首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns of tree species distribution and their structural-functional features were studied along an altitudinal gradient in the Indian Central Himalaya. The forest vegetation falls within three formation types: low to mid-montane sclerophyllous, broad-leaved forests; mid-montane deciduous forests; and high-montane mixed stunted forests. Deciduous tree species formed a considerable (49%) portion of the high altitude forests between 1500–3300 m. The upper limit of forests ranges from 3000 to 3300 m, and three taxa are commonly found at tree line: an evergreen, needle-leaved gymnosperm (Abies pindrow Spach.), an evergreen, broad-leaved sclerophyllous oak (Quercus semecarpifolia Sm.), and a deciduous, broad-leaved birch (Betula utilis Don).The high altitude forests differed from the low altitude forests of Central Himalaya in their greater proportion of microphanerophytes. Vernal flowering is common at this elevation in Central Himalaya. In general, in their elevational distribution and structural-functional attributes, these high altitude forests are similar to other forests of cool temperate zones in Himalaya.  相似文献   

2.
As one of the most important hypotheses on biogeographical distribution, Rapoport's rule has attracted attention around the world. However, it is unclear whether the applicability of the elevational Rapoport's Rule differs between organisms from different biogeographical regions. We used Stevens’ method, which uses species diversity and the averaged range sizes of all species within each (100 m) elevational band to explore diversity‐elevation, range‐elevation, and diversity‐range relationships. We compared support for the elevational Rapoport's rule between tropical and temperate species of seed plants in Nepal. Neither tropical nor temperate species supported the predictions of the elevational Rapoport's rule along the elevation gradient of 100–6,000 m a.s.l. for any of the studied relationships. However, along the smaller 1,000–5,000 m a.s.l. gradient (4,300 m a.s.l. for range‐elevation relationships) which is thought to be less influenced by boundary effects, we observed consistent support for the rule by tropical species, although temperate species did not show consistent support. The degree of support for the elevational Rapoport's rule may not only be influenced by hard boundary effects, but also by the biogeographical affinities of the focal taxa. With ongoing global warming and increasing variability of temperature in high‐elevation regions, tropical taxa may shift upward into higher elevations and expand their elevational ranges, causing the loss of temperate taxa diversity. Relevant studies on the elevational Rapoport's rule with regard to biogeographical affinities may be a promising avenue to further our understanding of this rule.  相似文献   

3.
Ecologists have found the distributions of many groups of organisms to be elevationally stratified. Consequently, various taxa (or species) have been proposed as indicators for inclusion within long‐term monitoring programmes to quantify the ecological impacts of future climatic change. Ideal indicators should be restricted to a particular elevational range (i.e. have high specificity) and be readily detectable across space and time (i.e. have high fidelity). This, however, has not been rigorously tested for elevational studies. We employed a spatially and temporally replicated sampling design to test the utility of tree, ant, and canopy and understorey moth species as indicators of elevation within continuous subtropical rainforest of eastern Australia. Using the classical indicator value protocol, we tested (i) whether the number of indicator species (all taxa) found in the observed data was significantly greater than the number obtained by chance; (ii) whether the indicator species (ants and moths) identified from one sampling season responded to elevation in a similar way in samples obtained from other seasons; and (iii) whether the indicator species (ants) identified from one elevational transect responded to elevation in a similar way in a nearby transect that incorporated similar elevational ranges. All groups had significantly greater numbers of indicator species than expected by chance. Temporal fidelity of moth indicator species was lower than that of ants as the suite of moth indicator species showed high seasonal variation. In contrast, ants showed high spatial and temporal fidelity. Most ant indicator species were, however, indicative of low and mid‐elevations, and only one species was indicative of the highest elevation, suggesting their relatively low conservation significance in relation to climate warming in this region. It is essential that we understand how spatial and temporal variation affects the distributions of different taxonomic groups when incorporating multiple taxa for long‐term monitoring programmes.  相似文献   

4.
The aim of this study was to investigate the dominance patterns of woody plants in a tropical montane forest of northwestern Bolivia and to understand underlying processes at the local and regional scales. We inventoried three elevation ranges: lower (1,200–1,500 m), intermediate (2,000–2,300 m), and upper montane forests (2,800–3,100 m). At each elevation, we inventoried two sites that were ~100 km apart. Specifically, we asked the following questions: (1) are dominant taxa distributed locally, or are they also dominant at larger scales? And (2) is the local importance of shared taxa congruent among sites at the same elevation range? We inventoried 18,876 woody plant individuals with a diameter at breast height ≥2.5 cm belonging to 877 species, 286 genera, and 100 families in 54 0.1-ha plots. A strong floristic congruence was found at the family and genus levels within and across elevations, but not at the species level. The pattern of species dominance for the whole study regions was similar to that reported for similar scales in the Amazonia (10–15 % of species accounted for 50–75 % of individuals), although dominant species were not oligarchic across the whole elevational gradient due to the high environmental heterogeneity. Dominant taxa were shared to a larger degree between sites at the same elevational range than non-dominant taxa, indicating that oligarchy does not mean uniformity. Finally, the shared taxa exhibited similar importance between sites at the lower elevation range but dissimilar importance at the higher elevation range, reflecting an increase in the relative importance of local processes versus regional processes with increasing elevation.  相似文献   

5.
Tropical high mountain forests in Lore Lindu National Park, Sulawesi, Indonesia, were described by their floristic composition and the importance of tree families (Family importance values, FIV), based on tree inventories conducted on 4 plots (each 0.24 ha) in old-growth forest stands at c. 1800 and 2400 m a.s.l. (mid- and upper montane elevations). To identify general patterns and regional peculiarities of the forests in the SE Asian and SW Pacific context, the biogeography of the tree species was analysed using distribution records. Out of the total of 87 tree species, only 18 species were found at both elevational zones. The discovery of new species and new distribution records (28% of the data set) highlights the deficiencies in the taxonomic and distribution data for Sulawesi. Sulawesi endemism rate was 20%. In the mid-montane Fagaceae–Myrtaceae forests, Lithocarpus spp. (Fagaceae) were overall important (4 spp. occupying around half of the total basal area) and the Myrtaceae the most species rich (8 spp.), thus showing typical features of Malesian montane forests. The upper montane conifer-Myrtaceae forest contained several high mountain tree taxa and showed affinity to the forests of New Guinea. The mountain flora comprised both eastern and western Malesian elements, with the nearest neighbouring islands Borneo and Maluku both sharing species with Sulawesi, reflecting the complex palaeogeography of the island. A separate analysis showed the mid-montane forest to possess greatest biogeographical affinity to Borneo/western Malesia, and the upper montane forest had a number of typical elements of Papuasia/eastern Malesia and the Phillipines, which may be a result of historical patterns in land connection and the emergence of mountain ranges.  相似文献   

6.
Snell-Rood EC  Badyaev AV 《Oecologia》2008,157(3):545-551
Ecological gradients in natural and sexual selection often result in evolutionary diversification of morphological, life history, and behavioral traits. In particular, elevational changes in habitat structure and climate not only covary with intensity of sexual selection in many taxa, but may also influence evolution of mating signals. Here we examined variation in courtship song in relation to elevation of breeding across cardueline finches-a subfamily of birds that occupies the widest elevational range of extant birds and shows extensive variation in life histories and sexual selection along this range. We predicted that decrease in sexual selection intensity with elevation of breeding documented in this clade would result in a corresponding evolutionary reduction in elaboration of courtship songs. We controlled for the effects of phylogeny, morphology, and habitat structure to uncover a predicted elevational decline in courtship song elaboration; species breeding at lower elevations sang more elaborated and louder songs compared to their sister species breeding at higher elevations. In addition, lower elevation species had longer songs with more notes, whereas frequency components of song did not vary with elevation. We suggest that changes in sexual selection account for the observed patterns of song variation and discuss how elevational gradient in sexual selection may facilitate divergence in mating signals potentially reinforcing or promoting speciation.  相似文献   

7.
Aim To understand how tree growth response to regional drought and temperature varies between tree species, elevations and forest types in a mountain landscape. Location Twenty‐one sites on an elevation gradient of 1500 m on the San Francisco Peaks, northern Arizona, USA. Methods Tree‐ring data for the years 1950–2000 for eight tree species (Abies lasiocarpa var. arizonica (Merriam) Lemm., Picea engelmannii Parry ex Engelm., Pinus aristata Engelm., Pinus edulis Engelm., Pinus flexilis James, Pinus ponderosa Dougl. ex Laws., Pseudotsuga menziesii var. glauca (Beissn.) Franco and Quercus gambelii Nutt.) were used to compare sensitivity of radial growth to regional drought and temperature among co‐occurring species at the same site, and between sites that differed in elevation and species composition. Results For Picea engelmannii, Pinus flexilis, Pinus ponderosa and Pseudotsuga menziesii, trees in drier, low‐elevation stands generally had greater sensitivity of radial growth to regional drought than trees of the same species in wetter, high‐elevation stands. Species low in their elevational range had greater drought sensitivity than co‐occurring species high in their elevational range at the pinyon‐juniper/ponderosa pine forest ecotone, ponderosa pine/mixed conifer forest ecotone and high‐elevation invaded meadows, but not at the mixed conifer/subalpine forest ecotone. Sensitivity of radial growth to regional drought was greater at drier, low‐elevation compared with wetter, high‐elevation forests. Yearly growth was positively correlated with measures of regional water availability at all sites, except high‐elevation invaded meadows where growth was weakly correlated with all climatic factors. Yearly growth in high‐elevation forests up to 3300 m a.s.l. was more strongly correlated with water availability than temperature. Main conclusions Severe regional drought reduced growth of all dominant tree species over a gradient of precipitation and temperature represented by a 1500‐m change in elevation, but response to drought varied between species and stands. Growth was reduced the most in drier, low‐elevation forests and in species growing low in their elevational range in ecotones, and the least for trees that had recently invaded high‐elevation meadows. Constraints on tree growth from drought and high temperature are important for high‐elevation subalpine forests located near the southern‐most range of the dominant species.  相似文献   

8.
Understanding the change in vegetation composition along elevational gradients is critical for species conservation in a changing world. We studied the species richness, tree height, and floristic composition of woody plants along an elevation gradient of protected habitats on the eastern slope of Mount Meru and analyzed how these vegetation variables are influenced by the interplay of temperature and precipitation. Vegetation data were collected on 44 plots systematically placed along five transects spanning an elevational gradient of 1600 to 3400 m a.s.l. We used ordinary linear models and multivariate analyses to test the effect of mean annual temperature and precipitation on woody plant species richness, tree height, and floristic composition. We found that species richness, mean tree height, and maximum tree height declined monotonically with elevation. Models that included only mean annual temperature as an explanatory variable were generally best supported to predict changes in species richness and tree height along the elevation gradient. We found significant changes in woody plant floristic composition with elevation, which were shaped by an interaction of mean annual temperature and precipitation. While plant communities consistently changed with temperature along the elevation gradient, levels of precipitation were more important for plant communities at lower than for those at higher elevations. Our study suggests that changes in temperature and precipitation regimes in the course of climate change will reshape elevational gradients of diversity, tree height, and correlated carbon storage in ecosystems, and the sequence of tree communities on East African mountains.  相似文献   

9.
Abstract. Modern pollen assemblages from 16 small lakes (< 2.5 ha) and 11 moderate-sized lakes (4.5–19.3 ha) arrayed along an elevational gradient (300 to 1320 m) in the east-central Adirondack Mountains were studied to determine how well the pollen assemblages recorded patterns of forest composition along the gradient. Forest composition ranges from Pinus strobus/Tsuga/ hardwoods forests at low elevations through Tsuga/ hardwoods, hardwoods, and Picea/Abies forests to Abies-dominated forests at high elevations. Modern pollen percentages for 10 tree taxa were compared with lake elevation using scatter plots and correlation and regression analysis. Differential smoothing of vegetational patterns along the elevational gradient occurred among the 10 taxa owing to differences in pollen dispersibility, pollen production, and spatial pattern of taxon abundance in forests of the region. No differences were observed in pollen-elevation patterns between small and moderate-sized lakes. Pollen-elevation patterns were obscured for most taxa when the gradient was shortened (e.g. to 600–1320 m) owing to increased spatial smoothing by pollen dispersal. Design and interpretation of paleoecological studies of spatial gradients can be improved by careful attention to site spacing, gradient length, and gradient steepness in the context of pollen dispersal and representation models.  相似文献   

10.
The “Divergence Problem” in northern forests has been confirmed in a large number of empirical studies, especially in North America and Europe, climate warming having been identified as a cause for reduced sensitivity of recent tree-growth and increased tree mortality. However, according to other studies, tree growth patterns are keeping pace with climate warming. Covariation between rising temperatures and tree growth varies regionally. Therefore, extensive evidence is still needed across more geographic areas around the world. In the present study, we examined the sensitivity of Manchurian ash forest growth, which is one of the dominant species in the mixed coniferous and broad-leaved forests in the area around Changbai Mountain in Northeastern China. Five Manchurian ash tree-ring width chronologies were constructed from sites ranging along the elevational gradients of 750 m, 800 m, 900 m, 1000 m and 1100 m. We analyzed climate-growth relationships using Pearson correlation coefficients between ring-width indices and climate variables in two separate periods (before 1984 and after 1984), because instrumental temperature data have increased sharply after 1984. Along all of the elevational gradients, the sampled Manchurian ash forests show a higher growth rate and more sensitivity to climatic factors due to climate warming since the beginning of the 1984s. Comparatively, the forest growth at low elevation sites has increased faster than that at high elevation sites. If climate warming continues in northeastern China, further continuous and substantial increase in tree growth would substantially raise forest productivity in mixed coniferous and broad-leaved forests.  相似文献   

11.
The Uluguru Mountains form a component block of the Eastern Arc Mountains of Tanzania and Kenya and are known for a high degree of endemic vertebrate and plant taxa. Among the Eastern Arc Mountains, the Uluguru Mountains rank second in the number of endemic species. Although the forests in these mountains have received considerable ornithological attention, studies on how forest bird communities in the available low elevation forests are affected by seasons remain patchy and sporadic. Such studies are important because in the Uluguru Mountains, forest destruction in the lower slopes has been severe to an extent that there is very little substantial forest survives below 900 m above sea level. Using mist netting, seasonal variation in understorey bird communities in the remaining low elevation forests in the Uluguru Nature Reserve was assessed between 2005 and 2011. Species diversity and relative abundance of the birds were higher during the cold season in comparison with the hot season possibly due to seasonal elevational movements of some species. Elevational migrants made a large proportion of the avifauna in the study area. The results suggest that low altitude forests are important cold season refugia of elevational migrants and these forests need continual protection.  相似文献   

12.
To protect the remaining biodiversity on tropical islands it is important to predict the elevational ranges of non-native species. We evaluated two hypotheses by examining land snail faunas on the eastern (windward) side of the island of Hawaii: (1) the latitude of a species' native region can be used to predict its potential elevational range and (2) non-native temperate species, which experience greater climatic fluctuations in their native range, are more likely to become established at higher elevations and to extend over larger elevational ranges than non-native tropical species. All non-native tropical species were distributed patchily among sites ≤500 m and occupied small elevational ranges, whereas species introduced from temperate regions occupied wide elevational ranges and formed a distinct fauna spanning elevations 500–2000 m. Most native land snail species and ecosystems occur >500 m in areas dominated by temperate non-native snail and slug species. Therefore, knowing the native latitudinal region of a non-native species is important for conservation of tropical island ecosystems because it can be translated into potential elevational range if those species are introduced. Because temperate species will survive in tropical locales particularly at high elevation, on many tropical islands the last refuges of the native species, preventing introduction of temperate species should be a conservation priority.  相似文献   

13.
Some previous studies along an elevational gradient on a tropical mountain documented that plant species richness decreases with increasing elevation. However, most of studies did not attempt to standardize the amount of sampling effort. In this paper, we employed a standardized sampling effort to study tree species richness along an elevational gradient on Mt. Bokor, a table-shaped mountain in southwestern Cambodia, and examined relationships between tree species richness and environmental factors. We used two methods to record tree species richness: first, we recorded trees taller than 4 m in 20 uniform plots (5 × 100 m) placed at 266–1048-m elevation; and second, we collected specimens along an elevational gradient from 200 to 1048 m. For both datasets, we applied rarefaction and a Chao1 estimator to standardize the sampling efforts. A generalized linear model (GLM) was used to test the relationship of species richness with elevation. We recorded 308 tree species from 20 plots and 389 tree species from the general collections. Species richness observed in 20 plots had a weak but non-significant correlation with elevation. Species richness estimated by rarefaction or Chao1 from both data sets also showed no significant correlations with elevation. Unlike many previous studies, tree species richness was nearly constant along the elevational gradient of Mt. Bokor where temperature and precipitation are expected to vary. We suggest that the table-shaped landscape of Mt. Bokor, where elevational interval areas do not significantly change between 200 and 900 m, may be a determinant of this constant species richness.  相似文献   

14.
Aim To document the elevational pattern of epiphyte species richness at the local scale in the tropical Andes with a consistent methodology. Location The northern Bolivian Andes at 350–4000 m above sea level. Methods We surveyed epiphytic vascular plant assemblages in humid forests in (a) single trees located in (b) 90 subplots of 400 m2 each located in (c) 14 plots of 1 ha each. The plots were separated by 100–800 m along the elevational gradient. Results We recorded about 800 epiphyte species in total, with up to 83 species found on a single tree. Species richness peaked at c. 1500 m and declined by c. 65% to 350 m and by c. 99% to 4000 m, while forests on mountain ridges had richness values lowered by c. 30% relative to slope forests at the same elevations. The hump‐shaped richness pattern differed from a null‐model of random species distribution within a bounded domain (the mid‐domain effect) as well as from the pattern of mean annual precipitation by a shift of the diversity peak to lower elevations and by a more pronounced decline of species richness at higher elevations. With the exception of Araceae, which declined almost monotonically, all epiphyte taxa showed hump‐shaped curves, albeit with slightly differing shapes. Orchids and pteridophytes were the most species‐rich epiphytic taxa, but their relative contributions shifted with elevation from a predominance of orchids at low elevations to purely fern‐dominated epiphyte assemblages at 4000 m. Within the pteridophytes, the polygrammoid clade was conspicuously overrepresented in dry or cold environments. Orchids, various small groups (Cyclanthaceae, Ericaceae, Melastomataceae, etc.), and Bromeliaceae (below 1000 m) were mostly restricted to the forest canopy, while Araceae and Pteridophyta were well represented in the forest understorey. Main conclusions Our study confirms the hump‐shaped elevational pattern of vascular epiphyte richness, but the causes of this are still poorly understood. We hypothesize that the decline of richness at high elevations is a result of low temperatures, but the mechanism involved is unknown. The taxon‐specific patterns suggest that some taxa have a phylogenetically determined propensity for survival under extreme conditions (low temperatures, low humidity, and low light levels in the forest interior). The three spatial sampling scales show some different patterns, highlighting the influence of the sampling methodology.  相似文献   

15.
Understanding how evolutionary constraints shape the elevational distributions of tree lineages provides valuable insight into the future of tropical montane forests under global change. With narrow elevational ranges, high taxonomic turnover, frequent habitat specialization, and exceptional levels of endemism, tropical montane forests and trees are predicted to be highly sensitive to environmental change. Using plot census data from a gradient traversing > 3,000 m in elevation on the Amazonian flank of the Peruvian Andes, we employ phylogenetic approaches to assess the influence of evolutionary heritage on distribution trends of trees at the genus‐level. We find that closely related lineages tend to occur at similar mean elevations, with sister genera pairs occurring a mean 254 m in elevation closer to each other than the mean elevational difference between non‐sister genera pairs. We also demonstrate phylogenetic clustering both above and below 1,750 m a.s.l, corresponding roughly to the cloud‐base ecotone. Belying these general trends, some lineages occur across many different elevations. However, these highly plastic lineages are not phylogenetically clustered. Overall, our findings suggest that tropical montane forests are home to unique tree lineage diversity, constrained by their evolutionary heritage and vulnerable to substantial losses under environmental changes, such as rising temperatures or an upward shift of the cloud‐base.  相似文献   

16.
Aim The physical and physiological mechanisms that determine tree‐line position are reasonably well understood, but explanations for tree species‐specific upper elevational limits below the tree line are still lacking. In addition, once these uppermost positions have been identified, questions arise over whether they reflect past expansion events or active ongoing recruitment or even upslope migration. The aims of this study were: (1) to assess current tree recruitment near the cold‐temperature limit of 10 major European tree species in the Swiss Alps, and (2) to rank species by the extent that their seedlings and saplings exceed the elevational limit of adult trees, possibly reflecting effects of the recent climate warming. Location Western and eastern Alps of Switzerland. Methods For each species, occurrences were recorded along six elevational transects according to three size classes from seedlings to adult trees in 25‐m‐elevation steps above and below their regional upper elevational limit. Two methods were used to compare upper elevational limits between seedlings, saplings and adults within species. First, we focused on the uppermost occurrence observed in each life stage for a given species within each studied region; and second, we predicted their upper distribution range using polynomial models fitted to presence/absence data. Results Species exhibited a clear ranking in their elevational limit. Regional differences in species limits (western versus eastern Swiss Alps) could largely be attributed to regional differences in temperature. Observed and predicted limits of each life stage showed that all species were represented by young individuals in the vicinity of the limit of adult trees. Moreover, tree recruitment of both seedlings and saplings was detected and predicted significantly beyond adult tree limits in most of the species. Across regions, seedlings and saplings were on average found at elevations 73 m higher than adult trees. Main conclusions Under current conditions, neither seed dispersal nor seedling establishment constitutes a serious limitation of recruitment at the upper elevational limits of major European trees. The recruits found beyond the adult limits demonstrate the potential for an upward migration of trees in the Alps in response to ongoing climate warming.  相似文献   

17.
Plant species diversity and endemism demonstrate a definite trend along altitude. We analyzed the (i) pattern of tree diversity and its endemic subset (ii) frequency distribution of altitudinal range and (iii) upper & lower distributional limits of each tree species along altitudinal gradients in eastern Himalaya. The study was conducted in Subansiri district of Arunachal Pradesh. Data on the tree species (cbh ≥ 15 cm) were gathered every 200 m steps between 200 m and 2200 m gradients. Tree diversity demonstrated a greater variation along the gradients. A total of 336 species (of which 26 are endemic) were recorded belonging to 185 genera and 78 families. The alpha diversity demonstrated a decreasing pattern with two maxima (i.e., elevational peaks) along the gradients; one in 601–1000 m and the other in 1601–1800 m, corresponding to transition zones between tropical-subtropical and subtropical-temperate forests. Pattern diversity revealed a narrow range along the gradients. Frequency of altitudinal range was distributed between 1 and 41. Only one species (Altingia excelsa) showed widest amplitude, occurring over the entire range. Highest level of species turnover was found in 400–600 m step at lower elevational limit whereas for upper elevational limit, the highest turn over was recorded between 800 and 1000 m. Tree diversity decreased and its endemic subset increased along the gradients. Two maximas in tree diversity pattern correspond to forest transition zones with subtropical-temperate transition is narrower than tropical-subtropical. The pattern observed here could be attributed to varied microclimates or environmental heterogeneity. If altitudinal amplitude of a species is considered as an aspect of its niche breadth, it is clear from these results that niche breadth in these organisms is in fact independent of the diversity of the assemblage in which they occur. This analysis calls for detailed floristic studies to determine the breadth of changes between adjacent forest types and details of local species richness in high diversity areas.  相似文献   

18.
19.
Aim To evaluate the hypothesis that topographic features of high‐elevation mountain environments govern spatial distribution and climate‐driven dynamics of the forest. Location Upper mountain forest stands (elevation range 1800–2600 m) in the mountains of southern Siberia. Methods Archive maps, satellite and on‐ground data from1960 to 2002 were used. Data were normalized to avoid bias caused by uneven distribution of topographic features (elevation, azimuth and slope steepness) within the analysed area. Spatial distribution of forest stands was analysed with respect to topography based on a digital elevation model (DEM). Results Spatial patterns in mountain forests are anisotropic with respect to azimuth, slope steepness and elevation. At a given elevation, the majority of forests occupied slopes with greater than mean slope values. As the elevation increased, forests shifted to steeper slopes. The orientation of forest azimuth distribution changed clockwise with increase in elevation (the total shift was 120°), indicating a combined effect of wind and water stress on the observed forest patterns. Warming caused changes in the forest distribution patterns during the last four decades. The area of closed forests increased 1.5 times, which was attributed to increased stand density and tree migration. The migration rate was 1.5 ± 0.9 m year–1, causing a mean forest line shift of 63 ± 37 m. Along with upward migration, downward tree migration onto hill slopes was observed. Changes in tree morphology were also noted as widespread transformation of the prostrate forms of Siberian pine and larch into erect forms. Main conclusions The spatial pattern of upper mountain forests as well as the response of forests to warming strongly depends on topographic relief features (elevation, azimuth and slope steepness). With elevation increase (and thus a harsher environment) forests shifted to steep wind‐protected slopes. A considerable increase in the stand area and increased elevation of the upper forest line was observed coincident with the climate warming that was observed. Warming promotes migration of trees to areas that are less protected from winter desiccation and snow abrasion (i.e. areas with lower values of slope steepness). Climate‐induced forest response has significantly modified the spatial patterns of high‐elevation forests in southern Siberia during the last four decades, as well as tree morphology.  相似文献   

20.
Aim We examined relationships between climate–disturbance gradients and patterns of vegetation zonation and ecotones on a subtropical mountain range. Location The study was conducted on the windward slopes of the Cordillera Central, Dominican Republic, where cloud forest appears to shift in a narrow ecotone to monodominant forest of Pinus occidentalis. Methods Climate, disturbance and vegetation data were collected over the elevation range 1100–3100 m and in 50 paired plots along the ecotone. Aerial photographs were georeferenced to a high‐resolution digital elevation model in order to enable the analysis of landscape‐scale patterns of the ecotone. Results A Shipley–Keddy test detected discrete compositional ecotones at 2200 and 2500 m; the distributions of tree species at lower elevations were continuous. The elevation of the ecotone determined with aerial photographs was fairly consistent, namely ± 164 m (SD) over its 124‐km length, but it exhibited significant landscape variation, occurring at a lower elevation in a partially leeward, western zone. The ecotone also occurred significantly lower on ridges than it did in drainage gullies. Ecotone forest structure and composition differed markedly between paired plots. In pine paired plots, the canopy height was 1.7 times higher and the basal area of non‐pine species was 6 times lower than in the cloud forest directly below. Fire evidence was ubiquitous in the pine forest but rare in the abutting cloud forest. Mesoclimate changed discontinuously around the elevation of the ecotone: humidity and cloud formation decreased markedly, and frost frequency increased exponentially. Main conclusions The discreteness of the ecotone was produced primarily by fire. The elevational consistency of the ecotone, however, resulted from the overarching influence of mesoclimate on the elevational patterns of fire occurrence. Declining temperature and precipitation combine with the trade‐wind inversion to create a narrow zone where high‐elevation fires extinguish, enabling fire‐sensitive and fire‐tolerant taxa to abut. Once established, mesotopography and contrasting vegetation physiognomy probably reinforce this boundary through feedbacks on microenvironment and fire likelihood. The prominence of the pine in this study – and of temperate and fire‐tolerant taxa in subtropical montane forests in general – highlights the importance of climate‐disturbance–biogeography interactions in ecotone formation, particularly where fire mediates a dynamic between climate and vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号