首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The three-dimensional structure of the maltose- or maltodextrin-binding protein (Mr = 40,622) with bound maltose has been obtained by crystallographic analysis at 2.8-A resolution. The structure, which has been partially refined at 2.3 A, is ellipsoidal with overall dimensions of 30 x 40 x 65 A and divided into two distinct globular domains by a deep groove. Although each domain is built from two peptide segments from the amino- and carboxyl-terminal halves, both domains exhibit similar supersecondary structure, consisting of a central beta-pleated sheet flanked on both sides with two or three parallel alpha-helices. The groove, which has a depth of 18 A and a base of about 9 x 18 A, contains the maltodextrin-binding site. We have previously observed the same general features in the well-refined structures of six other periplasmic receptors with specificities for L-arabinose, D-galactose/D-glucose, sulfate, phosphate, leucine/isoleucine/valine, and leucine. The bound maltose is buried in the groove and almost completely inaccessible to the bulk solvent. The groove is heavily populated by polar and aromatic groups many of which are involved in extensive hydrogen-bonding and van der Waals interactions with the maltose. All the disaccharide hydroxyl groups, which form a peripheral polar surface approximately in the plane of the sugar rings, are tied in a total of 11 direct hydrogen bonds with six charged side chains, one Trp side chain, and one peptide backbone NH, and five indirect hydrogen bonds via water molecules. The maltose is wedged between four aromatic side chains. The resulting stacking of these aromatic residues on the faces of the glucosyl units provides a majority of the van der Waals contacts in the complex. The nonreducing glucosyl unit of the maltose is involved in approximately twice as many hydrogen bonds and van der Waals contacts as the glucosyl unit at the reducing end. The binding protein-maltose complex shows the best example of the extensive use of polar and aromatic residues in binding oligosaccharides. The tertiary structure of the maltodextrin-binding protein, along with the results of genetic studies by a number of investigators, has also enabled us for the first time to map the different regions on the surface of the protein involved in the interactions with the membrane-bound protein components necessary for transport of and chemotaxis toward maltodextrins. These sites permit distinction of the "open cleft" (without bound sugar) and closed (with bound sugar) conformations of the binding protein by the chemotactic signal transducer with which the maltodextrin-binding protein interacts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Family 3 beta-D-glucan glucohydrolases are distributed widely in higher plants. The enzymes catalyze the hydrolytic removal of beta-D-glucosyl residues from nonreducing termini of a range of beta-D-glucans and beta-D-oligoglucosides. Their broad specificity can be explained by x-ray crystallographic data obtained from a barley beta-D-glucan glucohydrolase in complex with nonhydrolyzable S-glycoside substrate analogs and by molecular modeling of enzyme/substrate complexes. The glucosyl residue that occupies binding subsite -1 is locked tightly into a fixed position through extensive hydrogen bonding with six amino acid residues near the bottom of an active site pocket. In contrast, the glucosyl residue at subsite +1 is located between two Trp residues at the entrance of the pocket, where it is constrained less tightly. The relative flexibility of binding at subsite +1, coupled with the projection of the remainder of bound substrate away from the enzyme's surface, means that the overall active site can accommodate a range of substrates with variable spatial dispositions of adjacent beta-D-glucosyl residues. The broad specificity for glycosidic linkage type enables the enzyme to perform diverse functions during plant development.  相似文献   

3.
4.
Rockey WM  Laederach A  Reilly PJ 《Proteins》2000,40(2):299-309
The Lamarckian genetic algorithm of AutoDock 3.0 was used to dock alpha-maltotriose, methyl alpha-panoside, methyl alpha-isopanoside, methyl alpha-isomaltotrioside, methyl alpha-(6(1)-alpha-glucopyranosyl)-maltoside, and alpha-maltopentaose into the closed and, except for alpha-maltopentaose, into the open conformation of the soybean beta-amylase active site. In the closed conformation, the hinged flap at the mouth of the active site closes over the substrate. The nonreducing end of alpha-maltotriose docks preferentially to subsites -2 or +1, the latter yielding nonproductive binding. Some ligands dock into less optimal conformations with the nonreducing end at subsite -1. The reducing-end glucosyl residue of nonproductively-bound alpha-maltotriose is close to residue Gln194, which likely contributes to binding to subsite +3. In the open conformation, the substrate hydrogen-bonds with several residues of the open flap. When the flap closes, the substrate productively docks if the nonreducing end is near subsites -2 or -1. Trisaccharides with alpha-(1-->6) bonds do not successfully dock except for methyl alpha-isopanoside, whose first and second glucosyl rings dock exceptionally well into subsites -2 and -1. The alpha-(1-->6) bond between the second and third glucosyl units causes the latter to be improperly positioned into subsite +1; the fact that isopanose is not a substrate of beta-amylase indicates that binding to this subsite is critical for hydrolysis.  相似文献   

5.
The abilities of a family of chemically synthesized oligo-beta-glucosides, ranging in size from hexamer to decamer, to induce phytoalexin accumulation in soybean cotyledons were investigated to determine which structural elements of the oligoglucosides are important for their biological activity. The results of the biological assays established that the following structural motif is necessary for the oligo-beta-glucosides to have high elicitor activity: [formula; see text] The branched trisaccharide at the nonreducing end of the oligoglucosides was found to be essential for maximum elicitor activity. Substitution of either the nonreducing terminal backbone glucosyl residue or the side-chain glucosyl residue closest to the nonreducing end with glucosaminyl or N-acetylglucosaminyl residues reduced the elicitor activity of the oligoglucosides between 10-fold and 10,000-fold. Elicitor activity was also reduced 1000-fold if the two side-chain glucosyl residues were attached to adjacent backbone glucosyl residues rather than to glucosyl residues separated by an unbranched residue. In contrast, modifications of the reducing terminal glucosyl residue of an elicitor-active hepta-beta-glucoside by conjugation with tyramine and subsequent iodination had no significant effect on the elicitor activity of the hepta-beta-glucoside. These results demonstrate that oligo-beta-glucosides must have a specific structure to trigger the signal transduction pathway, which ultimately leads to the de novo synthesis of phytoalexins in soybean.  相似文献   

6.
A deletion mutation, malE delta 12-18, removes seven residues from the hydrophobic core of the maltose binding protein (MBP) signal peptide and thus prevents secretion of this protein to the periplasm of E. coli. Intragenic suppressor mutations of malE delta 12-18 have been obtained, some highly efficient in their ability to restore proper MBP export. Twelve independently isolated suppressors represent six unique mutational events. Five result in alterations within the MBP signal peptide; one changes the amino acid at residue 19 of the mature MBP. Analysis of these suppressors indicates that the length of the hydrophobic core is a major determinant of signal peptide function. The experiments further suggest that the hydrophobic core region serves primarily a structural role in mediating protein secretion, and that other sequences outside of this region may be responsible for providing the initial recognition of the MBP nascent chain as a secreted protein.  相似文献   

7.
Rice BGlu1 β-glucosidase is an oligosaccharide exoglucosidase that binds to six β-(1→4)-linked glucosyl residues in its active site cleft. Here, we demonstrate that a BGlu1 E176Q active site mutant can be effectively rescued by small nucleophiles, such as acetate, azide and ascorbate, for hydrolysis of aryl glycosides in a pH-independent manner above pH 5, consistent with the role of E176 as the catalytic acid–base. Cellotriose, cellotetraose, cellopentaose, cellohexaose and laminaribiose are not hydrolyzed by the mutant and instead exhibit competitive inhibition. The structures of the BGlu1 E176Q, its complexes with cellotetraose, cellopentaose and laminaribiose, and its covalent intermediate with 2-deoxy-2-fluoroglucoside were determined at 1.65, 1.95, 1.80, 2.80, and 1.90 Å resolution, respectively. The Q176 Nε was found to hydrogen bond to the glycosidic oxygen of the scissile bond, thereby explaining its high activity. The enzyme interacts with cellooligosaccharides through direct hydrogen bonds to the nonreducing terminal glucosyl residue. However, interaction with the other glucosyl residues is predominantly mediated through water molecules, with the exception of a direct hydrogen bond from N245 to glucosyl residue 3, consistent with the apparent high binding energy at this residue. Hydrophobic interactions with the aromatic sidechain of W358 appear to orient glucosyl residues 2 and 3, while Y341 orients glucosyl residues 4 and 5. In contrast, laminaribiose has its second glucosyl residue positioned to allow direct hydrogen bonding between its O2 and Q176 Oε and O1 and N245. These are the first GH1 glycoside hydrolase family structures to show oligosaccharide binding in the hydrolytic configuration.  相似文献   

8.
TrmB is a repressor that binds maltose, maltotriose, and sucrose, as well as other α‐glucosides. It recognizes two different operator sequences controlling the TM (Trehalose/Maltose) and the MD (Maltodextrin) operon encoding the respective ABC transporters and sugar‐degrading enzymes. Binding of maltose to TrmB abrogates repression of the TM operon but maintains the repression of the MD operon. On the other hand, binding of sucrose abrogates repression of the MD operon but maintains repression of the TM operon. The three‐dimensional structure of TrmB in complex with sucrose was solved and refined to a resolution of 3.0 Å. The structure shows the N‐terminal DNA binding domain containing a winged‐helix‐turn‐helix (wHTH) domain followed by an amphipathic helix with a coiled‐coil motif. The latter promotes dimerization and places the symmetry mates of the putative recognition helix in the wHTH motif about 30 Å apart suggesting a canonical binding to two successive major grooves of duplex palindromic DNA. This suggests that the structure resembles the conformation of TrmB recognizing the pseudopalindromic TM promoter but not the conformation recognizing the nonpalindromic MD promoter.  相似文献   

9.
10.
Surfactant protein D (SP-D), a C-type lectin, is an important pulmonary host defense molecule. Carbohydrate binding is critical to its host defense properties, but the precise polysaccharide structures recognized by the protein are unknown. SP-D binding to Aspergillus fumigatus is strongly inhibited by a soluble beta-(1-->6)-linked but not by a soluble beta-(1-->3)-linked glucosyl homopolysaccharide (pustulan and laminarin, respectively), suggesting that SP-D recognizes only certain polysaccharide configurations, likely through differential binding to nonterminal glucosyl residues. In this study we have computationally docked alpha/beta-D-glucopyranose and alpha/beta-(1-->2)-, alpha/beta-(1-->3)-, alpha/beta-(1-->4)-, and alpha/beta-(1-->6)-linked glucosyl trisaccharides into the SP-D carbohydrate recognition domain. As with the mannose-binding proteins, we found significant hydrogen bonding between the protein and the vicinal, equatorial OH groups at the 3 and 4 positions on the sugar ring. Our docking studies predict that alpha/beta-(1-->2)-, alpha-(1-->4)-, and alpha/beta-(1-->6)-linked but not alpha/beta-(1-->3)-linked glucosyl trisaccharides can be bound by their internal glucosyl residues and that binding also occurs through interactions of the protein with the 2- and 3-equatorial OH groups on the glucosyl ring. By using various soluble glucosyl homopolysaccharides as inhibitors of SP-D carbohydrate binding, we confirmed the interactions predicted by our modeling studies. Given the sequence and structural similarity between SP-D and other C-type lectins, many of the predicted interactions should be applicable to this protein family.  相似文献   

11.
Delta-crystallin, the major soluble protein component of avian and reptilian eye lenses, is highly homologous to the urea cycle enzyme, argininosuccinate lyase (ASL). In duck lenses, there are two highly homologous delta crystallins, delta I and delta II, that are 94% identical in amino acid sequence. While delta II crystallin has been shown to exhibit ASL activity in vitro, delta I is enzymatically inactive. The X-ray structure of a His to Asn mutant of duck delta II crystallin (H162N) with bound argininosuccinate has been determined to 2.3 A resolution using the molecular replacement technique. The overall fold of the protein is similar to other members of the superfamily to which this protein belongs, with the active site located in a cleft formed by three different monomers in the tetramer. The active site of the H162N mutant structure reveals that the side chain of Glu 296 has a different orientation relative to the homologous residue in the H91N mutant structure [Abu-Abed et al. (1997) Biochemistry 36, 14012-14022]. This shift results in the loss of the hydrogen bond between His 162 and Glu 296 seen in the H91N and turkey delta I crystallin structures; this H-bond is believed to be crucial for the catalytic mechanism of ASL/delta II crystallin. Argininosuccinate was found to be bound to residues in each of the three monomers that form the active site. The fumarate moiety is oriented toward active site residues His 162 and Glu 296 and other residues that are part of two of the three highly conserved regions of amino acid sequence in the superfamily, while the arginine moiety of the substrate is oriented toward residues which belong to either domain 1 or domain 2. The analysis of the structure reveals that significant conformational changes occur on substrate binding. The comparison of this structure with the inactive turkey delta I crystallin reveals that the conformation of domain 1 is crucial for substrate affinity and that the delta I protein is almost certainly inactive because it can no longer bind the substrate.  相似文献   

12.
13.
IgA 16.4.12E is a murine monoclonal antibody obtained following immunization with isomaltohexose linked to keyhole limpet hemocyanin. We have studied its interaction with methyl alpha-D-glucopyranoside and its derivatives bearing deoxy or deoxyfluoro groups, and with the methyl alpha-glycosides of a series of isomalto-oligosaccharides, some bearing deoxy or deoxy-fluoro groups at selected positions. From the data it is concluded that the antibody binds optimally to 4 sequential glucopyranosyl residues and that the protein subsite possessing the major affinity binds the terminal, nonreducing glucosyl group of that antigenic epitope. All the hydroxyl groups of that terminal glucosyl group are involved in hydrogen bonding, some in a donating and some in an accepting capacity. In the last part of the paper we report the construction of a possible model of the antibody, derived from its known amino acid sequence and the known crystalline structures of two closely related antibodies. It shows a pronounced cavity in the general immunoglobulin combining area which is flanked by 2 solvent-exposed tryptophanyl residues. A model recently reported for anti-dextran IgA W3129 shows a similar cavity with one such residue. Guided by hydrogen bonds, experimentally deduced from the comparison of the affinities of variously derivatized ligands, we suggest a speculative fitting for the nonreducing terminus of the dextran antigen, in the respective cavities of both IgA 16.4.12E and W3129.  相似文献   

14.
The amplicon encoding dextransucrase DSR-F from Leuconostoc citreum B/110-1-2, a novel sucrose glucosyltransferase (GTF)-specific for α-1,6 and α-1,3 glucosidic bond synthesis, with α-1,4 branching was cloned, sequenced, and expressed into Escherichia coli JM109. Recombinant enzyme catalyzed oligosaccharides synthesis from sucrose as donor and maltose acceptor. The dsrF gene encodes for a protein (DSR-F) of 1,528 amino acids, with a theoretical molecular mass of 170447.72 Da (~170 kDa). From amino acid sequence comparison, it appears that DSR-F possesses the same domains as those described for GTFs. However, the variable region is longer than in other GTFs (by 100 amino acids) and two APY repeats (a 79 residue long motif with a high number of conserved glycine and aromatic residues, characterized by the presence of the three consecutive residues Ala, Pro, and Tyr) were identified in the glucan binding domain. The DSR-F catalytic domain possesses the catalytic triad involved in the glucosyl enzyme formation. The amino acid sequence of this domain shares a 56% identity with catalytic domain of the alternansucrase ASR from L. citreum NRRL B-1355 and with the catalytic domain of a putative alternansucrase sequence found in the genome of L. citreum KM20. A truncated active variant DSR-F-∆SP-∆GBD of 1,251 amino acids, with a molecular mass of 145 544 Da (~145 kDa), was obtained.  相似文献   

15.
Alginate is a heteropolysaccharide that consists of β-D-mannuronate (M) and α-L-guluronate (G). The Gram-negative bacterium Sphingomonas sp. A1 directly incorporates alginate into the cytoplasm through the periplasmic solute-binding protein (AlgQ1 and AlgQ2)-dependent ABC transporter (AlgM1-AlgM2/AlgS-AlgS). Two binding proteins with at least four subsites strongly recognize the nonreducing terminal residue of alginate at subsite 1. Here, we show the broad substrate preference of strain A1 solute-binding proteins for M and G present in alginate and demonstrate the structural determinants in binding proteins for heteropolysaccharide recognition through X-ray crystallography of four AlgQ1 structures in complex with saturated and unsaturated alginate oligosaccharides. Alginates with different M/G ratios were assimilated by strain A1 cells and bound to AlgQ1 and AlgQ2. Crystal structures of oligosaccharide-bound forms revealed that in addition to interaction between AlgQ1 and unsaturated oligosaccharides, the binding protein binds through hydrogen bonds to the C4 hydroxyl group of the saturated nonreducing terminal residue at subsite 1. The M residue of saturated oligosaccharides is predominantly accommodated at subsite 1 because of the strict binding of Ser-273 to the carboxyl group of the residue. In unsaturated trisaccharide (ΔGGG or ΔMMM)-bound AlgQ1, the protein interacts appropriately with substrate hydroxyl groups at subsites 2 and 3 to accommodate M or G, while substrate carboxyl groups are strictly recognized by the specific residues Tyr-129 at subsite 2 and Lys-22 at subsite 3. Because of this substrate recognition mechanism, strain A1 solute-binding proteins can bind heteropolysaccharide alginate with different M/G ratios.  相似文献   

16.
The leader protease (Lbpro) of foot-and-mouth disease virus frees itself during translation from the viral polyprotein by cleavage between its own C terminus and the N terminus of the subsequent protein, VP4. Lbpro also specifically cleaves the host proteins eukaryotic initiation factor (eIF) 4GI and 4GII, thus disabling host cell protein synthesis. We used NMR to study full-length Lbpro as well as a shortened species lacking six C-terminal amino acid residues (sLbpro) to examine the mechanism of self-processing, the quaternary structure and the substrate specificity. Both Lbpro forms have the same structure in solution as in the crystal. In the solution structure of sLbpro, the 12 residue C-terminal extension was flexible and disordered. In contrast, the 18 residue C-terminal extension of full-length Lbpro was bound by the substrate-binding site of a neighbouring molecule, resulting in the formation of a stable dimer in solution. The Lbpro dimer could not be dissociated by increasing the ionic strength or by dilution. Furthermore, titration with model peptides mimicking the substrates destabilised the dimer interface without dissociating the dimer. The peptides were, however, bound by sLbpro in the canonical substrate binding site. Peptide binding gave rise to chemical shifts of residues around the sLbpro substrate binding site. Shifts of Asn146 and Glu147 indicated that these residues might form the enzyme's S1' site and interact with the P1' arginine residue of the eIF4GI cleavage site. Furthermore, differences in substrate specificity between sLbpro and Lbpro observed with an in vitro translated protein indicate some involvement of the C terminus in substrate recognition.  相似文献   

17.
Cell wall and soluble polysaccharides that reacted with Trichosporon domesticum factor III serum were isolated from the type strain of T. domesticum. The fractions contained O-acetyl groups, which contributed to the serological reactivity. The antigenic structure was characterized by chromatographic and spectroscopic methods. The polysaccharide has an alpha-(1-->3)-D-mannan backbone with hetero-oligosaccharide side chains consisting of a 2-O-substituted beta-D-glucuronic acid residue bound to O-2 of the mannose residue, beta-D-xylopyranosyl residues located in the middle of the side chain, and a nonreducing terminal alpha-L-arabinopyranosyl residue bound to 0-4 of xylose. The mannan backbone is O-acetylated at O-6 of the mannose residues.  相似文献   

18.
4-alpha-Glucanotransferase (GTase) is an essential enzyme in alpha-1,4-glucan metabolism in bacteria and plants. It catalyses the transfer of maltooligosaccharides from an 1,4-alpha-D-glucan molecule to the 4-hydroxyl group of an acceptor sugar molecule. The crystal structures of Thermotoga maritima GTase and its complex with the inhibitor acarbose have been determined at 2.6A and 2.5A resolution, respectively. The GTase structure consists of three domains, an N-terminal domain with the (beta/alpha)(8) barrel topology (domain A), a 65 residue domain, domain B, inserted between strand beta3 and helix alpha6 of the barrel, and a C-terminal domain, domain C, which forms an antiparallel beta-structure. Analysis of the complex of GTase with acarbose has revealed the locations of five sugar-binding subsites (-2 to +3) in the active-site cleft lying between domain B and the C-terminal end of the (beta/alpha)(8) barrel. The structure of GTase closely resembles the family 13 glycoside hydrolases and conservation of key catalytic residues previously identified for this family is consistent with a double-displacement catalytic mechanism for this enzyme. A distinguishing feature of GTase is a pair of tryptophan residues, W131 and W218, which, upon the carbohydrate inhibitor binding, form a remarkable aromatic "clamp" that captures the sugar rings at the acceptor-binding sites +1 and +2. Analysis of the structure of the complex shows that sugar residues occupying subsites from -2 to +2 engage in extensive interactions with the protein, whereas the +3 glucosyl residue makes relatively few contacts with the enzyme. Thus, the structure suggests that four subsites, from -2 to +2, play the dominant role in enzyme-substrate recognition, consistent with the observation that the smallest donor for T.maritima GTase is maltotetraose, the smallest chain transferred is a maltosyl unit and that the smallest residual fragment after transfer is maltose. A close similarity between the structures of GTase and oligo-1,6-glucosidase has allowed the structural features that determine differences in substrate specificity of these two enzymes to be analysed.  相似文献   

19.
The periplasmic maltose-binding protein (MBP or MalE protein) of Escherichia coli is an essential element in the transport of maltose and maltodextrins and in the chemotaxis towards these sugars. On the basis of previous results suggesting their possible role in the activity and fluorescence of MBP, we have changed independently to alanine each of the eight tryptophan residues as well as asparagine 294, which is conserved among four periplasmic sugar-binding proteins. Five of the tryptophan mutations affected activity. In four cases (substitution of Trp62, Trp230, Trp232 and Trp340), there was a decrease in MBP affinity towards maltose correlated with modifications in transport and chemotaxis. According to the present state of the 2.3 A three-dimensional structure of MBP, all four residues are in the binding site. Residues Trp62 and Trp340 are in the immediate vicinity of the bound substrate and appear to have direct contacts with maltose; this is in agreement with the drastic increases in Kd values (respectively 67 and 300-fold) upon their substitution by alanine residues. The modest increase in Kd (12-fold) observed upon mutation of Trp230 would be compatible with the lesser degree of interaction this residue has with the bound substrate and the idea that it plays an indirect role, presumably by keeping other residues involved directly in binding in their proper orientation. Substitution of Trp232 resulted in a small increase in Kd value (2-fold) in spite of the fact that this residue is the closest to the ligand of the tryptophan residues according to the three-dimensional model. In the fifth case, replacement of Trp158, which is distant from the binding site, strongly reduced the chemotactic response towards maltose without affecting the transport parameters or the sugar-binding activities of the mutant protein. Trp158 may therefore be specifically implicated in the interaction of MBP with the chemotransducer Tar, but this effect is likely to be indirect, since Trp158 is buried in the structure of MBP. Of course, some structural rearrangements could be responsible in part for the effects of these mutations. The remaining four mutations were silent. The corresponding residues (Trp10, Trp94, Trp129 and Asn294) are all distant from the sugar-binding site on the crystallographic model of MBP, which is in agreement with their lack of effect on binding. In addition, our results show that they play no role in the interactions with the other proteins of the maltose transport (MalF, MalG or MalK) or chemotaxis (Tar) systems.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号