fused to the C-terminus of a cellulose-binding domain (CBD/RGD), was expressed in Escherichia coli. Cultures produced up to 50 mg of CBD/RGD per liter, most of which was extracellular. It was purified from the culture supernatant by affinity chromatography on cellulose. CBD/RGD promoted the attachment of green monkey Vero cells to polystyrene and cellulose acetate. Attachment was inhibited by small synthetic peptides containing the RGD sequence. CBD/RGD was as effective as collagen in promoting the attachment of Vero cells to Cellsnowtrade mark microcarriers. (c) 1995 John Wiley & Sons, Inc.  相似文献   

18.
A luminance thresholding procedure was developed to quantify cell attachment of a variety of cell lines to CBD/RGD, a hybrid attachment factor comprising a cellulose binding domain and the fibronectin-like RGD attachment peptide. The technique used local thresholding, median filtering, and opening to separate and count cells on each image. Cell lines exhibited three different patterns of attachment to CBD/RGD, depending on whether it was immobilized on polystyrene or cellulose acetate. Vero, COS, HFF, 3T3, 293, and U373 cells attached well to CBD/RGD immobilized on polystyrene or cellulose acetate. CHO, MRC-5, and HEp-2 cells attached to CBD/RGD immobilized on polystyrene, but not to CBD/RGD immobilized on cellulose acetate. BHK and L cells failed to attach to CBD/RGD immobilized on either polystyrene or cellulose acetate. The attachment of many cell lines to CBD/RGD was comparable with attachment of these cells to fibronectin. (c) 1995 John Wiley & Sons, Inc.  相似文献   

19.
Immobilization of biologically active proteins is of great importance to research and industry. Cellulose is an attractive matrix and cellulose-binding domain (CBD) an excellent affinity tag protein for the purification and immobilization of many of these proteins. We constructed two vectors to enable the cloning and expression of proteins fused to the N- or C-terminus of CBD. Their usefulness was demonstrated by fusing the heparin-degrading protein heparinase I to CBD (CBD-HepI and HepI-CBD). The fusion proteins were over-expressed in Escherichia coli under the control of a T7 promoter and found to accumulate in inclusion bodies. The inclusion bodies were recovered by centrifugation, the proteins were refolded and recovered on a cellulose column. The bifunctional fusion protein retained its abilities to bind to cellulose and degrade heparin. C-terminal fusion of heparinase I to CBD was somewhat superior to N-terminal fusion: Although specific activities in solution were comparable, the latter exhibited impaired binding capacity to cellulose. CBD-HepI-cellulose bioreactor was operated continuously and degraded heparin for over 40 h without any significant loss of activity. By varying the flow rate, the mean molecular weight of the heparin oligosaccharide produced could be controlled. The molecular weight distribution profiles, obtained from heparin depolymerization by free heparinase I, free CBD-HepI, and cellulose-immobilized CBD-HepI, were compared. The profiles obtained by free heparinase I and CBD-HepI were indistinguishable, however, immobilized CBD-HepI produced much lower molecular weight fragments at the same percentage of depolymerization. Thus, CBD can be used for the efficient production of bioreactors, combining purification and immobilization into essentially a single step.  相似文献   

20.
The immobilization of recombinant staphylococci onto cellulose fibers through surface display of a fungal cellulose-binding domain (CBD) was investigated. Chimeric proteins containing the CBD from Trichoderma reesei cellulase Cel6A were found to be correctly targeted to the cell wall of Staphylococcus carnosus cells, since full-length proteins could be extracted and affinity-purified. Furthermore, surface accessibility of the CBD was verified using a monoclonal antibody and functionality in terms of cellulose-binding was demonstrated in two different assays in which recombinant staphylococci were found to efficiently bind to cotton fibers. The implications of this strategy of directed immobilization for the generation of whole-cell microbial tools for different applications will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号