首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Around photosystem II (PSII), the peripheral antenna system absorbs sunlight energy and transfers it to the core complex where the water-splitting and oxygen-evolving reaction takes place. The peripheral antennae in plants are composed of various light-harvesting complexes II (LHCII). Recently, the three-dimensional structure of the C2S2M2-type PSII-LHCII supercomplex from Pisum sativum (PsPSII) has been solved at 2.7-Å resolution using the single-particle cryo-electron microscopy method. The large homodimeric supercomplex has a total molecular weight of >1400?kDa. Each monomer has a core complex surrounded by strongly and moderately bound LHCII trimers, as well as CP29, CP26, and CP24 monomers. Here, we review and present a detailed analysis of the structural features of this supramolecular machinery. Specifically, we discuss the structural differences around the oxygen-evolving center of PSII from different species. Furthermore, we summarize the existing knowledge of the structures and locations of peripheral antenna complexes, and dissect the excitation energy transfer pathways from the peripheral antennae to the core complex. This detailed high-resolution structural information provides a solid basis for understanding the functional behavior of plant PSII-LHCII supercomplex.  相似文献   

2.
A project to investigate the supramolecular structure of photosystems was initiated, which is based on protein solubilizations by digitonin, protein separations by Blue native (BN)-polyacrylamide gel electrophoresis (PAGE) and protein identifications by mass spectrometry (MS). Under the conditions applied, nine photosystem supercomplexes could be described for chloroplasts of Arabidopsis, which have apparent molecular masses between 600 and 3200 kDa on BN gels. Identities of the supercomplexes were determined on the basis of their subunit compositions as documented by 2D BN/SDS-PAGE and BN/BN-PAGE. Two supercomplexes of 1060 and approximately 1600 kDa represent dimeric and trimeric forms of photosystem I (PSI), which include tightly bound LHCI proteins. Compared to monomeric PSI, these protein complexes are of low abundance. In contrast, photosystem II mainly forms part of dominant supercomplexes of 850, 1000, 1050 and 1300 kDa. According to our interpretation, these supercomplexes contain dimeric PSII, 1-4 LHCII trimers and additionally monomeric LHCII proteins. The 1300-kDa PSII supercomplex (containing four LHCII trimers) is partially converted into the 1000-kDa PSII supercomplex (containing two LHCII trimers) in the presence of dodecylmaltoside on 2D BN/BN gels. Analyses of peptides of the trypsinated 1300-kDa PSII supercomplex by mass spectrometry allowed to identify known subunits of the PSII core complex and additionally LHCII proteins encoded by eight different genes in Arabidopsis. Further application of this experimental approach will allow new insights into the supermolecular organization of photosystems in plants.  相似文献   

3.
LHCII is the most abundant membrane protein on earth. It participates in the first steps of photosynthesis by harvesting sunlight and transferring excitation energy to the core complex. Here we have analyzed the LHCII complex of the green alga Chlamydomonas reinhardtii and its association with the core of Photosystem II (PSII) to form multiprotein complexes. Several PSII supercomplexes with different antenna sizes have been purified, the largest of which contains three LHCII trimers (named S, M and N) per monomeric core. A projection map at a 13 Å resolution was obtained allowing the reconstruction of the 3D structure of the supercomplex. The position and orientation of the S trimer are the same as in plants; trimer M is rotated by 45° and the additional trimer (named here as LHCII-N), which is taking the position occupied in plants by CP24, is directly associated with the core. The analysis of supercomplexes with different antenna sizes suggests that LhcbM1, LhcbM2/7 and LhcbM3 are the major components of the trimers in the PSII supercomplex, while LhcbM5 is part of the “extra” LHCII pool not directly associated with the supercomplex. It is also shown that Chlamydomonas LHCII has a slightly lower Chlorophyll a/b ratio than the complex from plants and a blue shifted absorption spectrum. Finally the data indicate that there are at least six LHCII trimers per dimeric core in the thylakoid membranes, meaning that the antenna size of PSII of C. reinhardtii is larger than that of plants.  相似文献   

4.
Aggregates and solubilized trimers of LHCII were characterized by circular dichroism (CD), linear dichroism and time-resolved fluorescence spectroscopy and compared with thylakoid membranes in order to evaluate the native state of LHCII in vivo. It was found that the CD spectra of lamellar aggregates closely resemble those of unstacked thylakoid membranes whereas the spectra of trimers solubilized in n-dodecyl-β,d-maltoside, n-octyl-β,d-glucopyranoside, or Triton X-100 were drastically different in the Soret region. Thylakoid membranes or LHCII aggregates solubilized with detergent exhibited CD spectra similar to the isolated trimers. Solubilization of LHCII was accompanied by profound changes in the linear dichroism and increase in fluorescence lifetime. These data support the notion that lamellar aggregates of LHCII retain the native organization of LHCII in the thylakoid membranes. The results indicate that the supramolecular organization of LHCII, most likely due to specific trimer-trimer contacts, has significant impact on the pigment interactions in the complexes.  相似文献   

5.
State transitions, or the redistribution of light-harvesting complex II (LHCII) proteins between photosystem I (PSI) and photosystem II (PSII), balance the light-harvesting capacity of the two photosystems to optimize the efficiency of photosynthesis. Studies on the migration of LHCII proteins have focused primarily on their reassociation with PSI, but the molecular details on their dissociation from PSII have not been clear. Here, we compare the polypeptide composition, supramolecular organization, and phosphorylation of PSII complexes under PSI- and PSII-favoring conditions (State 1 and State 2, respectively). Three PSII fractions, a PSII core complex, a PSII supercomplex, and a multimer of PSII supercomplex or PSII megacomplex, were obtained from a transformant of the green alga Chlamydomonas reinhardtii carrying a His-tagged CP47. Gel filtration and single particles on electron micrographs showed that the megacomplex was predominant in State 1, whereas the core complex was predominant in State 2, indicating that LHCIIs are dissociated from PSII upon state transition. Moreover, in State 2, strongly phosphorylated LHCII type I was found in the supercomplex but not in the megacomplex. Phosphorylated minor LHCIIs (CP26 and CP29) were found only in the unbound form. The PSII subunits were most phosphorylated in the core complex. Based on these observations, we propose a model for PSII remodeling during state transitions, which involves division of the megacomplex into supercomplexes, triggered by phosphorylation of LHCII type I, followed by LHCII undocking from the supercomplex, triggered by phosphorylation of minor LHCIIs and PSII core subunits.  相似文献   

6.
Photosystem II (PSII) complexes are organized into large supercomplexes with variable amounts of light‐harvesting proteins (Lhcb). A typical PSII supercomplex in plants is formed by four trimers of Lhcb proteins (LHCII trimers), which are bound to the PSII core dimer via monomeric antenna proteins. However, the architecture of PSII supercomplexes in Norway spruce[Picea abies (L.) Karst.] is different, most likely due to a lack of two Lhcb proteins, Lhcb6 and Lhcb3. Interestingly, the spruce PSII supercomplex shares similar structural features with its counterpart in the green alga Chlamydomonas reinhardtii [Kou?il et al. (2016) New Phytol. 210 , 808–814]. Here we present a single‐particle electron microscopy study of isolated PSII supercomplexes from Norway spruce that revealed binding of a variable amount of LHCII trimers to the PSII core dimer at positions that have never been observed in any other plant species so far. The largest spruce PSII supercomplex, which was found to bind eight LHCII trimers, is even larger than the current largest known PSII supercomplex from C. reinhardtii. We have also shown that the spruce PSII supercomplexes can form various types of PSII megacomplexes, which were also identified in intact grana membranes. Some of these large PSII supercomplexes and megacomplexes were identified also in Pinus sylvestris, another representative of the Pinaceae family. The structural variability and complexity of LHCII organization in Pinaceae seems to be related to the absence of Lhcb6 and Lhcb3 in this family, and may be beneficial for the optimization of light‐harvesting under varying environmental conditions.  相似文献   

7.
The organization of Arabidopsis thaliana photosystem II (PSII) and its associated light-harvesting antenna (LHCII) was studied in isolated PSII-LHCII supercomplexes and native membrane-bound crystals by transmission electron microscopy and image analysis. Over 4000 single-particle projections of PSII-LHCII supercomplexes were analyzed. In comparison to spinach supercomplexes [Boekema, E.J., van Roon, H., van Breemen, J.F.L. & Dekker, J.P. (1999) Eur. J. Biochem. 266, 444-452] some striking differences were revealed: a much larger number of supercomplexes from Arabidopsis contain copies of M-type LHCII trimers. M-type trimers can also bind in the absence of the more common S-type trimers. No binding of l-type trimers could be detected. Analysis of native membrane-bound PSII crystals revealed a novel type of crystal with a unit cell of 25.6 x 21.4 nm (angle 77 degrees ), which is larger than any of the PSII lattices observed before. The data show that the unit cell is built up from C2S2M2 supercomplexes, rather than from C2S2M supercomplexes observed in native membrane crystals from spinach [Boekema, E.J., Van Breemen, J.F.L., Van Roon, H. & Dekker, J.P. (2000) J. Mol. Biol. 301, 1123-1133]. It is concluded from both the single particle analysis and the crystal analysis that the M-type trimers bind more strongly to PSII core complexes in Arabidopsis than in spinach.  相似文献   

8.
We investigated the organization of photosystem II (PSII) in agranal bundle sheath thylakoids from a C(4) plant maize. Using blue native/SDS-PAGE and single particle analysis, we show for the first time that PSII in the bundle sheath (BS) chloroplasts exists in a dimeric form and forms light-harvesting complex II (LHCII).PSII supercomplexes. We also demonstrate that a similar set of photosynthetic membrane complexes exists in mesophyll and agranal BS chloroplasts, including intact LHCI.PSI supercomplexes, PSI monomers, PSII core dimers, PSII monomers devoid of CP43, LHCII trimers, LHCII monomers, ATP synthase, and cytochrome b(6)f complex. Fluorescence functional measurements clearly indicate that BS chloroplasts contain PSII complexes that are capable of performing charge separation and are efficiently sensitized by the associated LHCII. We identified a fraction of LHCII present within BS thylakoids that is weakly energetically coupled to the PSII reaction center; however, the majority of BS LHCII is shown to be tightly connected to PSII. Overall, we demonstrate that organization of the photosynthetic apparatus in BS agranal chloroplasts of a model C(4) plant is clearly distinct from that of the stroma lamellae of the C(3) plants. In particular, supramolecular organization of the dimeric LHCII.PSII in the BS thylakoids strongly suggests that PSII in the BS agranal membranes may donate electrons to PSI. We propose that the residual PSII activity may supply electrons to poise cyclic electron flow around PSI and prevent PSI overoxidation, which is essential for the CO(2) fixation in BS cells, and hence, may optimize ATP production within this compartment.  相似文献   

9.
Photoinhibition is caused by an imbalance between the rates of the damage and repair cycle of photosystem II D1 protein in thylakoid membranes. The PSII repair processes include (i) disassembly of damaged PSII-LHCII supercomplexes and PSII core dimers into monomers, (ii) migration of the PSII monomers to the stroma regions of thylakoid membranes, (iii) dephosphorylation of the CP43, D1 and D2 subunits, (iv) degradation of damaged D1 protein, and (v) co-translational insertion of the newly synthesized D1 polypeptide and reassembly of functional PSII complex. Here, we studied the D1 turnover cycle in maize mesophyll and bundle sheath chloroplasts using a protein synthesis inhibitor, lincomycin. In both types of maize chloroplasts, PSII was found as the PSII-LHCII supercomplex, dimer and monomer. The PSII core and the LHCII proteins were phosphorylated in both types of chloroplasts in a light-dependent manner. The rate constants for photoinhibition measured for lincomycin-treated leaves were comparable to those reported for C3 plants, suggesting that the kinetics of the PSII photodamage is similar in C3 and C4 species. During the photoinhibitory treatment the D1 protein was dephosphorylated in both types of chloroplasts but it was rapidly degraded only in the bundle sheath chloroplasts. In mesophyll chloroplasts, PSII monomers accumulated and little degradation of D1 protein was observed. We postulate that the low content of the Deg1 enzyme observed in mesophyll chloroplasts isolated from moderate light grown maize may retard the D1 repair processes in this type of plastids.  相似文献   

10.
Electron microscopy and single-particle analyses have been carried out on negatively stained photosystem II (PSII) complexes isolated from the green alga Chlamydomonas reinhardtii and the thermophilic cyanobacterium Synechococcus elongatus. The analyses have yielded three-dimensional structures at 30-A resolution. Biochemical analysis of the C. reinhardtii particle suggested it to be very similar to the light-harvesting complex II (LHCII).PSII supercomplex of spinach, a conclusion borne out by its three-dimensional structure. Not only was the C. reinhardtii LHCII.PSII supercomplex dimeric and of comparable size and shape to that of spinach, but the structural features for the extrinsic OEC subunits bound to the lumenal surface were also similar thus allowing identification of the PsbO, PsbP, and PsbQ OEC proteins. The particle isolated from S. elongatus was also dimeric and retained its OEC proteins, PsbO, PsbU, and PsbV (cytochrome c(550)), which were again visualized as protrusions on the lumenal surface of the complex. The overall size and shape of the cyanobacterial particle was similar to that of a PSII dimeric core complex isolated from spinach for which higher resolution structural data are known from electron crystallography. By building the higher resolution structural model into the projection maps it has been possible to relate the positioning of the OEC proteins of C. reinhardtii and S. elongatus with the underlying transmembrane helices of other major intrinsic subunits of the core complex, D1, D2, CP47, and CP43 proteins. It is concluded that the PsbO protein is located over the CP47 and D2 side of the reaction center core complex, whereas the PsbP/PsbQ and PsbV/PsbU are positioned over the lumenal surface of the N-terminal region of the D1 protein. However, the mass attributed to PsbV/PsbU seems to bridge across to the PsbO, whereas the PsbP/PsbQ proteins protrude out more from the lumenal surface. Nevertheless, within the resolution and quality of the data, the relative positions of the center of masses for OEC proteins of C. reinhardtii and S. elongatus are similar and consistent with those determined previously for the OEC proteins of spinach.  相似文献   

11.
State transitions are an important photosynthetic short-term response that allows energy distribution balancing between photosystems I (PSI) and II (PSII). In plants when PSII is preferentially excited compared with PSI (State II), part of the major light-harvesting complex LHCII migrates to PSI to form a PSI-LHCII supercomplex. So far, little is known about this complex, mainly due to purification problems. Here, a stable PSI-LHCII supercomplex is purified from Arabidopsis thaliana and maize (Zea mays) plants. It is demonstrated that LHCIIs loosely bound to PSII in State I are the trimers mainly involved in state transitions and become strongly bound to PSI in State II. Specific Lhcb1-3 isoforms are differently represented in the mobile LHCII compared with S and M trimers. Fluorescence analyses indicate that excitation energy migration from mobile LHCII to PSI is rapid and efficient, and the quantum yield of photochemical conversion of PSI-LHCII is substantially unaffected with respect to PSI, despite a sizable increase of the antenna size. An updated PSI-LHCII structural model suggests that the low-energy chlorophylls 611 and 612 in LHCII interact with the chlorophyll 11145 at the interface of PSI. In contrast with the common opinion, we suggest that the mobile pool of LHCII may be considered an intimate part of the PSI antenna system that is displaced to PSII in State I.  相似文献   

12.
In higher plants a variable number of peripheral LHCII trimers can strongly (S), moderately (M) or loosely (L) associate with the dimeric PSII core (C2) complex via monomeric Lhcb proteins to form PSII–LHCII supercomplexes with different structural organizations. By solubilizing isolated stacked pea thylakoid membranes either with the α or β isomeric forms of the detergent n-dodecyl-D-maltoside, followed by sucrose density ultracentrifugation, we previously showed that PSII–LHCII supercomplexes of types C2S2M2 and C2S2, respectively, can be isolated [S. Barera et al., Phil. Trans. R Soc. B 67 (2012) 3389–3399]. Here we analysed their protein composition by applying extensive bottom-up and top-down mass spectrometry on the two forms of the isolated supercomplexes. In this way, we revealed the presence of the antenna proteins Lhcb3 and Lhcb6 and of the extrinsic polypeptides PsbP, PsbQ and PsbR exclusively in the C2S2M2 supercomplex. Other proteins of the PSII core complex, common to the C2S2M2 and C2S2 supercomplexes, including the low molecular mass subunits, were also detected and characterized. To complement the proteomic study with structural information, we performed negative stain transmission electron microscopy and single particle analysis on the PSII–LHCII supercomplexes isolated from pea thylakoid membranes solubilized with n-dodecyl-α-D-maltoside. We observed the C2S2M2 supercomplex in its intact form as the largest PSII complex in our preparations. Its dataset was further analysed in silico, together with that of the second largest identified sub-population, corresponding to its C2S2 subcomplex. In this way, we calculated 3D electron density maps for the C2S2M2 and C2S2 supercomplexes, approaching respectively 30 and 28 Å resolution, extended by molecular modelling towards the atomic level. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

13.
In higher plants, the photosystem (PS) II core and its several light harvesting antenna (LHCII) proteins undergo reversible phosphorylation cycles according to the light intensity. High light intensity induces strong phosphorylation of the PSII core proteins and suppresses the phosphorylation level of the LHCII proteins. Decrease in light intensity, in turn, suppresses the phosphorylation of PSII core, but strongly induces the phosphorylation of LHCII. Reversible and differential phosphorylation of the PSII-LHCII proteins is dependent on the interplay between the STN7 and STN8 kinases, and the respective phosphatases. The STN7 kinase phosphorylates the LHCII proteins and to a lesser extent also the PSII core proteins D1, D2 and CP43. The STN8 kinase, on the contrary, is rather specific for the PSII core proteins. Mechanistically, the PSII-LHCII protein phosphorylation is required for optimal mobility of the PSII-LHCII protein complexes along the thylakoid membrane. Physiologically, the phosphorylation of LHCII is a prerequisite for sufficient excitation of PSI, enabling the excitation and redox balance between PSII and PSI under low irradiance, when excitation energy transfer from the LHCII antenna to the two photosystems is efficient and thermal dissipation of excitation energy (NPQ) is minimised. The importance of PSII core protein phosphorylation is manifested under highlight when the photodamage of PSII is rapid and phosphorylation is required to facilitate the migration of damaged PSII from grana stacks to stroma lamellae for repair. The importance of thylakoid protein phosphorylation is highlighted under fluctuating intensity of light where the STN7 kinase dependent balancing of electron transfer is a prerequisite for optimal growth and development of the plant. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

14.
About 475 million years ago, plants originated from an ancestral green alga and evolved first as non‐vascular and later as vascular plants, becoming the primary producers of biomass on lands. During that time, the light‐harvesting complex II (LHCII), responsible for sunlight absorption and excitation energy transfer to the photosystem II (PSII) core, underwent extensive differentiation. Lhcb4 is an ancestral LHCII that, in flowering plants, differentiated into up to three isoforms, Lhcb4.1, Lhcb4.2 and Lhcb4.3. The pivotal position of Lhcb4 in the PSII‐LHCII supercomplex (PSII‐LHCIIsc) allows functioning as linker for either S‐ or M‐trimers of LHCII to the PSII core. The increased accumulation of Lhcb4.3 observed in PSII‐LHCIIsc of plants acclimated to moderate and high light intensities induced us to investigate, whether this isoform has a preferential localization in a specific PSII‐LHCIIsc conformation that might explain its light‐dependent accumulation. In this work, by combining an improved method for separation of different forms of PSII‐LHCIIsc from thylakoids of Pisum sativum L. grown at increasing irradiances with quantitative proteomics, we assessed that Lhcb4.3 is abundant in PSII‐LHCIIsc of type C2S2, and, interestingly, similar results were found for the PsbR subunit. Phylogenetic comparative analysis on different taxa of the Viridiplantae lineage and structural modeling further pointed out to an effect of the evolution of different Lhcb4 isoforms on the light‐dependent modulation of the PSII‐LHCIIsc organization. This information provides new insight on the properties of the Lhcb4 and its isoforms and their role on the structure, function and regulation of PSII.  相似文献   

15.
The architecture of grana membranes from spinach chloroplasts was studied by cryo electron tomography. Tomographic reconstructions of ice-embedded isolated grana stacks enabled to resolve features of photosystem II (PSII) in the native membrane and to assign the absolute orientation of individual membranes of granal thylakoid discs. Averaging of 3D sub-volumes containing PSII complexes provided a 3D structure of the PSII complex at 40 ? resolution. Comparison with a recently proposed pseudo-atomic model of the PSII supercomplex revealed the presence of unknown protein densities right on top of 4 light harvesting complex II (LHCII) trimers at the lumenal side of the membrane. The positions of individual dimeric PSII cores within an entire membrane layer indicates that about 23% supercomplexes must be of smaller size than full C(2)S(2)M(2) supercomplexes, to avoid overlap.  相似文献   

16.
Plant photosystem II (PSII) is organized into large supercomplexes with variable levels of membrane‐bound light‐harvesting proteins (LHCIIs). The largest stable form of the PSII supercomplex involves four LHCII trimers, which are specifically connected to the PSII core dimer via monomeric antenna proteins. The PSII supercomplexes can further interact in the thylakoid membrane, forming PSII megacomplexes. So far, only megacomplexes consisting of two PSII supercomplexes associated in parallel have been observed. Here we show that the forms of PSII megacomplexes can be much more variable. We performed single particle electron microscopy (EM) analysis of PSII megacomplexes isolated from Arabidopsis thaliana using clear‐native polyacrylamide gel electrophoresis. Extensive image analysis of a large data set revealed that besides the known PSII megacomplexes, there are distinct groups of megacomplexes with non‐parallel association of supercomplexes. In some of them, we have found additional LHCII trimers, which appear to stabilize the non‐parallel assemblies. We also performed EM analysis of the PSII supercomplexes on the level of whole grana membranes and successfully identified several types of megacomplexes, including those with non‐parallel supercomplexes, which strongly supports their natural origin. Our data demonstrate a remarkable ability of plant PSII to form various larger assemblies, which may control photochemical usage of absorbed light energy in plants in a changing environment.  相似文献   

17.
In this work we study the effect of UV-A radiation on the function of the photosynthetic apparatus in thylakoid membranes with different organization of the light-harvesting complex II–photosystem II (LHCII–PSII) supercomplex. Leaves and isolated thylakoid membranes from a number of previously characterized pea species with different LHCII size and organization were subjected to UV-A treatment. A relationship was found between the molecular organization of the LHCII (ratio of the oligomeric to monomeric forms of LHCII) and UV-A-induced changes both in the energy transfer from PSII to PSI and between the chlorophyll–protein complexes within the LHCII–PSII supercomplex. Dependence on the organization of the LHCII was also found with regard to the degree of inhibition of the photosynthetic oxygen evolution. The susceptibility of energy transfer and oxygen evolution to UV-A radiation decreased with increasing LHCII oligomerization when the UV-A treatment was performed on isolated thylakoid membranes, in contrast to the effect observed in thylakoid membranes isolated from pre-irradiated pea leaves. The data suggest that UV-A radiation leads mainly to damage of the PSIIα centers. Comparison of membranes with different organization of their LHCII–PSII supercomplex shows that the oligomeric forms of LHCII play a key role for sensitivity to UV-A radiation of the photosynthetic apparatus. S. G. Taneva is Associated member of the Institute of Biophysics, Bulgarian Academy of Sciences.  相似文献   

18.
Mild non-ionic detergents are indispensable in the isolation of intact integral membrane proteins and protein-complexes from biological membranes. Dodecylmaltoside (DM) belongs to this class of detergents being a glucoside-based surfactant with a bulky hydrophilic head group composed of two sugar rings and a non-charged alkyl glycoside chain. Two isomers of this molecule exist, differing only in the configuration of the alkyl chain around the anomeric center of the carbohydrate head group, axial in α-DM and equatorial in β-DM. In this paper, we have investigated the solubilizing properties of α-DM and β-DM on the isolation of photosynthetic complexes from pea thylakoids membranes maintaining their native architecture of stacked grana and stroma lamellae. Exposure of these stacked thylakoids to a single step treatment with increasing concentrations (5-100mM) of α-DM or β-DM resulted in a quick partial or complete solubilization of the membranes. Regardless of the isomeric form used: 1) at the lowest DM concentrations only a partial solubilization of thylakoids was achieved, giving rise to the release of mainly small protein complexes mixed with membrane fragments enriched in PSI from stroma lamellae; 2) at concentrations above 30mM a complete solubilization occurred with the further release of high molecular weight protein complexes identified as dimeric PSII, PSI-LHCI and PSII-LHCII supercomplexes. However, at concentrations of detergent which fully solubilized the thylakoids, the α and β isomeric forms of DM exerted a somewhat different solubilizing effect on the membranes: higher abundance of larger sized PSII-LHCII supercomplexes retaining a higher proportion of LHCII and lower amounts of PSI-LHCI intermediates were observed in α-DM treated membranes, reflecting the mildness of α-DM compared with its isomer. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

19.
Green plant photosystem II (PSII) is involved in the light reactions of photosynthesis, which take place in the thylakoid membrane of the chloroplast. PSII is organized into large supercomplexes with variable amounts of membrane-bound peripheral antenna complexes. These supercomplexes are dimeric and contain usually 2-4 copies of trimeric LHCII complexes and have a further tendency to associate into megacomplexes or into crystalline domains, of which several types have been characterized. This review focuses on the overall composition and structure of the PSII supercomplex of green plants and its organization and interactions within the photosynthetic membrane. Further, we present the current knowledge how the thylakoid membrane is three-dimensionally organized within the chloroplast. We also discuss how the supramolecular organization in the thylakoid membrane and the PSII flexibility may play roles in various short-term regulatory mechanisms of green plant photosynthesis. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

20.
Recent X-ray structures determined for the Photosystem II (PSII) core complex isolated from cyanobacteria have provided important information for understanding the functionality of this photosynthetic enzyme including its water splitting activity. As yet, no high-resolution structure is available for PSII of plants or eukaryotes in general. However, crystal structures have been determined for some components of plant PSII which together with the cyanobacterial structure can be used to interpret lower resolution structures of plant PSII derived from electron cryomicroscopy (cryo-EM). Here, we utilise the published X-ray structures of a cyanobacterial PSII core, Light Harvesting Complex II (LHCII), PsbP and PsbQ proteins to construct a model of the plant LHCII-PSII supercomplex using a 17 A resolution 3D electron density map of the spinach supercomplex determined by cryo-EM and single particle analysis. In so doing, we tentatively identify the relative positioning of the chlorophylls within the supercomplex and consider energy transfer pathways between the different subunits. The modelling has also allowed density to be assigned to the three extrinsic proteins of plant PSII, PsbO, PsbP and PsbQ associated with the water splitting centre and concluded that although the position of PsbO is the same as in cyanobacteria, PsbP and PsbQ are located in different positions to the cyanobacterial extrinsic PsbU and PsbV proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号