首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Human prostate glandular epithelial cells have the unique capability of accumulating high levels of zinc. This is essential to inhibit m-aconitase activity so that citrate can accumulate for secretion into prostatic fluid, which is a major function of the prostate gland. As a result, the Krebs cycle is truncated with the consequence of the lost ATP production that would result from citrate oxidation. The cellular accumulation of zinc also inhibits mitochondrial terminal oxidation and respiration. In addition to these metabolic effects, zinc accumulation exhibits anti-proliferative effects via its induction of mitochondrial apoptogenesis. Zinc accumulation also inhibits the invasive/migration activities in malignant prostate cells. The anti-proliferative effects and the effects on invasion and migration occur through zinc activation of specific intracellular signaling pathways. Consequently, these effects impose anti-tumor actions by zinc. The ability of prostate cells to accumulate zinc is due to the expression and activity of the zinc uptake transporter, ZIP1. To avoid the anti-tumor effects of zinc, in prostate cancer the malignant prostate cells exhibit a silencing of ZIP1 gene expression accompanied by a depletion of cellular zinc. Therefore we regard ZIP1 as a tumor suppressor gene in prostate cancer. In addition to prostate cells, similar tumor suppressor effects of zinc have been identified in several other types of tumors.  相似文献   

2.
Prostate secretory epithelial cells have the unique function and capability of accumulating and secreting extraordinarily high levels of citrate. To achieve this, these cells possess a uniquely limiting mitochondrial (m)-aconitase activity that minimizes the oxidation of citrate via the Krebs cycle. The steady-state citrate/isocitrate ratio of mammalian tissues is generally maintained at about 10-11/l, independent of the concentration of citrate, which is the result of the chemical equilibrium reached in the presence of m-aconitase. In contrast, the citrate/isocitrate ratio of prostate tissue is about 30-40/l. Zinc, which is also accumulated in prostate cells at much higher levels than in other cells, inhibits m-aconitase activity thereby minimizing citrate oxidation. This current report is concerned with an effect of zinc on the equilibrium of the reaction catalyzed by m-aconitase. Studies were conducted with mitochondrial extract preparations from rat ventral prostate epithelial cells. With citrate as the initial substrate, the addition of zinc (7-10 microM) to the prostate mitochondrial preparation resulted in a change in the citrate/isocitrate ratio at equilibrium from an average of 10.5/l to 13.5/l. In contrast, the identical treatment of kidney mitochondrial preparations resulted in no zinc-induced change in the citrate/isocitrate ratio. When either cis-aconitate or isocitrate was employed as the initial substrate, the addition of zinc did not alter the citrate/isocitrate ratio of prostate or kidney preparations. Partial purification of the prostate preparation revealed that the prostate mitochondrial extract contained a putative protein (which we have designated as 'citrate factor protein') that is required for the zinc-induced increase in the citrate/isocitrate ratio. This novel effect of zinc provides another mechanism by which it is assured that the accumulation of citrate is maximized in citrate-producing prostate epithelial cells.  相似文献   

3.
4.
Prostate cells accumulate high cellular and mitochondrial concentrations of zinc, generally 3-10-fold higher than other mammalian cells. However, the mechanism of mitochondrial import and accumulation of zinc from cytosolic sources of zinc has not been established for these cells or for any mammalian cells. Since the cytosolic concentration of free Zn(2+) ions is negligible (estimates vary from 10(-9) to 10(-15) M), we postulated that loosely bound zinc-ligand complexes (Zn-Ligands) serve as zinc donor sources for mitochondrial import. Zinc chelated with citrate (Zn-Cit) is a major form of zinc in prostate and represents an important potential cytosolic source of transportable zinc into mitochondria. The mitochondrial uptake transport of zinc was studied with isolated mitochondrial preparations obtained from rat ventral prostate. The uptake rates of zinc from Zn-Ligands (citrate, aspartate, histidine, cysteine) and from ZnCl(2) (free Zn(2+)) were essentially the same. No zinc uptake occurred from either Zn-EDTA, or Zn-EGTA. Zinc uptake exhibited Michaelis-Menten kinetics and characteristics of a functional energy-independent facilitative transporter associated with the mitochondrial inner membrane. The uptake and accumulation of zinc from various Zn-Ligand preparations with logK(f) (formation constant) values less than 11 was the same as for ZnCl(2;) and was dependent upon the total zinc concentration independent of the free Zn(2+) ion concentration. Zn-Ligands with logK(f) values greater than 11 were not zinc donors. Therefore the putative zinc transporter exhibits an effective logK(f) of approximately 11 and involves a direct exchange of zinc from Zn-Ligand to transporter. The uptake of zinc by liver mitochondria exhibited transport kinetics similar to prostate mitochondria. The results demonstrate the existence of a mitochondrial zinc uptake transporter that exists for the import of zinc from cytosolic Zn-Ligands. This provides the mechanism for mitochondrial zinc accumulation from the cytosol which contains a negligible concentration of free Zn(2+). The uniquely high accumulation of mitochondrial zinc in prostate cells appears to be due to their high cytosolic level of zinc-transportable ligands, particularly Zn-Cit.  相似文献   

5.
Zinc, an essential trace element, plays a critical role in cell signaling, and defect(s) in zinc homeostasis may contribute to adverse physiological and pathological conditions, including cancer. Zinc is present in healthy prostate at a very high concentration, where it is required for important prostatic functions. However, zinc levels are significantly diminished in cancerous tissue, and intracellular zinc level is inversely correlated with prostate cancer progression. During neoplastic transformation, zinc-accumulating, citrate-producing normal prostate cells are metabolically transformed to citrate oxidizing cells that lose the ability to accumulate zinc. Interestingly, zinc has been shown to function as chemopreventive agent against prostate cancer, albeit at high doses, which may lead to many adverse effects. Therefore, novel means to enhance bioaccumulation of sufficient zinc in prostate cells via increasing zinc transport could be useful against prostate cancer. On the basis of available evidence, we present a possibility that the grape antioxidant resveratrol, when given with zinc, may lead to retuning the zinc homeostasis in prostate, thereby abolishing or reversing malignancy. If experimentally verified in in vivo model(s) of prostate cancer, such as transgenic mouse models, this may lead to novel means toward management of prostate cancer and other conditions with compromised zinc homeostasis.  相似文献   

6.
Going malignant: the hypoxia-cancer connection in the prostate   总被引:4,自引:0,他引:4  
The metabolic organization of both normal and malignant prostate cellular phenotypes involves some unusual and surprising features. In particular, both conditions exhibit ratios of NADH/NAD+ and NADPH/NADP+ characteristic of high oxidative states despite a chronic shortage of O2 in both conditions. In this paper, we observe that, in prostate cancer cells, the oxidizing power of the fatty acid synthesis (FAS) pathway is so large that redox is stabilized more favorably (more oxidized) than in normal prostate cells. This FAS-facilitated redox improvement occurs despite the fact that malignant cells are more O2 limited and therefore express more hypoxia inducible factor 1 (HIF1) and express hypoxia-regulated genes more robustly. This unusual metabolic situation clearly separates direct regulatory effects of redox balance from secondary effects of hypoxia per se. The physiological significance of the FAS pathway is thus the harnessing of its oxidizing power for improving redox balance despite conditions of more extreme hypoxia. Similar hypoxia defense strategies are found in animal species that are unusually tolerant to oxygen lack. Our hypothesis is that the metabolic organization in the "low zinc, low citrate" phenotype reflects an hypoxia-defense adaptation geared toward redox balance, with prostate cancer cells being relatively more oxidized, even if more hypoxic, than normal prostate cells. Recognition and understanding of these redox balancing and hypoxia defense functions may lead to new intervention strategies by developing new intracellular targets for prostate cancer therapy.  相似文献   

7.
The glandular epithelial cells of the human prostate gland have the unique capability and function of accumulating the highest zinc levels of any soft tissue in the body. Zinc accumulation in the prostate is regulated by prolactin and testosterone; however, little information is available concerning the mechanisms associated with zinc accumulation and its regulation in prostate epithelial cells. In the present studies the uptake and accumulation of zinc were determined in the human malignant prostate cell lines LNCaP and PC-3. The results demonstrate that LNCaP cells and PC-3 cells possess the unique capability of accumulating high levels of zinc. Zinc accumulation in both cell types is stimulated by physiological concentrations of prolactin and testosterone. The studies reveal that these cells contain a rapid zinc uptake process indicative of a plasma membrane zinc transporter. Initial kinetic studies demonstrate that the rapid uptake of zinc is effective under physiological conditions that reflect the total and mobile zinc levels in circulation. Correspondingly, genetic studies demonstrate the expression of a ZIP family zinc uptake transporter in both LNCaP and PC-3 cells. The rapid zinc uptake transport process is stimulated by treatment of cells with physiological levels of prolactin and testosterone, which possibly is the result of the regulation of the ZIP-type zinc transporter gene. These zinc-accumulating characteristics are specific for prostate cells. The studies support the concept that these prostate cells express a unique hormone-responsive, plasma membrane-associated, rapid zinc uptake transporter gene associated with their unique ability to accumulate high zinc levels.  相似文献   

8.
Prostate epithelial cells contain the highest levels of zinc among all organs and tissues in the human body. Zinc is accumulated primarily in the mitochondria, where it is responsible for inhibition of mitochondrial aconitase activity, thereby increasing citrate production. The present study was designed to clarify the role of zinc for human prostate epithelial cell growth and apoptosis. Apoptosis of in vitro cultivated human prostate epithelial cells exposed to ZnCl(2) was analyzed by determination of phospholipid membrane asymmetry, nuclear fragmentation, DNA strand breaks, changes of mitochondrial potential and cellular pro/antiapoptotic proteins. Zinc induced apoptosis without involvement of p53 by decreasing mitochondrial transmembrane potential (DeltaPsi(m)) and Bcl-2 protein levels in proliferating epithelial cells. Thus, the high local concentrations of zinc ions in the prostatic lumen seem to be necessary to regulate proliferative activities and to enforce epithelial differentiation processes.  相似文献   

9.
Prostate tumorigenesis is coupled with an early metabolic switch in transformed prostate epithelial cells that effectively increases their mitochondrial bioenergetic capacity. The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) inhibits prostate cancer development in vivo, and triggers reactive oxygen species (ROS)-dependent prostate cancer cell apoptosis in vitro. The possibility that 4HPR-induced ROS production is associated with mitochondrial bioenergetics and required for apoptosis induction in transformed prostate epithelial cells in vitro would advocate a prospective mechanistic basis for 4HPR-mediated prostate cancer chemoprevention in vivo. We investigated this tenet by comparing and contrasting 4HPR’s effects on premalignant PWR-1E and malignant DU-145 human prostate epithelial cells. 4HPR promoted a dose- and/or time-dependent apoptosis induction in PWR-1E and DU-145 cells, which was preceded by and dependent on an increase in mitochondrial ROS production. In this regard, the PWR-1E cells were more sensitive than the DU-145 cells, and they consumed roughly twice as much oxygen as the DU-145 cells suggesting oxidative phosphorylation was higher in the premalignant cells. Interestingly, increasing the [Ca2+] in the culture medium of the PWR-1E cells attenuated their proliferation as well as their mitochondrial bioenergetic capacity and 4HPR’s cytotoxic effects. Correspondingly, the respiration-deficient derivatives (i.e., ρ0 cells lacking mitochondrial DNA) of DU-145 cells were markedly resistant to 4HPR-induced ROS production and apoptosis. Together, these observations implied that the reduction of mitochondrial bioenergetics protected PWR-1E and DU-145 cells against the cytotoxic effects of 4HPR, and support the concept that oxidative phosphorylation is an essential determinant in 4HPR’s apoptogenic signaling in transformed human prostate epithelial cells.  相似文献   

10.
Mini-pig prostate epithelial cells exhibited the unique metabolic characteristics associated with the specialized function of production and secretion of high levels of citric acid. Epithelial cell suspensions from mini-pig prostate were successfully grown in primary and secondary cultures. The cultured epithelial cells exhibited rapid proliferation reaching confluency in approximately 6 days. Growth and proliferation of fibroblasts were markedly restricted by the dominance of epithelial cell growth. Confluent cultures could be maintained for approximately 6 weeks. The epithelial cells retained their polymorphic appearance in primary and secondary cultures and exhibited the characteristic formalin-resistant acid phosphatase reaction. Testosterone stimulated mitochondrial aspartate aminotransferase (mAAT) activity and citrate production by confluent epithelial cell cultures. These initial results indicate that cultured epithelial cells derived from mini-pig prostate might be an excellent model related to human for studies of prostate biology and hormonal regulation.  相似文献   

11.
In mammalian cells the cytosolic concentration of free Zn(2+) ions is extremely low (nM-fM range) and unlikely to provide an adequate pool for the uptake and accumulation of zinc in mitochondria. We previously identified a mitochondrial uptake transport process that effectively transports zinc directly from low molecular weight zinc ligands independent of and in the absence of available free Zn(2+) ions. Since metallothionein (MT) is an important ligand form of cellular zinc, we determined if Zn(7)-MT was an effective chaperone and donor for delivery and uptake of zinc by prostate and liver mitochondria. The results reveal that both intact mitochondria and mitoplasts effectively accumulated zinc from Zn(7)-MT. The study confirms and extends our previous report that the putative zinc transporter is associated with the inner mitochondrial membrane and involves a direct exchange of zinc from the ligand to the transporter. The ventral prostate cells contain no detectable MT; so that ligands (such as citrate, aspartate) other than MT are zinc donors for mitochondrial zinc accumulation. However, in liver and perhaps other cells, Zn(7)-MT is probably important in the cytosolic trafficking of zinc to the mitochondria for the uptake of zinc into the mitochondrial matrix by the putative zinc uptake transporter.  相似文献   

12.
The prostate gland of humans and other animals accumulates a level of zinc that is 3-10 times greater than that found in other tissues. Associated with this ability to accumulate zinc is a rapid zinc uptake process in human prostate cells, which we previously identified as the hZIP1 zinc transporter. We now provide additional evidence that hZIP1 is an important operational transporter that allows for the transport and accumulation of zinc. The studies reveal that hZIP1 (SLC39A1) but not hZIP2 (SLC39A2) is expressed in the zinc-accumulating human prostate cell lines, LNCaP and PC-3. Transfected PC-3 cells that overexpress hZIP1 exhibit increased uptake and accumulation of zinc. The V(max) for zinc uptake was increased with no change in K(m). Along with the increased intracellular accumulation of zinc, the overexpression of hZIP1 also results in the inhibition of growth of PC-3 cells. Down-regulation of hZIP1 by treatment of PC-3 cells with hZIP1 antisense oligonucleotide resulted in a decreased zinc uptake. Uptake of zinc from zinc chelated with citrate was as rapid as from free zinc ions; however, the cells did not take up zinc chelated with EDTA. The cellular uptake of zinc is not dependent upon an available pool of free Zn(2+) ions. Instead, the mechanism of transport appears to involve the transport of zinc from low molecular weight ligands that exist in circulation as relatively loosely bound complexes with zinc.  相似文献   

13.
Prostate is a unique organ that produces and releases large amounts of citrate. This is reduced significantly in cancer and it is possible that citrate is (re)taken up and used as a metabolite to enhance cellular activity. The main purpose of this study was to determine how cytosolic citrate might affect in vitro metastatic cell behaviours (lateral motility, endocytosis and adhesion). Normal (PNT2-C2) and metastatic (PC-3M) human prostate cancer cells were used in a comparative approach. As regards intermediary metabolic enzymes, aconitase and fatty acid synthase, already implicated in prostate cancer, were evaluated. The level of intracellular citrate was significantly higher in PNT2-C2 cells under both control conditions and following preincubation in extracellular citrate. Supply of exogenous citrate enhanced endocytosis, lateral motility, decreased cell adhesion of PC-3M cells but failed to produce any effect on normal cells. Real-time PCR measurements showed that the mRNA levels of mitochondrial and cytosolic aconitases and fatty acid synthase were significantly higher in PC-3M cells. Correspondingly, aconitase activity was also higher in PC-3M cells. Using cerulenin (an inhibitor of fatty acid synthase), oxalomalate and fluorocitrate (inhibiting aconitases), we investigated the dependence of citrate-induced down-regulation of cellular adhesion on aconitase and fatty acid synthase activities. It was concluded: (1) that strongly metastatic PC-3M cells stored less/utilised more cytosolic citrate than the normal PNT2-C2 cells and (2) that cancer cells could metabolise cytoplasmic citrate via aconitase and fatty acid synthase to enhance their metastatic behaviour.  相似文献   

14.
Magmas, is a 13-kDa mitochondrial protein which is ubiquitously expressed in eukaryotic cells. It was identified as a granulocyte-macrophage-colony stimulating factor (GM-CSF) inducible gene in hematopoietic cells and has a key role in the transport of mitochondrial proteins in yeast. Because GM-CSF receptor levels are elevated in prostate cancer, Magmas expression was examined in normal and neoplastic tissue. Magmas protein levels were barely detectible in non-neoplastic prostate glands. Increased amounts were observed in some samples of intraepithelial neoplasia. Approximately one half of the adenocarcinoma samples examined had weak Magmas expression, while the remainder had intermediate to high levels. The increased Magmas observed in malignant tissue was a result of higher protein expression and not from changes in mitochondrial content. Interestingly, in some patients, the normal prostate tissue had more Magmas message than the malignant portion. The results indicated that Magmas expression in prostate cancer is heterogeneous and independent of clinical stage and Gleason score. Further studies are needed to determine if Magmas expression has prognostic significance in prostate cancer.  相似文献   

15.
Prostate cancer is an age-related disease that is linked to the inability of prostate cells to accumulate zinc following transformation. It is shown in the present study that the basal percentage of normal prostate cells expressing senescence-associated beta-galactosidase (SA-beta-gal) is higher than that of the cancer cells. In the presence of high zinc in the cell culture medium, the percentage of normal prostate cells expressing the SA-beta-gal increased but not that of the cancer cells. Increased intracellular zinc occurs in the prostate cancer cells treated with supraphysiologic concentration of zinc but it does not induce senescence or decrease the telomerase activities in these cells. Senescence, however, occurred when the prostate cancer cells DNA is damaged by irradiation. These findings suggest that prostate cancer cells are insensitive to the senescence-inducing effects of zinc but the cancer cells retain the capacity to undergo senescence through other pathways.  相似文献   

16.
Increased conversion of glucose to lactic acid associated with decreased mitochondrial respiration is a unique feature of tumors first described by Otto Warburg in the 1920s. Recent evidence suggests that the Warburg effect is caused by oncogenes and is an underlying mechanism of malignant transformation. Using a novel approach to measure cellular metabolic rates in vitro, the bioenergetic basis of this increased glycolysis and reduced mitochondrial respiration was investigated in two human cancer cell lines, H460 and A549. The bioenergetic phenotype was analyzed by measuring cellular respiration, glycolysis rate, and ATP turnover of the cells in response to various pharmacological modulators. H460 and A549 cells displayed a dependency on glycolysis and an ability to significantly upregulate this pathway when their respiration was inhibited. The converse, however, was not true. The cell lines were attenuated in oxidative phosphorylation (OXPHOS) capacity and were unable to sufficiently upregulate mitochondrial OXPHOS when glycolysis was disabled. This observed mitochondrial impairment was intimately linked to the increased dependency on glycolysis. Furthermore, it was demonstrated that H460 cells were more glycolytic, having a greater impairment of mitochondrial respiration, compared with A549 cells. Finally, the upregulation of glycolysis in response to mitochondrial ATP synthesis inhibition was dependent on AMP-activated protein kinase activity. In summary, our results demonstrate a bioenergetic phenotype of these two cancer cell lines characterized by increased rate of glycolysis and a linked attenuation in their OXPHOS capacity. These metabolic alterations provide a mechanistic explanation for the growth advantage and apoptotic resistance of tumor cells. oxygen consumption; oxidative phosphorylation; Warburg effect; real time  相似文献   

17.
Sarcomas represent a diverse group of malignancies with distinct molecular and pathological features. A better understanding of the alterations associated with specific sarcoma subtypes is critically important to improve sarcoma treatment. Renewed interest in the metabolic properties of cancer cells has led to an exploration of targeting metabolic dependencies as a therapeutic strategy. In this study, we have characterized key bioenergetic properties of human sarcoma cells in order to identify metabolic vulnerabilities between sarcoma subtypes. We have also investigated the effects of compounds that inhibit glycolysis or mitochondrial respiration, either alone or in combination, and examined relationships between bioenergetic parameters and sensitivity to metabolic inhibitors. Using 2-deoxy-D-glucose (2-DG), a competitive inhibitor of glycolysis, oligomycin, an inhibitor of mitochondrial ATP synthase, and metformin, a widely used anti-diabetes drug and inhibitor of complex I of the mitochondrial respiratory chain, we evaluated the effects of metabolic inhibition on sarcoma cell growth and bioenergetic function. Inhibition of glycolysis by 2-DG effectively reduced the viability of alveolar rhabdomyosarcoma cells vs. embryonal rhabdomyosarcoma, osteosarcoma, and normal cells. Interestingly, inhibitors of mitochondrial respiration did not significantly affect viability, but were able to increase sensitivity of sarcomas to inhibition of glycolysis. Additionally, inhibition of glycolysis significantly reduced intracellular ATP levels, and sensitivity to 2-DG-induced growth inhibition was related to respiratory rates and glycolytic dependency. Our findings demonstrate novel relationships between sarcoma bioenergetics and sensitivity to metabolic inhibitors, and suggest that inhibition of metabolic pathways in sarcomas should be further investigated as a potential therapeutic strategy.  相似文献   

18.
Although the total zinc content of cells generally approximates 0.2 mM, the cytosolic free zinc ion concentration is negligible (subnanomolar concentrations). However, all reported studies of effects of zinc on cellular respiration and terminal oxidation involved microM-mM levels of free zinc ions. Prostate cells and their mitochondria accumulate 3-10 fold more zinc than other mammalian cells. We considered that a cytosolic pool of mobile reactive low molecular weight zinc ligands could inhibit respiration and terminal oxidation. The effects of ZnLigands, especially ZnCitrate, versus free Zn++ ions on respiration and terminal oxidation were studied with prostate and liver mitochondria. ZnLigands were equally as effective as free Zn++ ions in the inhibition of respiration and terminal oxidation of both prostate and liver mitochondria, which supports our concept that zinc can be transferred from cytosolic donor ZnLigands directly to zinc-binding sites of terminal oxidation components. Also, the respiration and specific activities of terminal oxidation components of prostate mitochondria are 20-50% of liver mitochondria. Zinc inhibition and inherently low levels of electron transport components are likely major factors responsible for the low respiration that characterizes prostate cells.  相似文献   

19.
The net production of citrate from exogenous substrates by rat ventral prostate was investigated. The preparation of isolated prostate epithelial cells was described. These cells were capable of oxidizing pyruvate (5 mmol/l) as a source of acetyl coenzyme A. The addition of aspartate + alpha-ketoglutarate (5 mmol/l) in the presence of pyruvate resulted in significant net production of citrate and excess oxalacetate. In the presence of aspartate and glutamate, the cells were capable of producing citrate without excessive oxalacetate production. Neither glucose alone nor glucose plus pyruvate resulted in net citrate production. The results demonstrated that aspartate could serve as a 4-carbon source of oxalacetate for citrate synthesis. Furthermore, the results indicate the intramitochondrial operation of a glutamate-aspartate-citrate pathway involving mitochondrial aspartate aminotransferase and glutamic dehydrogenase activities in prostate epithelial cells.  相似文献   

20.

Background  

Zinc plays important roles in maintaining normal function of the prostate and in development of prostate malignancy. It has been demonstrated that prostate malignant epithelial cells contain much less cellular zinc than the surrounding normal epithelial cells. However, the pathway(s) which leads to lower zinc accumulation in malignant prostate epithelial cells is poorly understood. In this study, the zinc homeostatic features of two human prostate epithelial cell lines (non-tumorigenic, RWPE1, and tumorigenic, RWPE2) were investigated. Effects of over-expression of ZIP1 in RWPE2 on cell proliferation and apoptosis were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号