首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pattern of light backscattered by lung tissue should depend strongly on the size of air spaces and equivalently on the internal surface area of the lung. To verify and apply this, we shone a laser beam into excised lungs through the pleural surface and measured the backscattered light surrounding the beam with a focused photodetector. The intensity, I, fell off as a function of distance, r, from the point of entry of light. The configurations of I(r) curves corresponded closely to theory over a 3-decade range of I. I(r) changed systematically with lung volume. The optical mean free path, lambda, was calculated from I(r) curves in a series of canine lobes fixed immediately after optical scanning and was compared with stereological measurement of mean linear intercept, Lm, an index of alveolar size. At high lung volumes the relation of lambda to Lm was consistent with reflection by alveolar septa. At lower lung volumes there appeared to be, additionally, a substantial refractive component. This technique is independent of current stereological methods and has the advantages of being noninvasive, continuous, and potentially applicable to dynamic events in unfixed lungs.  相似文献   

2.
Organ morphogenesis, including lung morphogenesis, involves a series of cellular behaviors that are difficult to observe and document in vivo due to current limitations in imaging techniques. Therefore, in vitro models are necessary to study these cellular behaviors as well as basic developmental processes relevant to in vivo morphogenesis. Here, we describe a novel in vitro three-dimensional (3D) culture system for assessing mouse lung alveolar morphogenesis using primary fetal mouse lung cells cultured in Matrigel supplemented with fibroblast growth factor 10 and hepatocyte growth factor. In our in vitro 3D culture system, single primary mouse fetal lung cells successfully grew, developed lumen, and formed multivesicular epithelial structures, resulting in a morphology that was highly similar to that of lung alveoli. This culture system is a useful tool for investigating the cellular and molecular mechanisms involved in lung alveolar morphogenesis.  相似文献   

3.
Arthropoda is comprised of four major taxa: Hexapoda, Crustacea, Myriapoda and Chelicerata. Although this classification is widely accepted, there is still some debate about the internal relationships of these groups. In particular, the phylogenetic position of Collembola remains enigmatic. Some molecular studies place Collembola into a close relationship to Protura and Diplura within the monophyletic Hexapoda, but this placement is not universally accepted, as Collembola is also regarded as either the sister group to Branchiopoda (a crustacean taxon) or to Pancrustacea (crustaceans + hexapods). To contribute to the current debate on the phylogenetic position of Collembola, we examined the brains in three collembolan species: Folsomia candida, Protaphorura armata and Tetrodontophora bielanensis, using antennal backfills, series of semi-thin sections, and immunostaining technique with several antisera, in conjunction with confocal laser scanning microscopy and three-dimensional reconstructions. We identified several neuroanatomical structures in the collembolan brain, including a fan-shaped central body showing a columnar organization, a protocerebral bridge, one pair of antennal lobes with 20-30 spheroidal glomeruli each, and a structure, which we interpret as a simply organized mushroom body. The results of our neuroanatomical study are consistent with the phylogenetic position of Collembola within the Hexapoda and do not contradict the hypothesis of a close relationship of Collembola, Protura and Diplura.  相似文献   

4.
Function analysis of rodent respiratory skeletal muscles, particularly the diaphragm, is commonly performed by isolating muscle strips using invasive surgical procedures. Although this is an effective method of assessing in vitro diaphragm activity, it involves non-survival surgery. The application of non-invasive ultrasound imaging as an in vivo procedure is beneficial since it not only reduces the number of animals sacrificed, but is also suitable for monitoring disease progression in live mice. Thus, our ultrasound imaging method may likely assist in the development of novel therapies that alleviate muscle injury induced by various respiratory diseases. Particularly, in clinical diagnoses of obstructive lung diseases, ultrasound imaging has the potential to be used in conjunction with other standard tests to detect the early onset of diaphragm muscle fatigue. In the current protocol, we describe how to accurately evaluate diaphragm contractility in a mouse model using a diagnostic ultrasound imaging technique.  相似文献   

5.
Non-bone in vivo micro-CT imaging has many potential applications for preclinical evaluation. Specifically, the in vivo quantification of changes in the vascular network and organ morphology in small animals, associated with the emergence and progression of diseases like bone fracture, inflammation and cancer, would be critical to the development and evaluation of new therapies for the same. However, there are few published papers describing the in vivo vascular imaging in small animals, due to technical challenges, such as low image quality and low vessel contrast in surrounding tissues. These studies have primarily focused on lung, cardiovascular and brain imaging. In vivo vascular imaging of mouse hind limbs has not been reported. We have developed an in vivo CT imaging technique to visualize and quantify vasculature and organ structure in disease models, with the goal of improved quality images. With 1–2 minutes scanning by a high speed in vivo micro-CT scanner (Quantum CT), and injection of a highly efficient contrast agent (Exitron nano 12000), vasculature and organ structure were semi-automatically segmented and quantified via image analysis software (Analyze). Vessels of the head and hind limbs, and organs like the heart, liver, kidneys and spleen were visualized and segmented from density maps. In a mouse model of bone metastasis, neoangiogenesis was observed, and associated changes to vessel morphology were computed, along with associated enlargement of the spleen. The in vivo CT image quality, voxel size down to 20 μm, is sufficient to visualize and quantify mouse vascular morphology. With this technique, in vivo vascular monitoring becomes feasible for the preclinical evaluation of small animal disease models.  相似文献   

6.
A pulse saturation-recovery electron paramagnetic resonance (EPR) method has been developed that allows estimation of the exchange rates of a spin-labeled lipid between the bulk domain and the protein-rich membrane domain, in which the rate of collision between the spin label and molecular oxygen is reduced (slow-oxygen transport domain, or SLOT domain). It is based on the measurements of saturation-recovery signals of a lipid spin label as a function of concentrations of both molecular oxygen and the spin label. Influenza viral membrane, one of the simplest paradigms for the study of biomembranes, showed the presence of two membrane domains with slow and fast collision rates with oxygen (a 16-fold difference) at 30 degrees C. The outbound rate from and the inbound rate into the SLOT domain (or possibly the rate of the domain disintegration and formation) were estimated to be 7.7 x 10(4) and 4.6 x 10(4) s(-1), (15 micros residency time), respectively, indicating that the SLOT domain is highly dynamic and that the entire SLOT domain represents about one-third of the membrane area. Because the oxygen transport rate in the SLOT domain is a factor of two smaller than that in purple membrane, where bacteriorhodopsin is aggregated, we propose that the SLOT domain in the viral membrane is the cholesterol-rich raft domain stabilized by the trimers of hemagglutinin and/or the tetramers of neuraminidase.  相似文献   

7.
The optic lobe is the largest brain area within the central nervous system of cephalopods and it plays important roles in the processing of visual information, the regulation of body patterning, and locomotive behavior. The oval squid Sepioteuthis lessoniana has relatively large optic lobes that are responsible for visual communication via dynamic body patterning. It has been observed that the visual behaviors of oval squids change as the animals mature, yet little is known about how the structure of the optic lobes changes during development. The aim of the present study was to characterize the ontogenetic changes in neural organization of the optic lobes of S. lessoniana from late embryonic stage to adulthood. Magnetic resonance imaging and micro‐CT scans were acquired to reconstruct the 3D‐structure of the optic lobes and examine the external morphology at different developmental stages. In addition, optic lobe slices with nuclear staining were used to reveal changes in the internal morphology throughout development. As oval squids mature, the proportion of the brain making up the optic lobes increases continuously, and the optic lobes appear to have a prominent dent on the ventrolateral side. Inside the optic lobe, the cortex and the medulla expand steadily from the late embryonic stage to adulthood, but the cell islands in the tangential zone of the optic lobe decrease continuously in parallel. Interestingly, the size of the nuclei of cells within the medulla of the optic lobe increases throughout development. These findings suggest that the optic lobe undergoes continuous external morphological change and internal neural reorganization throughout the oval squid's development. These morphological changes in the optic lobe are likely to be responsible for changes in the visuomotor behavior of oval squids from hatching to adulthood.  相似文献   

8.
Whole-animal fluorescence imaging with recombinant or fluorescently-tagged pathogens or cells enables real-time analysis of disease progression and treatment response in live animals. Tissue absorption limits penetration of fluorescence excitation light, particularly in the visible wavelength range, resulting in reduced sensitivity to deep targets. Here, we demonstrate the use of an optical fiber bundle to deliver light into the mouse lung to excite fluorescent bacteria, circumventing tissue absorption of excitation light in whole-animal imaging. We present the use of this technology to improve detection of recombinant reporter strains of tdTomato-expressing Mycobacterium bovis BCG (Bacillus Calmette Guerin) bacteria in the mouse lung. A microendoscope was integrated into a whole-animal fluorescence imager to enable intravital excitation in the mouse lung with whole-animal detection. Using this technique, the threshold of detection was measured as 103 colony forming units (CFU) during pulmonary infection. In comparison, the threshold of detection for whole-animal fluorescence imaging using standard epi-illumination was greater than 106 CFU.  相似文献   

9.
The endothelial glycocalyx is a layer of proteoglycans and associated glycosaminoglycans lining the vascular lumen. In vivo, the glycocalyx is highly hydrated, forming a substantial endothelial surface layer (ESL) that contributes to the maintenance of endothelial function. As the endothelial glycocalyx is often aberrant in vitro and is lost during standard tissue fixation techniques, study of the ESL requires use of intravital microscopy. To best approximate the complex physiology of the alveolar microvasculature, pulmonary intravital imaging is ideally performed on a freely-moving lung. These preparations, however, typically suffer from extensive motion artifact. We demonstrate how closed-chest intravital microscopy of a freely-moving mouse lung can be used to measure glycocalyx integrity via ESL exclusion of fluorescently-labeled high molecular weight dextrans from the endothelial surface. This non-recovery surgical technique, which requires simultaneous brightfield and fluorescent imaging of the mouse lung, allows for longitudinal observation of the subpleural microvasculature without evidence of inducing confounding lung injury.  相似文献   

10.
Recent progress in three‐dimensional optical imaging techniques allows visualization of many comprehensive biological specimens. Optical clearing methods provide volumetric and quantitative information by overcoming the limited depth of light due to scattering. However, current imaging technologies mostly rely on the synthetic or genetic fluorescent labels, thus limits its application to whole‐body visualization of generic mouse models. Here, we report a label‐free optical projection tomography (LF‐OPT) technique for quantitative whole mouse embryo imaging. LF‐OPT is based on the attenuation contrast of light rather than fluorescence, and it utilizes projection imaging technique similar to computed tomography for visualizing the volumetric structure. We demonstrate this with a collection of mouse embryo morphologies in different stages using LF‐OPT. Additionally, we extract quantitative organ information applicable toward high‐throughput phenotype screening. Our results indicate that LF‐OPT can provide multi‐scale morphological information in various tissues including bone, which can be difficult in conventional optical imaging technique.  相似文献   

11.
The biomonitoring of individuals exposed to chromium(VI) by inhalation is often based on determinations of chromium in body fluids such as blood, plasma or urine, or on assessments of DNA damage in non-lung surrogate tissues such as peripheral blood lymphocytes. These techniques are of some use as biomarkers of internal exposure or biological effect, mainly in the case of soluble chromium(VI) compounds, but they provide at best only indirect information about chromium(VI) concentrations in the main target organ of interest – the lung. An urgent need exists for a non-invasive technique to permit the visualization and quantification of chromium(VI) in the lung of exposed humans. This study details the development of a lung imaging technique based on the detection of paramagnetic chromium using magnetic resonance imaging (MRI). The intracellular reductive conversion of chromium(VI) is a crucial bioactivation step in its carcinogenicity, and the MRI method described here relies on the conversion of non-paramagnetic (MRI ‘silent’) chromium(VI) to detectable paramagnetic species such as chromium(III). Initial studies with chromium(III) revealed that a range of 2.5–5 μg chromium(III) instilled in rat lung is considered to be the lower limit of detection of this method. It was possible to demonstrate the presence of 30 μg chromium(VI) in our post-mortem rat model. The ultimate objective of this work is to determine whether this technique has applicability to the biomonitoring of chromium(VI) inhalation exposures that result in internalized lung doses in human subjects.  相似文献   

12.
The biomonitoring of individuals exposed to chromium(VI) by inhalation is often based on determinations of chromium in body fluids such as blood, plasma or urine, or on assessments of DNA damage in non-lung surrogate tissues such as peripheral blood lymphocytes. These techniques are of some use as biomarkers of internal exposure or biological effect, mainly in the case of soluble chromium(VI) compounds, but they provide at best only indirect information about chromium(VI) concentrations in the main target organ of interest - the lung. An urgent need exists for a non-invasive technique to permit the visualization and quantification of chromium(VI) in the lung of exposed humans. This study details the development of a lung imaging technique based on the detection of paramagnetic chromium using magnetic resonance imaging (MRI). The intracellular reductive conversion of chromium(VI) is a crucial bioactivation step in its carcinogenicity, and the MRI method described here relies on the conversion of non-paramagnetic (MRI 'silent') chromium(VI) to detectable paramagnetic species such as chromium(III). Initial studies with chromium(III) revealed that a range of 2.5-5 μg chromium(III) instilled in rat lung is considered to be the lower limit of detection of this method. It was possible to demonstrate the presence of 30 μg chromium(VI) in our post-mortem rat model. The ultimate objective of this work is to determine whether this technique has applicability to the biomonitoring of chromium(VI) inhalation exposures that result in internalized lung doses in human subjects.  相似文献   

13.
Semi-circular tracheal cartilage is a critical determinant of maintaining architectural integrity of the respiratory airway. The current effort to understand the morphogenesis of tracheal cartilage is challenged by the lack of appropriate model systems. Here we report an in vitro tracheal cartilage system using embryonic tracheal–lung explants to recapitulate in vivo tracheal cartilage developmental processes. With modifications of a current lung culture protocol, we report a consistent in vitro technique of culturing tracheal cartilage from primitive mouse embryonic foregut for the first time. This tracheal culture system not only induces the formation of tracheal cartilage from the mouse embryonic foregut but also allows for the proper patterning of the developed tracheal cartilage. Furthermore, we show that this culture technique can be applied to culturing other types of cartilage in vertebrae, limbs, and ribs. We believe that this novel application of our in vitro culture system will facilitate the manipulation of cartilage development under various conditions and thus enabling us to advance our current limited knowledge on cartilage biology and development.  相似文献   

14.
The three-dimensional structure of phosphoglycerate mutase has been analyzed using a contoured distance matrix and by visual inspection using three-dimensional computer graphics. Three folding lobes have been identified and their internal structure tentatively characterized. The active site is located at a lobe interface with a channel providing possible access from above and below. The arrangement of active site residues on two lobes suggests that the active site might be conformationally flexible. The remaining interface not associated with the active site channel appears to be predominately hydrophobic and thus may contribute to inter-lobe stability.  相似文献   

15.
Zhang L  Li D  Luo S 《PloS one》2011,6(2):e17400

Background

Early detection of lung cancer is known to improve the chances of successful treatment. However, lungs are soft tissues with complex three-dimensional configuration. Conventional X-ray imaging is based purely on absorption resulting in very low contrast when imaging soft tissues without contrast agents. It is difficult to obtain adequate information of lung lesions from conventional X-ray imaging.

Methods

In this study, a recently emerged imaging technique, in-line X-ray phase contrast imaging (IL-XPCI) was used. This powerful technique enabled high-resolution investigations of soft tissues without contrast agents. We applied IL-XPCI to observe the lungs in an intact mouse for the purpose of defining quantitatively the micro-structures in lung.

Findings

The three-dimensional model of the lung was successfully established, which provided an excellent view of lung airways. We highlighted the use of IL-XPCI in the visualization and assessment of alveoli which had rarely been studied in three dimensions (3D). The precise view of individual alveolus was achieved. The morphological parameters, such as diameter and alveolar surface area were measured. These parameters were of great importance in the diagnosis of diseases related to alveolus and alveolar scar.

Conclusion

Our results indicated that IL-XPCI had the ability to represent complex anatomical structures in lung. This offered a new perspective on the diagnosis of respiratory disease and may guide future work in the study of respiratory mechanism on the alveoli level.  相似文献   

16.
Recently, progress in the development of prostate-specific promoters and high resolution imaging techniques has made real-time monitoring of transgenic expression possible, opening a vista of potentially important in vivo models of prostate disease. Herein, we describe a novel prostate reporter model, called the EZC-prostate model that permits both ex vivo and in vivo imaging of the prostate using a sensitive charge-coupled device. Firefly luciferase and enhanced green fluorescent protein were targeted to the prostate epithelium using the composite human kallikrein 2 (hK2)-based promoter, hK2-E3/P. In EZC-prostate mice, the ventral and dorsal/lateral prostate lobes were brilliant green under fluorescence microscopy, with expression localized to the secretory epithelium. In contrast, enhanced green fluorescent protein was undetectable in the anterior lobes of prostate, seminal vesicles, testes, liver, lung, and brain. The kinetics of luciferase activity in intact and castrated living mice monitored with the IVIS charge-coupled device-based imaging system confirmed that firefly luciferase expression was largely prostate restricted, increased with age up to 24 wk, and was androgen dependent. Decreases in reporter expression after 24 wk may reflect well known, age-related decreases in androgen signaling with age in humans. Ex vivo imaging of microdissected animals further confirmed that the luminescence detected in living mice emanated predominately from the prostate, with minor signals originating from the testes and cecum. These data demonstrate that the hK2-E3/P promoter directs strong prostate-specific expression in a transgenic mouse model. Multigenic models, generated by crosses with various hyperplastic and neoplastic prostate disease models, could potentially provide powerful new tools in longitudinal monitoring of changes in prostate size, androgen signaling, metastases, or response to novel therapies without sacrificing large cohorts of animals.  相似文献   

17.
The International Mouse Phenotyping Consortium has been established to conduct large-scale phenotyping of the approximately 23,000 single-gene knockout mice generated by the International Knockout Mouse Consortium to investigate the role of each gene in the mouse genome. Of the generated mouse lines, 30% are predicted to be embryonic lethal, requiring the implementation of imaging techniques and analysis tools specific to late gestation mouse embryo phenotyping. A well-adopted technique combines the use of iodinated contrast solutions and micro-computed tomography imaging. This simple iodine immersion technique provides superior soft-tissue contrast enhancement, however, the hypertonic nature of iodine promotes dehydration causing moderate to severe tissue deformation. Here, we combine the stabilizing properties of a hydrogel mesh with the enhanced contrast properties of iodine. The protocol promotes cross linking of tissue through formaldehyde fixation and the linking of hydrogel monomers to biomolecules. As a result, the hydrogel supports tissue structure and preserves its conformation taking advantage of iodine-enhanced soft tissue contrast to produce high quality mouse embryo images with minimal tissue distortion. Hydrogel stabilization substantially reduces intersample anatomical variation of mature mouse embryos subjected to iodine preparation protocols. A 20% and 50% reduction in intersample variation of normalized brain and lung volume is achieved through hydrogel stabilization, as well as a 20% reduction in variation in overall embryo anatomy as measured through image registration methods. This increases the sensitivity of computer automated analysis to reveal significant anatomical differences between mutant and wild-type mice.  相似文献   

18.
19.
目的 阴极荧光(CL)成像是一种以电子束为激发源的高分辨荧光成像技术,但生物材料对电子束的敏感性限制了CL技术在生命科学中的广泛应用。为了研究和发展CL技术在生物样品中的应用,本文旨在通过探究电子辐照引起碳基材料的结构损伤、有机基团的降解及荧光猝灭等问题,深入理解电子源对有机荧光团的激发特性。方法 本研究应用扫描电镜(SEM)和阴极荧光谱仪系统(SEM-CL),研究电子源对有机荧光团及荧光探针标记细胞的激发特性,观测了有机物的CL信号的发射特性、强度衰减、成像方式及特点。结果 实验结果显示,在低能量(2.5~5 keV)和低束流(~10 pA)电子辐照下,有机荧光微珠发射出较强的荧光,CL像分辨率达到~30 nm。荧光微珠经过12 min辐照,信号强度衰减了25%,CL像仍保持了可接受的发光强度和足够的信噪比。此外,还获得了从细胞表面到内部一定深度内,荧光标记的亚细胞结构信息。结论 在SEM-CL系统中,可以同时获得由电子束激发产生的电子像和CL像,实现阴极荧光与电子显微镜关联(CCLEM)成像。本实验的研究结果为CCLEM技术应用于生物结构研究提供了数据及技术支持。  相似文献   

20.
A male pig-tailed macaque (Macaca nemestrina), approximately 5 years old, was found to be vision-impaired and to have profound behavioral abnormalities, including hyperactivity and self-injurious behavior that was not amenable to amelioration by environmental enrichment. Facial and skeletal dysmorphisms also were noted. Magnetic resonance imaging (MRI) and positron emission tomography (PET) scanning revealed areas of possible infarction in the occipital lobes and megaventriculosis. At necropsy, following euthanasia for humane reasons, severe polio- and leukoencephalomalacia accompanied by megaventriculosis were seen in both occipital lobes and in several sulci of the parietal and frontal lobes. Light microscopic findings included loss of neocortical structure, with necrosis, neuronal loss, astrogliosis, vascular proliferation, mild spongiosis, and demyelination. The extent and severity of lesions were most pronounced in the occipital lobes and were greater in the left than in the right hemisphere. Other lesions included mild bilateral atrophy of the optic nerves, thymic involution, necrotizing dermatitis due to trauma, and a spectrum of spermatozoal abnormalities. The imaging and gross and light microscopic changes found in this animal resemble the mitochondrial encephalopathies of humans; this was corroborated by results of immunohistochemical analysis demonstrating decreased expression of enzymes of the mitochondrial oxidative complex ([OC]-I, -III, and -IV) in brain and muscle, and detection of fibrinogen immunoreactivity in neurons and glial cells. The spermatozoal defects may represent yet another aspect of a mitochondrial defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号