首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Luise A  Falconi M  Desideri A 《Proteins》2000,39(1):56-67
A system containing the globular protein azurin and 3,658 water molecules has been simulated to investigate the influence on water dynamics exerted by a protein surface. Evaluation of water mean residence time for elements having different secondary structure did not show any correlation. Identically, comparison of solvent residence time for atoms having different charge and polarity did not show any clear trend. The main factor influencing water residence time in proximity to a specific site was found to be its solvent accessibility. In detail for atoms belonging to lateral chains and having solvent-accessible surface lower than approximately 16 A(2)a relation is found for which charged and polar atoms are surrounded by water molecules characterized by residence times longer than the non polar ones. The involvement of the low accessible protein atom in an intraprotein hydrogen bond further modulates the length of the water residence time. On the other hand for surfaces having high solvent accessibility, all atoms, independently of their character, are surrounded by water molecules which rapidly exchange with the bulk solvent. Proteins 2000;39:56-67.  相似文献   

2.
This article examines a somewhat counter-intuitive approach to molecular-based electronic devices. Control over the electronic energy levels at the surfaces of conventional semiconductors and metals is achieved by assembling on the solid surfaces, poorly organized, partial monolayers (MLs) of molecules instead of the more commonly used ideal ones. Once those surfaces become interfaces, these layers exert electrostatic rather than electrodynamic control over the resulting devices, based on both electrical monopole and dipole effects of the molecules. Thus electronic transport devices, incorporating molecules, can be constructed without current flow through the molecules. This is illustrated for a gallium arsenide (GaAs) sensor as well as for gold-silicon (Au-Si) and Au-GaAs diodes. Incorporating molecules into solid interfaces becomes possible, using a 'soft' electrical contacting procedure, so as not to damage the molecules. Because there are only a few molecular restrictions, this approach opens up possibilities for the use of more complex (including biologically active) molecules as it circumvents requirements for ideal MLs and for molecules that can tolerate actual electron transport through them.  相似文献   

3.
Sun F 《Biophysical journal》2002,82(5):2511-2519
A constant normal pressure, constant surface tension, and constant temperature (NP(N)gammaT) molecular dynamics (MD) simulation of the liquid condensed phase of a 1,2-dilignoceroylphosphatidylcholine (DLGPC) monolayer has been performed at 293.15 K. A DLGPC molecule has two saturated 24-carbon acyl chains, giving the hydrocarbon core thickness of the monolayer approximately 28 A, which is close to the hydrocarbon core thickness of a membrane of a living system. NP(N)gammaT ensemble was used to reproduce the experimental observations, such as area/lipid, because surface tension is an essential factor in determining the monolayer structure. Data analysis on DLGPC/water monolayer shows that various liquid condensed-phase properties of the monolayer have been well reproduced from the simulation, indicating that surface tension 22.9 mN/M used in the simulation is an appropriate condition for the condensed-phase NP(N)gammaT simulation. The simulation results suggest that this long-chain phospholipid monolayer shares many structural characteristics with typical short-chain 1,2-diacylphosphatidylcholine systems, such as DPPC/water monolayer in the condensed phase and DPPC/water bilayer in the gel phase. Furthermore, it was found that DLGPC/water monolayer has almost completely rotationally disordered acyl chains, which have not been observed so far in short-chain 1,2-diacylphosphatidylcholine/water bilayers. This study indicates the good biological relevance of the DLGPC/water monolayer which might be useful in protein/lipid studies to reveal protein structure and protein/lipid interactions in a membrane environment.  相似文献   

4.
Molecular mechanics (MM) simulations have been used to model two small crystals of cellulose Ibeta surrounded by water. These small crystals contained six different extended surfaces: (110), (11 0), two types of (100), and two types of (010). Significant changes took place in the crystal structures. In both crystals there was an expansion of the unit cell, and a change in the gamma angle to almost orthogonal. Both microcrystals developed a right-hand twist of about 1.5 degrees per cellobiose unit, similar to the twisting of beta-sheets in proteins. In addition, in every other layer, made up of the unit cell center chains, a tilt of the sugar rings of 14.8 degrees developed relative to the crystal plane as a result of a transition of the primary alcohol groups in these layers away from the starting TG conformation to GG. In this conformation, these groups made interlayer hydrogen bonds to the origin chains above and below. No change in the primary alcohol conformations or hydrogen-bonding patterns in the origin chain layers was observed. Strong localization of the adjacent water was found for molecules in the first hydration layer of the surfaces, due to both hydrogen bonding to the hydroxyl groups of the sugar molecules and also due to hydrophobic hydration of the extensive regions of nonpolar surface resulting from the axial aliphatic hydrogen atoms of the 'tops' of the glucose monomers. Significant structuring of the water was found to extend far out into the solution. It is hypothesized that the structured layers of water might present a barrier to the approach of cellulase enzymes toward the cellulose surfaces in enzyme-catalyzed hydrolysis, and might inhibit the escape of soluble products, contributing to the slow rates of hydrolysis observed experimentally. Since the water structuring is different for the different surfaces, this might result in slower hydrolysis rates for some surfaces compared to others.  相似文献   

5.
Abstract

Responsive surfaces have been suggested to enhance longevity and antifouling performance of materials in many applications from industrial coatings to tissue engineering and drug delivery. We present a molecular dynamics study investigating de-swelling and swelling of some of the most commonly used responsive materials – PEG-functionalised silica and polymer surfaces – as a function of hydration and temperature. We show that PEG chains grafted onto the hard silica substrates exhibit a dehydration-induced collapse that is far more pronounced compared to chains grafted onto the soft polyester surface. The difference between the hard and soft substrates is particularly notable at low coverage densities where the chains are sufficiently separated from one another. We also show that inter-molecular hydrogen bonding responsible for the conformational state of the tethered chains in water can be temperature controlled. It can be suggested that the hard substrates with the intermediate-to-high coverage densities of low molecular weight hydrophilic grafts may be more appropriate for anti-fouling applications due to their ability to trap greater amount of water molecules. Soft substrates may be detrimental for the efficient response of the functionalised surfaces to changes in hydration and enhancement of the surface hardness must be considered when designing responsive surfaces for solution-based applications, such as antimicrobial coatings for industry and biomedicine.  相似文献   

6.
Water dynamics in samples of ceramide tetrasaccharide (Gg4Cer) vesicles and GM1 ganglioside micelles at 300:1 water/lipid mole ratio were studied by using deuterium nuclear magnetic resonance (2H-NMR). GM1 imposes a different restriction on water dynamics that is insensitive to temperatures either above or below its phase transition temperature or below the freezing point of water. The calculated correlation times are in the range of 10(-10) s, typical of water molecules near to the polar groups. Pure GM1 micelles have two distinct water microenvironments dynamically characterized. Their dynamic parameters remain constant with temperature ranging from -18 to 32 degrees C, but the amount of strongly associated water is modified. By contrast, a mixture of single soluble carbohydrates corresponding to GM1 polar head group does not preserve the dynamic parameters of water hydration when the temperature is varied. Incorporation of cholesterol or lysophosphatidylcholine into GM1 micelles substantially increases the mobility of water molecules compared with that found in pure GM1 micelles. The overall results indicate that both the supramolecular organization and the local surface quality (lipid-lipid interaction) strongly influence the interfacial water mobility and the extent of hydration layers in glycosphingolipid aggregates.  相似文献   

7.
Gerig JT 《Biopolymers》2004,74(3):240-247
Intermolecular (1)H[(19)F] and (1)H[(1)H] nuclear Overhauser effects have been used to explore interaction of solvent components with melittin dissolved in 50% hexafluoroacetone trihydrate (HFA)/water. Standard nuclear Overhauser effect experiments and an analysis of C(alpha)H proton chemical shifts confirm that the conformation of the peptide in this solvent is alpha-helical from residues Ala4 to Thr11 and from Leu13 to Arg24. The two helical regions are not collinear; the interhelix angle (144 +/- 20 degrees ) found in this work is near that observed in the solid state and previous NMR studies. Intermolecular NOEs arising from interactions between spins of the solvent and the solute indicate that both fluoroalcohol and water molecules are strongly enough bound to the peptide that solvent-solute complexes persist for > or =2 ns. Preferential interactions of HFA with many hydrophobic side chains of the peptide are apparent while water molecules appear to be localized near hydrophilic side chains. These results indicate that interactions of both HFA and water are qualitatively different from those present when the peptide is dissolved in 35% hexafluoro-2-propanol/water, a chemically similar helix-supporting solvent system.  相似文献   

8.
Lipids have been observed attached to lumen-facing surfaces of mature xylem conduits of several plant species, but there has been little research on their functions or effects on water transport, and only one lipidomic study of the xylem apoplast. Therefore, we conducted lipidomic analyses of xylem sap from woody stems of seven plants representing six major angiosperm clades, including basal magnoliids, monocots and eudicots, to characterize and quantify phospholipids, galactolipids and sulfolipids in sap using mass spectrometry. Locations of lipids in vessels of Laurus nobilis were imaged using transmission electron microscopy and confocal microscopy. Xylem sap contained the galactolipids di- and monogalactosyldiacylglycerol, as well as all common plant phospholipids, but only traces of sulfolipids, with total lipid concentrations in extracted sap ranging from 0.18 to 0.63 nmol ml−1 across all seven species. Contamination of extracted sap from lipids in cut living cells was found to be negligible. Lipid composition of sap was compared with wood in two species and was largely similar, suggesting that sap lipids, including galactolipids, originate from cell content of living vessels. Seasonal changes in lipid composition of sap were observed for one species. Lipid layers coated all lumen-facing vessel surfaces of L. nobilis, and lipids were highly concentrated in inter-vessel pits. The findings suggest that apoplastic, amphiphilic xylem lipids are a universal feature of angiosperms. The findings require a reinterpretation of the cohesion-tension theory of water transport to account for the effects of apoplastic lipids on dynamic surface tension and hydraulic conductance in xylem.  相似文献   

9.
By using a shell-modeling analysis for small-angle scattering data of ganglioside micellar dispersion, we recently reported that the elevation of temperature induces a significant shrinkage of the hydrophilic region of the ganglioside micelle, suggesting that the oligosaccharide chains with sialic acid residues of ganglioside molecules change the conformation, sensitively responding to a change in temperature (Hirai et al., 1996. Biophys. J. 70:1761-1768; J. Phys. Chem. 100:11675-11680). We have carried out further analyses of the temperature dependence of the structural parameters reported previously, and we have found clear evidence of reversible extrusion and occlusion of a large amount of water in the hydrophilic region of the ganglioside micelle in the physiological temperature range of 6-60 degrees C. The present results suggest a remarkable function of ganglioside molecules: they change the hydrophilicity of the cell surface locally as a response to variations in temperature. This phenomenon might be involved in various surface events, such as cell-cell interaction and cell surface-protein interaction.  相似文献   

10.
11.
Cha T  Guo A  Zhu XY 《Proteomics》2005,5(2):416-419
We compare the catalytic activities of enzymes immobilized on silicon surfaces with and without orientation. While oriented sulfotransferases selectively immobilized on an otherwise zero-background surface via 6xHis tags faithfully reflect activities of solution phase enzymes, those with random orientation on the surface do not. This finding demonstrates that controlling the orientation of immobilized protein molecules and designing an ideal local chemical environment on the solid surface are both essential if protein microarrays are to be used as quantitative tools in biomedical research.  相似文献   

12.
When water-coated hydrophobic surfaces meet, direct contacts form between the surfaces, driving water out. However, long-range attractive forces first bring those surfaces close. This analysis reveals the source and strength of the long-range attraction between water-coated hydrophobic surfaces. The origin is in the polarization field produced by the strong correlation and coupling of the dipoles of the water molecules at the surfaces. We show that this polarization field gives rise to dipoles on the surface of the hydrophobic solutes that generate long-range hydrophobic attractions. Thus, hydrophobic aggregation begins with a step in which water-coated nonpolar solutes approach one another due to long-range electrostatic forces. This precursor regime occurs before the entropy increase of releasing the water layers and the short-range van der Waals attraction provide the driving force to "dry out" the contact surface. The effective force of attraction is derived from basic molecular principles, without assumptions of the structure of the hydrophobe-water interaction. The strength of this force can be measured directly from atomic force microscopy images of a hydrophobic molecule tethered to a surface but extending into water, and another hydrophobe attached to an atomic force probe. The phenomenon can be observed in the transverse relaxation rates in water proton magnetic resonance as well. The results shed light on the way water mediates chemical and biological self-assembly, a long outstanding problem.  相似文献   

13.
The crystal structure of Boc-(L-Phe-D-Phe)4-OMe has been determined by x-ray diffraction analysis. The peptide crystallizes in the triclinic system, space group P1 with a = 15.290 A, b = 15.163 A, c = 19.789 A, alpha = 102.49 degrees, beta = 96.59 degrees, gamma = 74.22 degrees, and Z = 2. The structure has been solved by coupling of the molecular replacement technique and expansion by tangent formula refinement of the set of known phases. Several cycles of Fourier calculations and least-squares refinement led to the location of 194 atoms of the two independent octapeptide chains and few molecules of cocrystallized solvent (chloroform, water, and methanol). The isotropic refinement converged to R = 0.13 for the 3077 "observed" reflections. The two independent octapeptide molecule form a dimer in the solid state: the two chains are associated by interstrand hydrogen bonds (12 of the type N-H ... O = C) with the formation of a double-stranded antiparallel right-handed -- beta 5.6-helix. These double helices can be represented as a cylinder with a hydrophilic inner core represented by the peptide units and an hydrophobic exterior constituted by the aromatic moieties. The dimensions of the cylinder are equal to those observed for Boc-(L-Val-D-Val)4-OMe. In the solid state the dimers pack with each other in an hexagonal fashion with the formation of layers; between the layers, solvent molecules fill empty spaces.  相似文献   

14.
Low molecular weight solutes often exhibit elution characteristics on gel filtration columns which deviate from ideal behaviour. In many previous studies this anomalous behaviour was attributed to the existence of extremely narrow pores in the gel, inaccessible even to very small solute molecules, to explain Kd values lower than unity. Kd values of small solutes higher than unity were usually ascribed to adsorption of the solute to the gel matrix. In the present paper several observations are presented that contradict these suggestions. Experimental evidence indicates that with small solute molecules Kd values differing from unity can be fully explained by the anomalous properties of vicinal water layers at the gel matrix-water interface.  相似文献   

15.
Lamellar single crystals of the α-glucan: nigeran have been subjected to controlled enzymic degradation as an approach to understanding polysaccharide organization in these crystals. Analysis of both reactant and products by various methods argues that a situation exists where the crystals are inaccessible at 20°C but become increasingly accessible as the temperature approaches that of solution for the crystals in water. One has to conclude that chain folds are inaccessible to enzymes at 20°C and become increasingly accessible as one approaches the “melting temperature.” This could be due to increased mobility of the surface chains as temperature is raised, which produces large dynamic loops and makes enzyme degradation possible. The general conclusion is that nigeran single-crystal surfaces are disordered and increasingly mobile close to their dissolution temperature in water.  相似文献   

16.
It is commonly assumed that essentially all of the water in cells has the same ideal motional and colligative properties as does water in bulk liquid state. This assumption is used in studies of volume regulation, transmembrane movement of solutes and electrical potentials, solute and solution motion, solute solubility and other phenomena. To get at the extent and the source of non-ideally behaved water (an operational term dependent on the measurement method), we studied the motional and colligative properties of water in cells, in solutions of amino acids and glycine peptides whose surface characteristics are known, and in solution of bovine serum albumin, hemoglobin and some synthetic polypeptides. Solutions of individual amino acids with progressively larger hydrophobic side chains showed one perturbed water molecule (structured-slowed in motion) per nine square angstroms of hydrophobic surface area. Water molecules adjacent to hydrophobic surfaces form pentagonal structural arrays, as shown by X-ray diffraction studies, that are reported to be disrupted by heat, electric field, hydrostatic pressure and phosphorylation state. Hydrophilic amino acids demonstrated water destructuring (increased motion) that was attributed to dielectric realignment of dipolar water molecules in the electric field between charge groups. In solutions of proteins, several methods indicate the equivalent of 2–8 layers of structured water molecules extending beyond the protein surface, and we have recently demonstrated that induced protein conformational change modifies the extent of non-ideally behaved water. Water self-diffusion rate as measured in three different cell types was about half that of bulk water, indicating that most of the water in these cells was slower in motion than bulk water. In different cell types the extent of osmotically perturbed water ranged from less than half to almost all of the intracellular water. The assumption that essentially all intracellular water has ideal osmotic and motional behavior is not supported by the experimental findings. The non-ideality of cell water is an operational term. Therefore, the amount of non-ideally behaving water is dependent on the characteristics of water targeted, i.e. the measurement method, and a large fraction of it is explainable in mechanistic terms at a molecular level based on solute—solvent interactions.  相似文献   

17.
NMR-spin echo method has been used to study spin-lattice relaxation time of protons T1 in plant and animal cells ?? muscle tissue of fish, the cells of which unlike plant cells have no developed system of vacuoles, plastids and a solid cell wall. According to the values of T1 time a new NMR parameter K, a coefficient of relaxation effectiveness of a cell structure, has been calculated. This parameter can be used for quantitative characterization of the influence of different cell structures, the tissue water interact with, for a time of spin-lattice relaxation of water protons. It has been ascertained that the values of K coefficient in animal tissue and in storing tissues of some plants differ little; it may be stipulated by permanent transmembrane water exchange which occurs at high rate in the living cell. It has been concluded that there exists a certain similarity between water state in protoplast of plant and animal cells.  相似文献   

18.
Lateral chain packing in lipids and membranes   总被引:2,自引:0,他引:2  
The aliphatic chains of many biologically important lipids are heterogeneous and often related to the functions of the molecules. Certain phospholipids containing arachidonic acid may serve as precursors for prostaglandins, certain diglycerides may serve as second messengers for certain membrane-triggered reactions (43), and other phospholipids containing a very short chain in the two position may serve as vasoactive hormones (44). The packing of such molecules is of interest. The evidence is quite clear from both the conformation of saturated and unsaturated molecules and from mixing experiments in the solid state that long and short chains don't mix well, nor do unsaturated and saturated chains, even if they are of the same chain length. There is even some evidence to indicate that some degree of chain segregation occurs even in the liquid state. However, different chains are often associated through covalent bonds, e.g., in wax esters, diacylglycerols, triacylglycerols, and phospholipids. A variety of possibilities for chain segregation are present in the neat phases of wax esters, ceramides, diacylglycerols, and triacylglycerols. However, in the unique case of membrane lipids like phospholipids or sphingolipids, the two chains are forced to lie side by side by virtue of the interaction of the polar group with water, and thus interactions between different chains must occur. Most of the evidence suggests that, when a solid phase results in these systems, the nonspecific chain packing mode (hexagonal chain packing) is preferred. In fact, for all of the phospholipids studied thus far, clearcut evidence of specific chain-chain interaction in molecules having both unsaturated and saturated chains has never been observed. However, for mixed chain triacylglycerols, evidence of specific chain-chain interactions (beta' and even beta) has been found and some suggestions have been given as to how this might occur through chain segregation mechanisms in the neat state. The literature suggests that further work needs to be done on the interaction of different chains that are covalently linked to the same molecule. Such studies will lead to a better understanding of the structure of lipid bilayers, membranes, lipoproteins, and lipid deposits.  相似文献   

19.
Understanding the properties of interfacial water at solid–liquid interfaces is important in a wide range of applications. Molecular dynamics is becoming a widespread tool for this purpose. Unfortunately, however, the results of such studies are known to strongly depend on the selection of force fields. It is, therefore, of interest to assess the extent by which the implemented force fields can affect the predicted properties of interfacial water. Two silica surfaces, with low and high surface hydroxyl density, respectively, were simulated implementing four force fields. These force fields yield different orientation and flexibility of surface hydrogen atoms, and also different interaction potentials with water molecules. The properties for interfacial water were quantified by calculating contact angles, atomic density profiles, surface density distributions, hydrogen bond density profiles and residence times for water near the solid substrates. We found that at low surface density of hydroxyl groups, the force field strongly affects the predicted contact angle, while at high density of hydroxyl groups, water wets all surfaces considered. From a molecular-level point of view, our results show that the position and intensity of peaks observed from oxygen and hydrogen atomic density profiles are quite different when different force fields are implemented, even when the simulated contact angles are similar. Particularly, the surfaces simulated by the CLAYFF force field appear to attract water more strongly than those simulated by the Bródka and Zerda force field. It was found that the surface density distributions for water strongly depend on the orientation of surface hydrogen atoms. In all cases, we found an elevated number of hydrogen bonds formed between interfacial water molecules. The hydrogen bond density profile does not depend strongly on the force field implemented to simulate the substrate, suggesting that interfacial water assumes the necessary orientation to maximise the number of water–water hydrogen bonds irrespectively of surface properties. Conversely, the residence time for water molecules near the interface strongly depends on the force field and on the flexibility of surface hydroxyl groups. Specifically, water molecules reside for longer times at contact with rigid substrates with high density of hydroxyl groups. These results should be considered when comparisons between simulated and experimental data are attempted.  相似文献   

20.
Electron microprobe step-scan analyses across the inner nacreous layer of a sectionedMytilus edulis shell revealed no long-term periodic (e.g., seasonal) variation in the concentration of strontium. Similarly, no significant difference was found between a specimen sampled in February (water temperature = 1.3 °C) and one sampled in August (water temperature = 18.0 °C) with regard to the concentration of strontium within the most recently deposited aragonite. Correlation of the amount of strontium within various nacreous regions of the shells of living or fossil mytilids with water temperatures (present or past) is probably not possible through the use of an electron probe, at least to the extent that strontium variation within the nacre ofMytilus edulis is representative of that in nacreous layers of all mytilids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号