首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
A gene of Staphylococcus aureus PS47 encoding lytic activity was cloned and expressed in Escherichia coli. Deletion analysis of a recombinant plasmid carrying a 7.4-kilobase-pair fragment (kbp) of S. aureus DNA suggested that the gene was located within a 2.5-kbp EcoRI-XbaI fragment. Analysis of extracts of E. coli harboring recombinant plasmids on denaturing polyacrylamide gels containing purified cell walls of S. aureus showed a clearing zone by a polypeptide of apparent Mr 23,000. The release of dinitrophenylalanine but not reducing groups from purified cell walls by a cell extract of recombinant E. coli suggested that we had cloned an N-acetylmuramyl-L-alanine amidase.  相似文献   

3.
Phthalate is a metabolic intermediate of the pathway of fluorene (FN) degradation via angular dioxygenation. A gene cluster responsible for the conversion of phthalate to protocatechuate was cloned from the dibenzofuran (DF)- and FN-degrading bacterium Terrabacter sp. strain DBF63 and sequenced. The genes encoding seven catabolic enzymes, oxygenase large subunit of phthalate 3,4-dioxygenase (phtA1), oxygenase small subunit of phthalate 3,4-dioxygenase (phtA2), cis-3,4-dihydroxy-3,4-dihydrophthalate dehydrogenase (phtB), [3Fe-4S] or [4Fe-4S] type of ferredoxin (phtA3), ferredoxin reductase (phtA4), 3,4-dihydroxyphthalate decarboxylase (phtC) and putative regulatory protein (phtR), were found in the upstream region of the angular dioxygenase gene (dbfA1A2), encoded in this order. Escherichia coli carrying phtA1A2BA3A4 genes converted phthalate to 3,4-dihydroxyphthalate, and the 3,4-dihydroxyphthalate decarboxylase activity by E. coli cells carrying phtC was finally detected with the introduction of a Shine-Dalgarno sequence in the upstream region of its initiation codon. Homology analysis on the upstream region of the pht gene cluster revealed that there was an insertion sequence (IS) (ISTesp2; ORF14 and its flanking region), part of which was almost 100% identical to the orf1 and its flanking region adjacent to the extradiol dioxygenase gene ( bphC1) involved in the DF degradation of Terrabacter sp. strain DPO360 [Schmid et al. (1997) J Bacteriol 179:53-62]. This suggests that ISTesp2 plays a role in the metabolism of aromatic compounds in Terrabacter sp. strains DBF63 and DPO360.  相似文献   

4.
In Agrobacterium tumefaciens, the stability of Ti plasmids differs depending on the strain. So far, little is known about genes that cause the difference in stability. The repABC operon is responsible for replication and incompatibility of Ti plasmids. We constructed recombinant plasmids carrying the repABC operon and different portions of pTi-SAKURA. Cells having the recombinant plasmids that harbored a 2.6-kbp NheI fragment of pTi-SAKURA were found to be transformed via conjugation 100-fold less frequently with a small incompatible repABC plasmid than cells having the recombinant plasmids lacking the 2.6-kbp NheI fragment. Since the phenomenon occurred only when the resident and incoming plasmids belonged to the same incompatibility group, it was suggested that the 2.6-kbp NheI fragment bears the potential enhancing incompatibility. The fragment contained an operon consisting of two open reading frames, tiorf24 and tiorf25. tiorf24 is an orphan gene, whereas tiorf25 is a homologue of a group of plasmid stability genes. Removal of the 2.6-kbp fragment from the resident pTi-SAKURA increased the resident plasmid ejection ratio by the incoming repABC plasmid, whereas addition of the fragment to pTiC58 decreased the ejection ratio, and the loss ratio during growth at 37 degrees C. These data suggest that tiorf24 and tiorf25 are responsible for the stability of pTi-SAKURA, and reduce, in the host bacterium, the frequency of ejection of the resident plasmid, presumably through an incompatibility mechanism.  相似文献   

5.
Pseudomonas putida MT53 contains a TOL plasmid, pWW53, that encodes toluene-xylene catabolism. pWW53 is nonconjugative, is about 105 to 110 kilobase pairs (kbp) in size, and differs significantly in its restriction endonuclease digestion pattern and incompatibility group from the archetypal TOL plasmid pWW0. An RP4::pWW53 cointegrate plasmid, pWW53-4, containing about 35 kbp of pWW53 DNA, including the entire catabolic pathway genes, was formed, and a restriction map for KpnI, HindIII, and BamHI was derived. The entire regulated meta pathway genes for the catabolism of m-toluate were cloned into pKT230 from pWW53 on a 17.5-kbp HindIII fragment. The recombinant plasmid supported growth on m-toluate when mobilized into plasmid-free P. putida PaW130. A restriction map of the insert for 10 restriction enzymes was derived, and the locations of xylD, xylL, xylE, xylG, and xylF were determined by subcloning and assaying for their gene products in both Escherichia coli and P. putida hosts. Good induction of the enzymes by m-toluate and m-methylbenzyl alcohol but not by m-xylene was measured in P. putida, but little or no regulation was found in E. coli. The restriction map and the gene order showed strong similarities with published maps of the DNA encoding both the entire meta pathway operon (xylDLEGFJIH) and the regulatory genes xylS and xylR on the archetype TOL plasmid pWW0, suggesting a high degree of conservation in DNA structure for the catabolic operon on the two different plasmids.  相似文献   

6.
Catechol 1,2-dioxygenase (EC 1.13.1.1), the product of the catA gene, catalyzes the first step in catechol utilization via the beta-ketoadipate pathway. Enzymes mediating subsequent steps in the pathway are encoded by the catBCDE genes which are carried on a 5-kilobase-pair (kbp) EcoRI restriction fragment isolated from Acinetobacter calcoaceticus. This DNA was used as a probe to identify Escherichia coli colonies carrying recombinant pUC19 plasmids with overlapping sequences. Repetition of the procedure yielded an A. calcoaceticus 6.7-kbp EcoRI restriction fragment which contained the catA gene and bordered the original 5-kbp EcoRI restriction fragment. When the catA-containing fragment was placed under the control of the lac promoter on pUC19 and induced with isopropylthiogalactopyranoside, catechol dioxygenase was formed in E. coli at twice the level found in fully induced cultures of A. calcoaceticus. A. calcoaceticus strains with mutations in the catA gene were transformed to wild type by DNA from lysates of E. coli strains carrying the catA gene on recombinant plasmids. Thus, A. calcoaceticus strains with a mutated gene can be used in a transformation assay to identify E. coli clones in which at least part of the wild-type gene is present but not necessarily expressed.  相似文献   

7.
The 6.2-kbp DNA fragment encoding the enzymes in the porphyrin synthesis pathway of a cellulolytic anaerobe, Clostridium josui, was cloned into Escherichia coli and sequenced. This fragment contained four hem genes, hemA, hemC, hemD, and hemB, in order, which were homologous to the corresponding genes from E. coli and Bacillus subtilis. A typical promoter sequence was found only upstream of hemA, suggesting that these four genes were under the control of this promoter as an operon. The hemA and hemD genes cloned from C. josui were able to complement the hemA and hemD mutations, respectively, of E. coli. The COOH-terminal region of C. josui HemA and the NH2-terminal region of C. josui HemD were homologous to E. coli CysG (Met-1 to Leu-151) and to E. coli CysG (Asp-213 to Phe-454) and Pseudomonas denitrificans CobA, respectively. Furthermore, the cloned 6.2-kbp DNA fragment complemented E. coli cysG mutants. These results suggested that both C. josui hemA and hemD encode bifunctional enzymes.  相似文献   

8.
The sucrose operon from pUR400, a 78-kbp conjugative Salmonella plasmid, was cloned in Escherichia coli K12. The operon was located in a 5.7-kbp SalI restriction fragment and was subcloned, in each of two possible orientations, using the expression vector pUC18. The insert DNA was restriction mapped and duplicate restriction sites in the insert and in the polylinker of the vector were used to create various deletions promoter distal in the operon sequence. Additional deletions were made with the restriction exonuclease Bal31. Cells containing hybrid plasmids with specified deletions lacked the ability to transport sucrose or were constitutive for hydrolase and/or uptake activities. The scrA (enzyme IIScr) and scrR (regulatory) genes resided within 2900-bp SmaI-SalI DNA fragment and were assigned the order scrB, scrA, scrR. An amplified sucrose-inducible gene product, Mr 68,000, was detected only in the membrane fraction from recombinant cells that contained plasmid with the intact operon sequence. This protein represented 11% of the total membrane protein and was resistant to extraction with 0.5 M sodium chloride, 2% Triton X-100, and 0.5% sodium deoxycholate. The protein did not appear to be the product of either the scrA, scrB, or scrR gene and may therefore represent a previously unidentified membrane-bound sucrose protein. A new gene, scrC, is proposed. In addition, the cloned 5.7-kbp SalI and 2.5-kbp SmaI-SalI DNA fragments failed to hybridize to chromosomal DNA from Bacillus subtilis, Streptococcus lactis, Streptococcus mutans, and Lactobacillus acidophilus as well as to DNA from a sucrose plasmid from Salmonella tennessee. However, the probes showed weak homology with a 20-kbp EcoRI restriction fragment from Klebsiella pneumoniae.  相似文献   

9.
10.
Micrococcus sp. strain 12B was isolated by enriching for growth with dibutylphthalate as the sole carbon and energy source. A pathway for the metabolism of dibutylphthalate and phthalate by micrococcus sp. strain 12B is proposed: dibutylphthalate leads to monobutylphthalate leads to phthalate leads to 3,4-dihydro-3,4-dihydroxyphthalate leads to 3,4-dihydroxyphthalate leads to protocatechuate (3,4-dihdroxybenzoate). Protocatechuate is metabolized both by the meta-cleavage pathway through 4-carboxy-2-hydroxymuconic semialdehyde and 4-carboxy-2-hydroxymuconate to pyruvate and oxaloacetate and by the ortho-cleavage pathway to beta-ketoadipate. Dibutylphthalate- and phthalate-grown cells readily oxidized dibutylphthalate, phthalate, 3,4-dihydroxyphthalate, and protocatechuate. Extracts of cells grown with dibutylphthalate or phthalate contained the 3,4-dihydroxyphthalate decarboxylase and the enzymes of the protocatechuater 4,5-meta-cleavage pathway. Extracts of dibutylphthalate-grown cells also contained the protocatechuate ortho-cleavage pathway enzymes. The dibutylphthalate-hydrolyzing esterase and 3,4-dihydroxyphthalate decarboxylase were constitutively synthesized; phthalate-3,4-dioxygenase (and possibly the "dihydrodiol" dehydrogenase) was inducible by phthalate or a metabolite occurring before protocatechuate in the pathway; two protocatechuate oxygenases and subsequent enzymes were inducible by protocatechuate or a subsequent metabolic product. During growth at 37 degrees C, strain 12B gave clones at high frequency that had lost the ability to grow with phthalate esters. One of these nonrevertible mutants, strain 12B-Cl, lacked all of the enzymes required for the metabolism of dibutylphthalate through the protocatechuate meta-cleavage pathway. Enzymes for the metabolism of protocatechuate by the ortho-cleavage pathway were present in this strain grown with p-hydroxybenzoate or protocatechuate.  相似文献   

11.
Pseudomonas sp. strain HR199 is able to utilize eugenol (4-allyl-2-methoxyphenol), vanillin (4-hydroxy-3-methoxybenzaldehyde), or protocatechuate as the sole carbon source for growth. Mutants of this strain which were impaired in the catabolism of vanillin but retained the ability to utilize eugenol or protocatechuate were obtained after nitrosoguanidine mutagenesis. One mutant (SK6169) was used as recipient of a Pseudomonas sp. strain HR199 genomic library in cosmid pVK100, and phenotypic complementation was achieved with a 5.8-kbp EcoRI fragment (E58). The amino acid sequences deduced from two corresponding open reading frames (ORF) identified on E58 revealed high degrees of homology to pcaG and pcaH, encoding the two subunits of protocatechuate 3,4-dioxygenase. Three additional ORF most probably encoded a 4-hydroxybenzoate 3-hydroxylase (PobA) and two putative regulatory proteins, which exhibited homology to PcaQ of Agrobacterium tumefaciens and PobR of Pseudomonas aeruginosa, respectively. Since mutant SK6169 was also complemented by a subfragment of E58 that harbored only pcaH, this mutant was most probably lacking a functional beta subunit of the protocatechuate 3, 4-dioxygenase. Since this mutant was still able to grow on protocatechuate and lacked protocatechuate 4,5-dioxygenase and protocatechuate 2,3-dioxygenase, the degradation had to be catalyzed by different enzymes. Two other mutants (SK6184 and SK6190), which were also impaired in the catabolism of vanillin, were not complemented by fragment E58. Since these mutants accumulated 3-carboxy muconolactone during cultivation on eugenol, they most probably exhibited a defect in a step of the catabolic pathway following the ortho cleavage. Moreover, in these mutants cyclization of 3-carboxymuconic acid seems to occur by a syn absolute stereochemical course, which is normally only observed for cis, cis-muconate lactonization in pseudomonads. In conclusion, vanillin is degraded through the ortho-cleavage pathway in Pseudomonas sp. strain HR199 whereas protocatechuate could also be metabolized via a different pathway in the mutants.  相似文献   

12.
The expression of Mycoplasma pulmonis antigen in Escherichia coli was investigated by cloning genomic DNA derived from M. pulmonis m 53, and the DNA fragment participating in antigen expression was identified. When the DNA library of M. pulmonis was screened by colony immunoassay using anti-M. pulmonis serum, 10 recombinant clones expressing seroreactive antigens were obtained. The recombinant plasmids isolated from these clones included 3.7-6.5 kilobase pair (kbp) DNA inserts, while all clones contained a common 2.3-kbp DNA fragment. Subcloning of initial DNA inserts showed that the common 2.3-kbp fragment is essential for antigen expression. Moreover, antiserum against the recombinant antigen generated from the 2.3-kbp DNA fragment recognized a native M. pulmonis antigen. The reactivity of this antiserum was absorbed specifically with M. pulmonis. These results suggest that the cloned 2.3-kbp DNA fragment codes an antigen specific to M. pulmonis.  相似文献   

13.
The mutagenic actions of many chemicals depend on the activities of bacterial "mutagenesis proteins", which allow replicative bypass of DNA lesions. Genes encoding these proteins occur on bacterial chromosomes and plasmids, often in the form of an operon (such as umuDC or mucAB) encoding two proteins. Many bacterial strains used in mutagenicity testing carry mutagenesis protein genes borne on plasmids, such as pKM101. Our objective was to introduce mutagenesis protein function into Escherichia coli strain DJ4309. This strain expresses recombinant human cytochrome P450 1A2 and NADPH-P450 reductase and carries out the metabolic conversion of aromatic and heterocyclic amines into DNA-reactive mutagens. We discovered that many mutagenesis-protein plasmids severely inhibit the response of strain DJ4309 to 2-amino-3,4-dimethylimid-azo[4,5-f]quinoline (MeIQ), a typical heterocyclic amine mutagen. Among many plasmids examined, one, pGY8294, a pSC101 derivative carrying the umuDC operon, did not inhibit MeIQ mutagenesis. Strain DJ4309 pGY8294 expresses active mutagenesis proteins, as shown by its response to mutagens such as 1-nitropyrene and 4-nitroquinoline 1-oxide (4-NQO), and is as sensitive as the parent strain DJ4309 to P450-dependent mutagens, such as MeIQ and 1-aminopyrene.  相似文献   

14.
A Pseudomonas putida strain designated RE204, able to utilize isopropylbenzene as the sole carbon and energy source, was isolated. Tn5 transposon mutagenesis by means of the suicide transposon donor plasmid pLG221 yielded mutant derivatives defective in isopropylbenzene metabolism. These were characterized by the identification of the products which they accumulated when grown in the presence of isopropylbenzene and by the assay of enzyme activities in cell extracts. Based on the results obtained, the following metabolic pathway is proposed: isopropylbenzene----2,3-dihydro -2,3-dihydroxyisopropylbenzene----3-isopropylcatechol----2 -hydroxy-6-oxo-7-methylocta-2,4-dienoate----isobutyrate + 2-oxopent-4-enoate----amphibolic intermediates. Plasmid DNA was isolated from strain RE204 and mutant derivatives and characterized by restriction enzyme cleavage analysis. Isopropylbenzene-negative isolates carried a Tn5 insert within a 15-kilobase region of a 105-kilobase plasmid designated pRE4. DNA fragments of pRE4 carrying genes encoding isopropylbenzene catabolic enzymes were cloned in Escherichia coli with various plasmid vectors; clones were identified by (i) selection for Tn5-encoded kanamycin resistance in the case of Tn5 mutant plasmids, (ii) screening for isopropylbenzene dioxygenase-catalyzed oxidation of indole to indigo, and (iii) use of a Tn5-carrying restriction fragment, derived from a pRE4::Tn5 mutant plasmid, as a probe for clones carrying wild-type restriction fragments. These clones were subsequently used to generate a transposon insertion and restriction enzyme cleavage map of the isopropylbenzene metabolic region of pRE4.  相似文献   

15.
罗莎  张俊杰  周宁一 《微生物学报》2008,35(5):0712-0719
NCIMB 10467是一株木质素降解菌, 根据其16S rDNA序列将其重新分类为Burkholderia菌属。研究显示, 在NCIMB 10467菌株中, 不同的底物可以诱导该菌株对于原儿茶酸的多种代谢形式。根据克隆到的一段原儿茶酸邻位开环酶, 即原儿茶酸3, 4-双加氧酶(P34D; EC 1.13.11.3) a-亚基的保守序列, 通过染色体步移的方法, 得到一段9505 bp的DNA片段。序列分析显示, 在这段9.5 kb的DNA片段中, 两个可能的开放阅读框pcaG 和 pcaH分别编码P34D的a-亚基和b-亚基。将pcaGH克隆并在大肠杆菌中进行表达后, 可以检测到P34D的活性。而pcaH在NCIMB 10467菌株中的敲除则使该菌完全丧失了代谢原儿茶酸的能力。由此证实, 克隆到的pcaGH基因确实编码原儿茶酸3, 4-双加氧酶, 并且对于NCIMB 10467菌株对原儿茶酸的代谢是必需的。  相似文献   

16.
NCIMB 10467是一株木质素降解菌, 根据其16S rDNA序列将其重新分类为Burkholderia菌属。研究显示, 在NCIMB 10467菌株中, 不同的底物可以诱导该菌株对于原儿茶酸的多种代谢形式。根据克隆到的一段原儿茶酸邻位开环酶, 即原儿茶酸3, 4-双加氧酶(P34D; EC 1.13.11.3) a-亚基的保守序列, 通过染色体步移的方法, 得到一段9505 bp的DNA片段。序列分析显示, 在这段9.5 kb的DNA片段中, 两个可能的开放阅读框pcaG 和 pcaH分别编码P34D的a-亚基和b-亚基。将pcaGH克隆并在大肠杆菌中进行表达后, 可以检测到P34D的活性。而pcaH在NCIMB 10467菌株中的敲除则使该菌完全丧失了代谢原儿茶酸的能力。由此证实, 克隆到的pcaGH基因确实编码原儿茶酸3, 4-双加氧酶, 并且对于NCIMB 10467菌株对原儿茶酸的代谢是必需的。  相似文献   

17.
Pseudomonas putida F1 utilizes p-cumate (p-isopropylbenzoate) as a growth substrate by means of an eight-step catabolic pathway. A 35.75-kb DNA segment, within which the cmt operon encoding the catabolism of p-cumate is located, was cloned as four separate overlapping restriction fragments and mapped with restriction endonucleases. By examining enzyme activities in recombinant bacteria carrying these fragments and sub-cloned fragments, genes encoding most of the enzymes of the p-cumate pathway were located. Subsequent sequence analysis of 11,260 bp gave precise locations of the 12 genes of the cmt operon. The first three genes, cmtAaAbAc, and the sixth gene, cmtAd, encode the components of p-cumate 2,3-dioxygenase (ferredoxin reductase, large subunit of the terminal dioxygenase, small subunit of the terminal dioxygenase, and ferredoxin, respectively); these genes are separated by cmtC, which encodes 2,3-dihydroxy-p-cumate 3,4-dioxygenase, and cmtB, coding for 2,3-dihydroxy-2,3-dihydro-p-cumate dehydrogenase. The ring cleavage product, 2-hydroxy-3-carboxy-6-oxo-7-methylocta-2,4-dienoate, is acted on by a decarboxylase encoded by the seventh gene, cmtD, which is followed by a large open reading frame, cmtI, of unknown function. The next four genes, cmtEFHG, encode 2-hydroxy-6-oxo-7-methylocta-2,4-dienoate hydrolase, 2-hydroxypenta-2,4-dienoate hydratase, 4-hydroxy-2-oxovalerate aldolase, and acetaldehyde dehydrogenase, respectively, which transform the decarboxylation product to amphibolic intermediates. The deduced amino acid sequences of all the cmt gene products except CmtD and CmtI have a recognizable but low level of identity with amino acid sequences of enzymes catalyzing analogous reactions in other catabolic pathways. This identity is highest for the last two enzymes of the pathway (4-hydroxy-2-oxovalerate aldolase and acetaldehyde dehydrogenase [acylating]), which have identities of 66 to 77% with the corresponding enzymes from other aromatic meta-cleavage pathways. Recombinant bacteria carrying certain restriction fragments bordering the cmt operon were found to transform indole to indigo. This reaction, known to be catalyzed by toluene 2,3-dioxygenase, led to the discovery that the tod operon, encoding the catabolism of toluene, is located 2.8 kb downstream from and in the same orientation as the cmt operon in P. putida F1.  相似文献   

18.
The genes encoding the enzymes responsible for conversion of naphthalene to 2-hydroxymuconic acid (nahA through nahI) are contained on a 25-kilobase EcoRI fragment of an 85-kilobase NAH plasmid of Pseudomonas putida. These genes were cloned into the plasmid vectors pBR322 and RSF1010 to obtain the recombinant plasmids pKGX505 and pKGX511, respectively. To facilitate cloning and analysis, an NAH7 plasmid containing a Tn5 transposon in the salicylate hydroxylase gene (nahG) was used to derive the EcoRI fragment. The genes for naphthalene degradation were expressed at a low level in Escherichia coli strains containing the fragment on the recombinant plasmids pKGX505 or pKGX511. This was shown by the ability of whole cells to convert naphthalene to salicylic acid and by in vitro enzyme assays. The expression of at least two of these genes in E. coli appeared to be regulated by the presence of the inducer salicylic acid. In addition, high-level expression and induction appear to be mediated by an NAH plasmid promoter and a regulatory gene located on the fragment. A restriction endonuclease cleavage map of the cloned fragment was generated, and the map positions of several nah genes were determined by analysis of various subcloned DNA fragments.  相似文献   

19.
In the presence of p-toluidine and iron, protocatechuate and catechols yield color. Inclusion of p-toluidine in media facilitates the screening of microbial strains for alterations affecting aromatic catabolism. Such strains include mutants affected in the expression of oxygenases and Escherichia coli colonies carrying cloned or subcloned aromatic catabolic genes which encode enzymes giving rise to protocatechuate or catechol. The diphenolic detection system can also be applied to the creation of vectors relying on insertion of cloned DNA into one of the latter marker genes.  相似文献   

20.
A partial genomic library was prepared in E. coli JM109 using pBR322 as vector and 2.4 kb Sau 3A I chromosomal fragment, encoding a nitroaryl reductase (nbr A) gene, from Streptomyces aminophilus strain MCMB 411. From the library, 2.4 kb fragment was recloned in E. coli JM109 and S. lividans TK64 using pUC18 and pIJ702 as vectors respectively. The recombinant plasmids pSD103 and pSD105 expressed the reductase gene and exported the enzyme in periplasmic space of E. coli and in cytoplasm of S. lividans TK64. The proteins expressed by E. coli and S. lividans had the same molecular mass (70 kD) as that expressed by parent strain, which suggested that the enzyme was processed similarly by all strains. Activities of the enzymes cloned in E. coli JM109 and S. lividans TK64 containing recombinant plasmids pSD103 and pSD105 respectively were optimum at 30 degrees C and pH 9 and requirement of cofactors was same as that of the parent strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号