首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycosaminoglycans (GAGs) are essential polysaccharide components of extracellular matrix and cell surface with key roles on numerous vascular wall functions. Previous studies have documented a role of wild blueberries on the GAG profile of the Sprague-Dawley rat with a functional endothelium as well as in the vascular tone of the spontaneously hypertensive rat (SHR) with endothelial dysfunction. In the present study, the effect of wild blueberries on the composition and structure of aortic GAGs was examined in 20-week-old SHRs after 8 weeks on a control (C) or a wild blueberry-enriched diet (WB). Aortic tissue GAGs were isolated following pronase digestion and anion-exchange chromatography. Treatment of the isolated populations with specific GAG-degrading lyases and subsequent electrophoretic profiling revealed the presence of three GAG species, i.e., hyaluronic acid (HA), heparan sulfate (HS) and galactosaminoglycans (GalAGs). A notable reduction of the total sulfated GAGs and a redistribution of the aortic GAG pattern were recorded in the WB as compared to the C group: a 25% and 10% increase in HA and HS, respectively, and an 11% decrease in GalAGs. Fine biochemical analysis of GalAGs at the level of constituent disaccharides with high-performance capillary electrophoresis revealed a notable increase of nonsulfated (18.0% vs. 10.7%) and a decrease of disulfated disaccharides (2.2% vs. 5.3%) in the WB aorta. This is the first study to report the redistribution of GAGs at the level of composition and their fine structural characteristics with implications for the endothelial dysfunction of the SHR.  相似文献   

2.
It has been documented that increased intake of polyphenols may provide protection against coronary heart disease and stroke. Blueberries (Vaccinium angustifolium) are one of the richest sources of antioxidants among fruits and vegetables. Phenolic compounds from berry extracts inhibit human low density lipoprotein and liposome oxidation. Glycosaminoglycans (GAGs) and proteoglycans (PGs) are structural components of aortas with great structural diversity. Their interaction with compounds such as enzymes, cytokines, growth factors, proteins and lipoproteins and their subsequent role in degenerative diseases has been documented. We investigated the effects of a diet rich in blueberries on the content and structure of GAGs. Sprague-Dawley rats were fed either a control (C) or a blueberry (B) diet for 13 weeks. Aortic tissue GAGs were isolated with papain digestion, alkaline borohydride treatment and anion-exchange chromatography. Cellulose acetate electrophoresis and treatment of the fractions with specific lyases revealed the presence of three GAG populations, i.e. hyaluronan (HA), heparan sulfate (HS) and galactosaminoglycans (GalAGs). Disaccharide composition was determined by high-performance capillary electrophoresis following enzymatic degradation. A 13% higher amount of total GAGs in aortas of B-fed rats was attributed to a higher content of GalAGs (67%). Determination of the sulfated disaccharides showed an overall lower concentration of oversulfated disaccharides in both HS and GalAG populations in the aortas of the B group. Our results demonstrate for the first time that a diet rich in blueberries results in structural alterations in rat aortic tissue GAGs. These changes may affect cellular signal transduction pathways and could have major consequences for the biological function of GAG molecules within the vascular environment.  相似文献   

3.
We examined the effect of dietary manganese (Mn) on the vascular contractile machinery in rat thoracic aortas. Weanling male Sprague-Dawley rats were fed either an Mn-deficient (MnD), Mn-adequate (MnA) or Mn-supplemented (MnS) diet (<1, 10-15 and 45-50 ppm Mn, respectively). After 15 weeks on the diets the rats were sacrificed and 3-mm aortic rings were contracted in six cumulative doses of the alpha(1) adrenergic receptor agonist L-phenylephrine (l-Phe, 10(-8) to 3 x 10(-6) M) under 1.5-g preload and relaxed with one dose of acetylcholine (3 x 10(-6) M) to assess intact endothelium. The maximal force (F(max)) of contraction and relaxation, as well as the vessel sensitivity (pD(2)) were determined. Manganese deficiency, assessed by hepatic Mn content, significantly lowered the rate of animal growth. A two-way analysis of variance revealed that MnS animals developed lower F(max) when contracted with L-Phe compared with the MnD and MnA animals (P相似文献   

4.
The antler is the most rapidly growing tissue in the animal kingdom. According to previous reports, antler glycosaminoglycans (GAGs) consist of all kinds GAGs except for heparan sulfate (HS). Chondroitin sulfate is the major antler GAG component comprising 88% of the total uronic acid content. In the current study, we have isolated HS from antler for the first time and characterized it based on both NMR spectroscopy and disaccharide composition analysis. Antler GAGs were isolated by protease treatment and followed by cetylpyridinium chloride precipitation. The sensitivity of antler GAGs to heparin lyase III showed that this sample contained heparan sulfate. After incubation of antler GAGs with chondroitin lyase ABC, the HS-containing fraction was recovered by ethanol precipitation. The composition of HS disaccharides in this fraction was determined by its complete depolymerization with a mixture of heparin lyase I, II, and III and analysis of the resulting disaccharides by the reversed-phase (RP) ion pairing-HPLC, monitored by the fluorescence detection using 2-cyanoacetamide as a post-column labeling reagent. Eight unsaturated disaccharides (DeltaUA-GlcNAc, DeltaUA-GlcNS, DeltaUA-GlcNAc6S, DeltaUA2S-GlcNAc, DeltaUA-GlcNS6S, DeltaUA2S-GlcNS, DeltaUA2S-GlcNAc6S, DeltaUA2S-GlcNS6S) were produced from antler HS by digestion with the mixture of heparin lyases. The total content of 2-O-sulfo disaccharide units in antler HS was higher than that of heparan sulfate from most other animal sources.  相似文献   

5.
Glycosaminoglycans of Rat Cerebellum: II. A Developmental Study   总被引:2,自引:2,他引:0  
Total and individual glycosaminoglycans (GAGs) were determined in rat cerebellum in tissue explants at various postnatal ages. The major constituents of GAGs were chondroitin sulfate (CS), hyaluronic acid (HA), and heparan sulfate (HS). Dermatan sulfate (DS) and keratan sulfate (KS) could not be detected and therefore each amounts to less than 5% of all GAGs at all ages studied. HA was the prominent GAG during postnatal development and only a minor constituent at adult ages, whereas CS was the predominant GAG in adulthood. HS remained relatively constant throughout development. The incorporation of [3H]glucosamine into individual GAGs was highest for HS at postnatal day 6, whereas HA showed intermediate and CS the lowest levels of incorporation during the first postnatal week. All major GAGs showed the lowest incorporation values at adult ages.  相似文献   

6.
Abstract: Isolated glycosaminoglycans (GAGs) were quantified biochemically in the cerebella of 6-day-old rats. 14C-Labeled hyaluronic acid (HA) and chondroitin-4-sulfate (C-4-S), added prior to isolation of GAGs from tissue, served as internal standards to allow correction for unknown losses during the purification procedure and exact quantification of GAGs in the intact tissue. Three main constituents—HA, chondroitin sulfate (CS), and heparan sulfate (HS)—were found at concentrations of 1.82, 1.52, and 0.76 μg/mg protein amounting to 44%, 37%, and 19% of the total GAG fraction, respectively. Incorporation of [3H]glucosamine precursor into GAGs was higher for HS (56% of incorporated precursor) and lower for HA (29%) and CS (15%). The specific activities of individual GAGs were 64.7 nCi/μg for HS, 14.2 for HA, and 8.3 for CS.  相似文献   

7.
花背蟾蜍角膜早期发育中氨基多糖的电镜细胞化学研究   总被引:2,自引:0,他引:2  
Glycosaminoglycans (GAGs) and their changes in early corneal development of Bufo raddei Strauch (from stage 16, neural tube, to stage 25, operculum completely closed) were studied with electron microscopic cytochemical method. Results show that synthesis of GAGs changes from non-sulfated to sulfated, and its content increased gradually with the development of cornea. Hyaluronic acid (HA) in each part of cornea begins to increase gradually from stage 16 to 21 (mouth open stage), with its peak at stage 20 (gill circulation stage) to 21, then decreases. In the mean time, contents of dermatam sulfate (DS), chondroitin sulfate (CS), heparan sulfate (HS) and heparin (Hep) increase gradually. It is considered that HA, HS and collagen may be related to the migration of mesenchymal cells, and HA promotes the expansion and hydration of corneal stroma; sulfated GAGs are correlated with dehydration of cornea, cell density and corneal transparency; DS, CS, HS and Hep deposited among collagen fibrils could adjust their arrangement. All these changes would enhance transparency of cornea.  相似文献   

8.
This study measures the effects of total urinary glycosaminoglycans (GAGs), glycoproteins (GPs) and individual GAGs on the nucleation rates (Bo), growth rates (G) and suspension densities (Mт) of calcium oxalate (CaOx) crystallization by the mixed suspension mixed product removal (MSMPR) system. Total urinary GAGs, glycoproteins and individual GAGs including heparan sulfate (HS), chondroitin sulfate (CS) and Hyaluronic acid (HA) were added into the artificial urine (AU) and then introduced into the MSMPR test chamber and the crystal sizes and numbers were analyzed by a particle counter. The effects of added GAGs and GPs on CaOx crystallization were reflected by the changes on the crystallization indexes including the Bo, G and Mт of CaOx that were calculated based on the crystal size and numbers. Total urinary GAGs showed no statistical significance on CaOx crystallization. However, individual GAGs such as HA, CS and HS enhanced Bo and suppressed the G when measured individually. CS and HS enhanced the Mт while HA shown no significant change in the Mт of CaOx. Total urinary GPs showed an increase in the G and Mт of crystals. Although total urinary GAGs showed no statistically significant effect on CaOx crystallization, individual GAGs (CS, HS) promoted the CaOx crystallization by increasing the suspension density of smaller crystals, indicative of reduced risk of stones while HA showed no significance in the M(T) of CaOx formed. Urinary GPs indicated increased sizes and M(T) suggesting larger crystals and/or aggregates.  相似文献   

9.
The objectives of this study were to determine whether dietary manganese deficiency alters total glycosaminoglycan (GAG) concentration and composition and glycosyltransferase activity in rat aortas. Sprague-Dawley rats were fed either a manganese-deficient or a manganese-sufficient diet. Arterial GAGs were isolated and quantified by measuring uronic acid content. The individual GAGs were separated and quantified with cellulose acetate electrophoresis. The activity of the enzyme galactosyltransferase I was measured using a 100,000g particulate fraction and 4-methylumbelliferylxyloside (Xyl-MU) as an acceptor. There was a significant decrease (p <- 0.05) in uronic acid content in the manganese-deficient (1.18 ± 0.08 mg/g) rat aortas as compared with the manganese-sufficient (1.59 ± 0.10 mg/g) ones. Chondroitin sulfate and heparan sulfate concentrations were decreased by 38% (p < 0.01) and 36% (p < 0.05), respectively, in the manganese-deficient rat aortas. The incorporation of UDP-galactose to acceptors by the manganese-deficient rat aorta preparations was increased by 28% as compared to the manganese-sufficient preparations. These results indicate that manganese is involved in arterial GAG metabolism by affecting the enzyme galactosyltransferase and that changes in GAG concentration and composition with manganese deficiency may ultimately affect arterial wall integrity and subsequently cardiovascular health. This is the first work to demonstrate that manganese nutrition is important in arterial GAG metabolism.  相似文献   

10.
Changes in glycosaminoglycans (GAGs) were investigated in relation to cell density, growth and transformation of human fibroblasts. Relative amounts (percentages of the total GAGs) of heparan sulfate (HS) increased and those of hyaluronic acid (HA) decreased in growth-reduced (serum-starved, exogenous HS-treated and dense) cultures of normal (WI-38) cells. In contrast, transformed (WI-38 CT-1) cells exerted such GAG changes only in serum-starved cultures, but not in HS-treated or dense cultures. These results indicate that the changes in glucosaminoglycans (G1cAGs) (HS and HA) is coupled exclusively with cell growth.  相似文献   

11.
Changes in glycosaminoglycan expression in the rat developing intestine   总被引:1,自引:0,他引:1  
Synthesis of glycosaminoglycan (GAG) chains was studied in the developing rat intestine. Intestinal segments, taken at various developmental stages, were exposed to 3H-glucosamine and 35S-sulfate for 6 hours. The amounts of 3H-GAGs (total GAGs) and of 35S-GAGs (sulfated GAGs) showed a clear age-dependence, with a broad maximum in the fetal period when dramatic growth and morphogenesis occur. Characterization of individual GAG species indicated that hyaluronic acid (HA), heparan and chondroitin sulfate (HS and CS) synthesis was modified quantitatively or qualitatively during development: decrease of HA with age; production of undersulfated HS molecules during embryonic life; shift towards a lower hydrodynamic form of HA and HS molecules after birth. We postulate that these alterations are crucial in the elaboration of an age-related specific extracellular microenvironment allowing intestinal growth and differentiation.  相似文献   

12.
Diet is now one of the well established means in the management of diabetes. Bitter gourd and spent turmeric at 10% level were tested for their efficacy on glycosaminoglycan metabolism in various tissues viz., liver, spleen, lungs, heart and testis in control, diabetic and treated rats. The glycosaminoglycans (GAGs) were isolated from defatted and dried tissues. The contents of sulfated GAGs decreased in all the tissues and the decrease was more prominent in heart and testis. In the isolated GAGs, contents of total sugar, amino sugar, uronic acid and sulfate were studied. Decrease in total sugar content was maximum in testis. Amino sugar content decreased considerably in testis (38%) and lungs (15%). The content of uronic acid also decreased in testis (33%) besides heart (29%) and liver (25%). Sulfate groups in GAGs perform pivotal functions in many biological events and decrease in sulfate content was significant in heart (40%), testis (37%) and liver (37%). GAGs profile on the cellulose acetate electrophoresis revealed that heparan sulfate (HS), hyaluronic acid (HA) and chondroitin sulfate/dermatan sulfate (CS/DS) were present in liver, spleen and lungs. HS, CS were present in heart, DS/CS was observed in testis. The observed beneficial effects in GAGs metabolism during diabetes may be due to the presence of high amounts of dietary fibres present in bitter gourd and spent turmeric, besides, possible presence of bioactive compounds in one or both of them.  相似文献   

13.
GAGs content was examined in chick embryo brain starting from the 9th day of incubation to the 4th post-hatching day. Chondroitin 6-sulfate, hyaluronate and heparan sulfate were recovered at any developmental stage examined. C6-S was the main GAG (except on the 15th day), while HS was the least represented. The highest differences in the relative amounts of GAGs are observed on the 9th day. C6-S shows high developmental relative changes, while HA and HS exhibit a similar pattern.  相似文献   

14.
采用酶解和离子交换色谱的方法,从兔、鸡、猪和羊肝组织中提取和纯化得到了糖胺聚糖(GAGs).通过比较透明质酸(HA)、硫酸软骨素A(CS-A)、硫酸软骨素C(CS-C)、硫酸皮肤素(DS)、肝素(HP)、硫酸乙酰肝素(HS)等标准品在醋酸钡、醋酸锌、吡啶-甲酸等几种不同缓冲体系下的醋酸纤维素薄膜电泳行为,结合灰度积分建立了适合于微量GAGs定性和定量分析的电泳方法.将从不同动物肝脏组织中提取的GAGs运用该方法进行分析,发现 不同动物肝脏组织中,GAG含量和组成均有较大差异:羊肝中GAGs含量最高(0.52 mg/g 组织干粉),种类也最丰富,含有HA、HS、DS和CS,其中HA所占比例最高;鸡肝中GAGs含量最少(0.18 mg/g组织干粉),主要含有HA和DS;兔肝GAGs种类与猪肝相似,均含有HA、HS和DS,但HS是猪肝GAGs的主要成分,DS是兔肝GAGs的主要成分.  相似文献   

15.
It has been shown previously that hyaluronan (HA) added to fibroblast and keratocyte cell cultures or corneal explant cultures produces an up-regulation of MMP-2 and MMP-9 expression and activation. Here, we examine the effect of sulfated GAG-s, chondroitin 4 and 6 sulfate (CS4, CS6), dermatan sulfate (DS), keratan sulfate (KS) and heparan sulfate (HS) on MMP-2 and 9 expression and activation under the same culture conditions. It appears that CS4 has only minor effects, KS inhibits MMP-2 activation and CS6, DS and HS increase MMP-2 activation in corneal explant cultures. For skin explant cultures, DS, KS and HS strongly increase MMP-9 activation, whereas KS inhibits and DS increases MMP-2 activation. All these effects can be strongly inhibited by the addition of an antibody to CD44, except CS6 and DS. Activation by these two GAGs was only slightly affected, supporting the contention that the effects of HA, CS4, KS and HS are mediated by one of the isoforms of this CD44 receptor. The physio-pathological significance of these results is discussed for cornea and skin ageing, because of the divergent evolution with in vitro ageing of the relative proportions of GAGs synthesised by these two cell types.  相似文献   

16.
Diverse monosaccharide analysis methods have been established for a long time, but few methods are available for a complete monosaccharide analysis of glycosaminoglycans (GAGs) and certain acidolysis-resistant components derived from GAGs. In this report, a reversed-phase high-performance liquid chromatography (RP–HPLC) method with pre-column 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatization was established for a complete monosaccharide analysis of GAGs. Good separation of glucosamine/mannosamine (GlcN/ManN) and glucuronic acid/iduronic acid (GlcA/IdoA) was achieved. This method can also be applied to analyze the acidolysis-resistant disaccharides derived from GAGs, and the sequences of these disaccharides were confirmed by electrospray ionization–collision-induced dissociation–tandem mass spectrometry (ESI–CID–MS/MS). These unique disaccharides could be used as markers to distinguish heparin/heparan sulfate (HP/HS), chondroitin sulfate/dermatan sulfate (CS/DS), and hyaluronic acid (HA).  相似文献   

17.
Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant deposition of extracellular matrix (ECM) constituents, including glycosaminoglycans (GAGs), that may play a role in remodelling processes by influencing critical mediators such as growth factors. We hypothesize that GAGs may be altered in IPF and that this contribute to create a pro-fibrotic environment. The aim of this study was therefore to examine the fine structure of heparan sulfate (HS), chondroitin/dermatan sulfate (CS/DS) and hyaluronan (HA) in lung samples from IPF patients and from control subjects. GAGs in lung samples from severe IPF patients and donor lungs were analyzed with HPLC. HS was assessed by immunohistochemistry and collagen was quantified as hydroxyproline content. The total amount of HS, CS/DS and HA was increased in IPF lungs but there was no significant difference in the total collagen content. We found a relative increase in total sulfation of HS due to increment of 2-O, 6-O and N-sulfation and a higher proportion of sulfation in CS/DS. Highly sulfated HS was located in the border zone between denser areas and more normal looking alveolar parenchyma in basement membranes of blood vessels and airways, that were immuno-positive for perlecan, as well as on the cell surface of spindle-shaped cells in the alveolar interstitium. These findings show for the first time that both the amount and structure of glycosaminoglycans are altered in IPF. These changes may contribute to the tissue remodelling in IPF by altering growth factor retention and activity, creating a pro-fibrotic ECM landscape.  相似文献   

18.
The effects of polyamines on blood coagulation and fibrinolysis in the presence of glycosaminoglycans (GAGs) were examined because it is known that heparin (HP) interacts with polyamines, especially with spermine. Spermine was able to reverse the prolongation of coagulation time of rabbit plasma caused by HP. The effects of various GAGs on thrombin activity in the presence of anti-thrombin III (AT) were then tested using a synthetic substrate. Inhibition of thrombin activity by GAGs was in the order HP > heparan sulfate (HS) > dermatan sulfate (DS) > chondroitin sulfate (CS) approximately hyaluronan (HA). When these GAGs were fully sulfonated, the inhibitory activity of HS, DS, CS and HA, but not HP, became stronger. The effects of GAGs on thrombin activity were reversed by polyamines, in particular spermine. The EC(50) value of spermine for reversal of HP inhibition was 30-50 microM, and the K(d) value of spermine for heparin was 41.1 microM. Analysis by surface plasmon resonance (SPR) indicated that the interaction between AT and HP was weakened by spermine through its binding to HP. The effect of HP on fibrinolysis was then examined. When Glu-plasminogen and tissue-type plasminogen activator (tPA) were used as enzyme source, HP strongly enhanced the plasmin activity and spermine reversed this effect. Analysis by SPR suggests that the structure of the active site of tPA may be changed through the ternary complex formation of tPA, HP and spermine. The results indicate that blood coagulation was enhanced and fibrinolysis was weakened by spermine in the presence of HP.  相似文献   

19.
Y Zeng  EE Ebong  BM Fu  JM Tarbell 《PloS one》2012,7(8):e43168

Rationale

It is widely believed that glycosaminoglycans (GAGs) and bound plasma proteins form an interconnected gel-like structure on the surface of endothelial cells (the endothelial glycocalyx layer–EGL) that is stabilized by the interaction of its components. However, the structural organization of GAGs and proteins and the contribution of individual components to the stability of the EGL are largely unknown.

Objective

To evaluate the hypothesis that the interconnected gel-like glycocalyx would collapse when individual GAG components were almost completely removed by a specific enzyme.

Methods and Results

Using confocal microscopy, we observed that the coverage and thickness of heparan sulfate (HS), chondroitin sulfate (CS), hyaluronic acid (HA), and adsorbed albumin were similar, and that the thicknesses of individual GAGs were spatially nonuniform. The individual GAGs were degraded by specific enzymes in a dose-dependent manner, and decreased much more in coverage than in thickness. Removal of HS or HA did not result in cleavage or collapse of any of the remaining components. Simultaneous removal of CS and HA by chondroitinase did not affect HS, but did reduce adsorbed albumin, although the effect was not large.

Conclusion

All GAGs and adsorbed proteins are well inter-mixed within the structure of the EGL, but the GAG components do not interact with one another. The GAG components do provide binding sites for albumin. Our results provide a new view of the organization of the endothelial glycocalyx layer and provide the first demonstration of the interaction between individual GAG components.  相似文献   

20.
We have investigated the changes in glycosaminoglycan (GAG) composition between cultured fibroblasts derived from 8- and 16-day chick embryos. GAG composition has been studied after [3H]glucosamine and [35S]sulfate labeling. Both the 8- and 16-day embryo fibroblasts were found to contain hyaluronic acid (HA), dermatan sulfate (DS), heparan sulfate (HS) and chondroitin sulfates (CS), the latter being the major component in 8- and 16-day cells. These four GAGs were quantified after their separation using cellulose acetate electrophoresis. The amounts of HA and CS were respectively shown to increase 2-fold and 4-fold between the 8th and 16th day of development, whereas the amounts of HS and DS resp. diminished 2.5-fold and 1.2-fold. These results show that the relative proportions of the different GAGs alter during embryo development. The fibroblasts from 8-day-old embryos detached more rapidly from the culture dishes than the cells from 16-day-old embryos when treated with trypsin. However, this difference was not directly related to the different GAG content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号