首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat liver mitochondria were fractionated into inner and outer membranes and soluble intermembrane space and matrix. The protein components of these fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Mitochondria contained at least 20 components ranging in molecular weights from 10 000 to 140 000. Inner membranes differed markedly from outer membranes both in number of components and size distribution. The intermembrane space contained a few polypeptide species. These were of low molecular weight. The matrix was characterized by a high molecular weight component (130 000) which comprised 30% of this fraction. A major carbohydrate-containing polypeptide with an approximate molecular weight of 93 000 was detected in outer membrane preparations.  相似文献   

2.
Mitochondria from bovine hearts were fractionated by three different procedures and the fractions were characterized by marker enzymes. Highly purified outer membranes, membrane vesicles, and inner membranes, as well as two high-speed soluble fractions, were obtained. Azide (or oligomycin) resistant ATPase was not found to be a marker for outer membranes. The data were consistent with the association of the protein kinase activity with the soluble matrix of the mitochondria. Activity was highest with histone H2B as the substrate, with histone H1 next in preference. In contrast to the mitochondrial protein kinases studied previously, protamine, casein, and phosvitin were very poor substrates and there was no detectable phosphorylation of pyruvate dehydrogenase. Activity was stimulated by cAMP but not by cGMP, calmodulin, or phosphatidylserine--diolein, with or without Ca2+. Two cAMP-dependent isozymes were separated from the soluble fraction of the mitochondria by chromatography on DE-52 columns. Phosphorylation of histone H2B by the isozymes was inhibited by 98% by Kemptide.  相似文献   

3.
Membrane fractions containing intact etioplasts, etioplast inner membranes, prolamellar bodies or prothylakoids from wheat ( Triticum aestivum L. cv. Walde) were assayed for chlorophyll synthetase activity. Calculated on a protein basis, the etioplast inner membrane fraction showed a higher activity than the intact etioplasts. The activity was higher in the prolamellar body fraction than in the prothylakoid fraction. However, when the fractions were incubated in isolation medium with 50% (w/w) sucrose and 0.3 m M NADPH, chlorophyll synthetase activity could not be detected in the prolamellar body fraction, while the prothylakoid fraction maintained a high activity. The spectral shift to a shorter wavelength of the newly formed endogenous chlorophyllide was very rapid in the prothylakoid fraction but slow in the prolamellar body fraction. The relation between the spectral shift of chlorophyllide and the esterification activity in the fractions is discussed. Even exogenous short-wavelength chlorophyllide could not be esterified in well preserved prolamellar bodies. This indicates that chlorophyll synthetase is present in an inactive state in the prolamellar body structure. A large-scale method for the synthesis of geranylgeranylpyrophosphate, one of the substrates of the chlorophyll synthetase reaction, is also presented.  相似文献   

4.
The presence of lipid- and protein-bound sugars in the major organelle fractions isolated from germinating castor bean (Ricinus communis L.) endosperm has been established. Microsomes, glyoxysomes and mitochondria were subfractionated into a membrane fraction and a fraction containing peripheral membrane and soluble matrix proteins. The membranes were further subfractionated into monosaccharide lipid, oligosaccharide lipid and lipid-free protein components. The constituent sugars present in the prepared fractions were released and identified by gas-liquid chromatography. While all derived protein fractions contained the N-acetylglucosamine and mannose typically found in the inner core region attached to asparagine residues in many glycoproteins, some differences were noted in the organellar distribution of peripheral sugars such as fucose, arabinose, and xylose.  相似文献   

5.
M Baudry  J P Clot  R Michel 《Biochimie》1975,57(1):77-83
Liver mitochondria were isolated from normal and thyroidectomized rats and their protein components analyzed by polyacrylamide gel electrophoresis. In whole mitochondria 35 protein fractions with MW ranging from 10,000 to 135,000 were characterized. In the absence of thyroid hormone secretion, the amount of a MW 54,000 fraction was always decreased. Injection of small doses of 3,5,3'-triiodo-L-thyronine to the thyroidectomized animal restored the quantity of that protein fraction to normal. Isolated outer mitochondrial membranes showed the presence of 20 protein fractions. These fractions revealed no change after thyroidectomy. The mitoplast, which contained 35 fractions, exhibited a decrease of the MW 54,000 component in thyroidectomized rats. The mitoplast was separated into several fractions. Water soluble matrix proteins presented molecular weights ranging between 40,000 and 55,000. Proteins, which were slightly bound to the inner mitochondrial membrane and could be extracted by KCl, presented molecular weights between 25,000 and 45,000. Structural proteins showed a principal specific component of MW equals 23,000. Electrophoretic patterns obtained with these submitochondrial fractions were similar in normal and thyroidectomized animals. The mitoplast fraction which contained the insoluble cytochromes (a, a3, b, c1) was isolated ; its principal constituent, of MW 54,000 was significantly decreased after thyroidectomy. Thus, the lack of thyroid hormone secretion lowered the level of a protein constituent bound to the inner membrane of liver mitochondria. The synthesis of this constituent could be controlled by mitochondrial nucleic acids.  相似文献   

6.
A fraction of secretion granules has been isolated from rabbit parotid by a procedure which was found to be especially effective in reducing contamination resulting from aggregation and/or cosedimentation of granules with other cell particulates. The fraction, representing 15 percent (on the average) of the total tissue amylase activity, was homogeneous as judged by electron microscopy and contaminated to exceedingly low levels by other cellular organelles as judged by marker enzymatic and chemical assays. Lysis of the granules was achieved by their gradual exposure to hypotonic NaHCO3, containing 0.5 mM EDTA. The content and the membranes separated by centrifugation of the granule lysate were characterized primarily by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis which indicated that the content was composed of a limited number of molecular weight classes of polypeptides of which three bands (having approximate mol wt 58,000, 33, 000, and 12,000) could be considered major components. The gel profile of the membrane subfraction was characterized by 20-30 Coomassie brilliant blue-staining bands of which a single species of mol wt 40,000 was the conspicuous major polypeptide. Two types of experiments employing gel electrophoretic analysis were carried out for identifying and assessing the extent of residual secretory protein adsorbed to purified granule membranes: (a) examination of staining and radioactivity profiles after mixing of radioactive secretion granule extract with nonradioactively labeled granule membranes and (b) comparison of gel profiles of secretion granule extract and granule membranes with those of unlysed secretion granules and secretory protein dischraged from lobules in vitro or collected by cannulation of parotid ducts, the last two samples being considered physiologic secretory standards. The results indicated that the membranes were contaminated to a substantial degree by residual, poorly extractable secretory protein even though assays of membrane fractions for a typical secretory enzyme activity (amylase) indicated quite through separation of membranes and content. Hence, detailed examination of membrane subfractions for residual content species by gel electrophoresis points to the general unity and sensitivity of this technique as a means for accurately detecting a defined set of polypeptides occurring as contaminants in cellular fractions or organelle subfractions.  相似文献   

7.
A method has been developed to separate the cell envelope of encapsulated (type b) Haemophilus influenzae into its outer and inner membrane components with procedures that avoided two problems encountered in fractionation of this envelope: (i) the tendency of the outer and inner membranes to hybridize and (ii) the tendency of the apparently fragile inner membrane to fragment into difficulty sedimentable units. Log phage cells, whose lipids were radioactively labeled, were lysed by passage through a French press. The lysate was applied to a discontinuous sucrose gradient, and envelope-rich material was collected by centrifugation onto a cushion of dense sucrose under carefully controlled conditions. This material was then further fractionated by isopycnic centrifugation in a sucrose gradient to yield four membrane fractions which were partially characterized. On the basis of their radioactivity, buoyant density, ultrastructure, polypeptide composition, and content of phospholipid, protein, lipopolysaccharide, and succinic dehydrogenase, these fractions were identified as follows: fraction 1, outer membrane vesicles with very little inner membrane contamination (less than 4%); fraction 2, outer membrane vesicles containing entrapped inner membrane; fraction 3, a protein-rich fraction of inner membrane; fraction 4, a protein-poor fraction of inner membrane. Fractions 3 and 4 contained about 25% outer membrane contamination.  相似文献   

8.
Abstract Highly purified preparations of inner, i.e. cytoplasmic and intracytoplasmic, membranes and outer membranes were isolated from Nitrobacter hamburgensis strain X14 by sucrose density-gradient centrifugation of cell-free extracts. The two membrane fractions differed markedly in morphology, density, and protein composition as determined by polyacrylamide gel electrophoresis. The inner membrane fraction was enriched in NADH oxidase and nitrite oxidase activity. It contained four major protein bands of apparent M rs of 28 000, 32 000, 70 000, and 116000. The outer membrane fraction was characterized by the presence of 2-keto-3-deoxyoctonate and contained two major proteins of apparent M rs of 13 000 and 50 000. There was no evidence for differences between cytoplasmic and intracytoplasmic membranes.  相似文献   

9.
Pressure homogenization and subcellular fractionation has been performed on washed, human platelets and platelets treated with thrombin to undergo the so-called release reaction. Electron microscopy revealed that the particulate zones obtained from the control sample corresponded to membrane vesicles (B), small storage granules (D) as well as mitochondria and larger storage granules (E). Only a few storage granules could be observed in the particulate zones isolated from thrombin-treated platelets. Visual comparison of the sucrose gradient patterns revealed that one granule fraction (D) had disappeared from the thrombin-treated sample. Sodium dodecysulfate-polyacrylamide gel electrophoresis showed a major protein band (mol. wt 145 500 plus or minus 1000) in the extracellular phase (supernatant after removal of the platelets) of the thrombin-treated sample and in the granule fractions (D and E) of the control (mol. wt 147 000 plus or minus 1000). Incubation of whole, washed platelets with thrombin for 5 min at 37 degrees C followed by sodium dodecylsulfate-polyacrylamide gel electrophoresis of the isolated membrane fraction revealed no reproducible differences in the protein band pattern compared to membranes isolated from control platelets. However, after treatment with thrombin for 30 min, a protein band (mol. wt 183 000 plus or minus 3500) had disappeared. The distribution of protein and beta-N-acetylglucosaminidase activity among the subcellular fractions were measured. Both were mainly recovered in the soluble fraction (greater than 77%). The granule fractions, D and E of the control contained 3.0% plus or minus 0.8% and 6.4% plus or minus 1.3% of the total amount of beta-N-acetylglucosaminidase in the gradient. Fraction E of the thrombin-treated cells contained 3.3% plus or minus 1.0% of total while fraction D was lacking.  相似文献   

10.
1. Mitochondria were isolated from developing endosperm of Ricinus communis and were fractionated into outer membrane and inner membrane. The relative purity of the two membrane fractions was determined by marker enzymes. The fractions were also examined by negative-stain electron microscopy. 2. Membrane fractions were sequentially extracted in the following way. (a) Suspension in 0.5M-potassium phosphate, pH7.1; (b)suspension in 0.1M-EDTA (disodium salt)/0.05M-potassium phosphate, pH7.1; (c) sonication in 0.05M-potassium phosphate, pH7.1;(d)sonication in aq. Triton X-100 (0.1%). The membranes were pelleted by centrifugation at 100 000g for 15 min, between each step. Agglutination activity in the extracts was investigated by using trypsin-treated rabbit erythrocytes. 3. The addition of lactose to inner mitochondrial membrane resulted in the solubilization of part of the lectin activity, indicating that the protein was attached to the membrane via its carbohydrate-binding site. Pretreatment of the membranes with lactose before tha usual extraction procedure showed that lactose could extract lectins that normally required more harsh treatment of the membrane for solubilization. 4. Lectins extracted from inner membranes were purified by affinity chromatography on agarose gel. Polyacrylamide-gel electrophoresis of purified samples in sodium dodecyl sulphate indicated that at least part of the lectin present in inner mitochondrial membrane was identical with the R. communis agglutinin of mol.wt. 120 000.  相似文献   

11.
We have isolated outer and inner membranes of Serpulina hyodysenteriae by using discontinuous sucrose density gradients. The outer and inner membrane fractions contained less than 1 and 2%, respectively, of the total NADH oxidase activity (soluble marker) in the cell lysate. Various membrane markers including lipooligosaccharide (LOS), the 16-kDa outer membrane lipoprotein (SmpA), and the C subunit of the F1F0 ATPase indicated that the lowest-density membrane fraction contained outer membranes while the high-density membrane fraction contained inner membranes and that both are essentially free of contamination by the periplasmic flagella, a major contaminant of membranes isolated by other techniques. The outer membrane fractions (rho = 1.10 g/cm3) contained 0.25 mg of protein/mg (dry weight), while the inner membrane samples (rho = 1.16 g/cm3) contained significantly more protein (0.55 mg of protein/mg [dry weight]). Lipid analysis revealed that the purified outer membranes contained cholesterol as a major component of the membrane lipids. Treatment of intact S. hyodysenteriae with different concentrations of digitonin, a steroid glycoside that interacts with cholesterol, indicated that the outer membrane could be selectively removed at concentrations as low as 0.125%.  相似文献   

12.
To determine whether certain outer membrane proteins are associated with growth of Bacteroides thetaiotaomicron on polysaccharides, we developed a procedure for separating outer membranes from inner membranes by sucrose density centrifugation. Cell extracts in 10% (wt/vol) sucrose-10 mM HEPES buffer (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) (pH 7.4) were separated into two fractions on a two-step (37 and 70% [wt/vol]) sucrose gradient. These fractions were further resolved into outer membranes (p = 1.21 g/cm3) and inner membranes (p = 1.14 g/cm3) on sucrose gradients. About 20 to 26% of the total 3-hydroxy fatty acids from lipopolysaccharide and 2 to 3% of the total cellular succinate dehydrogenase activity were recovered in the outer membrane preparation. The inner membrane preparation contained 22 to 49% of the total succinate dehydrogenase activity and 2 to 3% of the total 3-hydroxy fatty acids from lipopolysaccharide. Outer membranes contained a lower concentration of protein (0.34 mg/mg [dry weight]) than did the inner membranes (0.68 mg/mg [dry weight]). Molecular weights of inner membrane polypeptides ranged from 11,000 to 133,000. The most prominent polypeptides had molecular weights ranging from 11,000 to 26,000. In contrast, the molecular weights of outer membrane polypeptides ranged from 17,000 to 117,000. The most prominent polypeptides had molecular weights ranging from 42,000 to 117,000. There were several polypeptides in the outer membranes of bacteria grown on polysaccharides (chondroitin sulfate, arabinogalactan, or polygalacturonic acid) which were not detected or were not as prominent in outer membranes of bacteria grown on monosaccharide components of these polysaccharides.  相似文献   

13.
Etioplasts were isolated from leaves of dark-grown wheat (Triticum aestivum L. var Starke II). Galactolipid biosynthesis was assayed in an envelope-rich fraction and in the fraction containing the rest of the etioplast membranes by measuring incorporation of 14C from uridine-diphospho[14C]galactose into monogalactosyl diacylglycerol and digalactosyl diacylglycerol. More than half of the galactolipid biosynthetic capability was found in the fraction of inner etioplast membranes. This fraction was subfractioned into fractions enriched in prolamellar bodies and membrane vesicles (prothylakoids), respectively. All membrane fractions obtained from etioplasts were able to carry out galactolipid biosynthesis, although the activity was very low in prolamellar body-enriched fractions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed markedly different polypeptide patterns between the different fractions. It is concluded that the capability of galactolipid biosynthesis of etioplasts probably is not restricted to the envelope, but is also present in the inner membranes of this plastid.  相似文献   

14.
Envelope membranes were isolated by sucrose density gradient floatation centrifugation from the homogenate of cyanelles prepared from Cyanophora paradoxa. Two yellow bands were separated after 40 h of centrifugation. The buoyant density of one of the two fractions (fraction Y2) coincided with that of inner envelope membranes of spinach or plasma membranes of cyanobacteria. The other yellow fraction (fraction Y1) migrated to top of sucrose-gradient even at 0% sucrose. Pigment analysis revealed that the heavy yellow fraction was rich in zeaxanthin while the light fraction was rich in β-carotene, and the both fractions contained practically no chlorophylls. Another yellow fraction (fraction Y3) was isolated from the phycobiliprotein fraction, which was the position where the sample was placed for gradient centrifugation. Its buoyant density and absorption spectra were similar to outer membranes of cyanobacteria. We have assigned fractions Y2 and Y3 as inner and outer envelope membrane fractions of cyanelles, respectively. Protein compositions were rather different between the two envelope membranes indicating little cross-contamination among the fractions. H. Koike and Y. Ikeda contributed equally.  相似文献   

15.
In order to characterize the protein composition of the outer membrane of Borrelia burgdorferi, we have isolated inner and outer membranes by using discontinuous sucrose density step gradients. Outer and inner membrane fractions isolated by this method contained less than 1 and 2%, respectively, of the total lactate dehydrogenase activity (soluble marker) in cell lysate. More importantly, the purified outer membranes contained less than 4% contamination by the C subunit of F1/F0 ATPase (inner membrane marker). Very little flagellin protein was present in the outer membrane sample. This indicated that the outer membranes were relatively free of contamination by cytoplasmic, inner membrane or flagellar components. The outer membrane fractions (rho = 1.19 g/cm3) contained 0.15 mg (dry weight) of protein per mg. Inner membrane samples (rho = 1.12 g/cm3) contained 0.60 mg (dry weight) of protein per mg. Freeze-fracture electron microscopy revealed that the outer membrane vesicles contained about 1,700 intramembranous particles per micron 2 while inner membrane densities for inner and outer membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and nonequilibrium pH gel electrophoresis-SDS-PAGE analyses of inner and outer membrane samples revealed several proteins unique to the inner membrane and 20 proteins that localized specifically to the outer membrane. This analysis clearly shows that the inner and outer membranes isolated by this technique are unique structures.  相似文献   

16.
Cytoplasmic membranes of Escherichia coli K12 C600 treated and not treated with colicin K were dissociated into unsolubilized and solubilized fractions. Neither fraction catalyzed ATP-linked transhydrogenase activity. Mixtures of unsolubilized fractions of the untreated bacteria with solubilized fractions of either the treated or untreated bacteria yielded reconstituted membranes with restored ATP-linked transhydrogenase activity. The level of the activity was similar to that of the undissociated membranes of untreated bacteria. The membranes which were reconstituted from unsolubilized fractions of the treated bacteria and the solubilized fraction of the treated or the untreated bacteria showed impairment of activity. The impairment is not due to an inability to bind ATPase of the soluble fraction or to an incorrect binding of the ATPase. The impaired, reconstituted membranes showed striking decreases in the relative amounts of three proteins with apparent molecular weights of 122,000, 73,000, and 62,000. The affected proteins were found to be components of the unsolubilized membrane fraction. It is, thus, concluded that the impaired activity is due to the defective nature of the unsolubilized membrane fraction of colicin-treated cells.  相似文献   

17.
Edeine-synthesizing polyenzymes, associated with a complex of cytoplasmic membrane and DNA, were obtained from gently lysed cells of Bacillus brevis Vm4. The polyenzymes-membrane-DNA complex, isolated from cells intensively synthesizing edeines (18–20 h culture) contained edeine B. Edeine B was found to be bound covalently to the edeine synthetase. The amount of edeine bound to polyenzymes was 0.1–0.3 μmol/mg protein, depending on the age of cells.Detachment of edeine synthetase with a covalently bound edeine B from the membrane-DNA complex was accomplished by a treatment with (NH4)2SO4 at 45–55% saturation or by DEAE-cellulose colum fractionation. In contrast to other components of the complex, the edeine-polyenzymes fragment was not adsorbed to the DEAE-cellulose. Sephadex G-200 column chromatography separated the edeine-polyenzymes complex into 3 fractions. Edeine-polyenzymes complex, obtained from lysozyme-Brij-58-DNAase treated cells, contained edeine B bound to protein fraction of mol. wt 210 000 and 160 000. Edeine-polyenzymes complex detached from the complex with the membrane and DNA contained edeine B, bound only to protein fraction of mol. wt 210 000. Edeine A was not found in the edeine-polyenzymes complex. No accumulation of free antibiotics within 16–22 h old cells of B. brevis Vm4 was detected. The edeine-polyenzymes complex associated with the DNA-membrane complex has shown no antimicrobial activity. By treating of above with alkali, edeine b of specific activity: 80 units/μmol was released.The complex of DNA-membrane associated with edeine-polyenzymes complex was able to synthesize DNA, under the conditions described for synthesis, directed by a DNA-membrane complex. Edeine when associatd with this complex did not effect the DNA-synthesizing activity.  相似文献   

18.
Edeine-synthesizing polyenzymes, associated with a complex of sytoplasmic membrane and DNA, were obtained from gently lysed cells of Bacillus brevis Vm4. The polyenzymes-membrane-DNA complex, isolated from dells intensively synthesizing edeines (18--20 h culture) contained edeine B. Edeine B was found to be bound covalently t o the edeine synthetase. The amount of edeine bound to polyenzymes was 0.1--0.3 mumol/mg protein, depending on the age of cells. Detachment of deeine synthetase with a covalently bound edeine B from the membrane-DNA complex was accomplished by a treatment with (NH4)2-SO4 at 45--55% saturation or by DEAE-cellulose column fractionation. In contrast to other components of the complex, the edeine-polyenzymes fragment was not adsorbed to the DEAE-cellulose. Sephadex G-200 column chromatography separated the edeine-polyenzymes complex into 3 fractions. Edeine-polyenzymes complex, obtained from lysozyme-Brij-58-DNAase treated cells, contained edeine B bound to two protein fractions of mol. wt 210 000 and 160 000. Edeine-polyenzymes complex detached from the complex with the membrane and DNA contained edeine B, bound only to protein fraction of mol. wt 210 000. Edeine A was not found in the edeine-polyenzymes complex. No accumulation of free antibiotics within 16--22 h old cells of B. brevis Vm4 was detected. The edeine-polyenzymes complex associated with the DNA-membrane complex has shown no antimicrobial activity. By treating of above with alkali, edeine B of specific activity: 80 units/mjmol was released. The complex of DNA-membrane associated with edeine-polyenzymes complex was able to synthesize DNA, under the conditions described for synthesis, directed by a DNA-membrane complex. Edeine when associated with this complex did not effect the DNA-synthesizing activity.  相似文献   

19.
Rat liver mitochondrial fractions corresponding to four morphological structures (matrix, inner membrane, intermembrane space and outer membrane) contain proteinases that cleave casein components at different rates. Proteinases of the intermembrane space preferentially cleave kappa-casein, whereas the proteinases of the outer membrane, inner membrane and matrix fractions degrade alpha S1-casein more rapidly. Electrophoretic separation of the degradation products of alpha S1-casein and kappa-casein in polyacrylamide gels shows that different polypeptides are produced when the substrate is degraded by the matrix, by both membranes and by the intermembrane-space fraction. Some of the degradation products resulting from incubation of the caseins with the mitochondrial fractions are probably the result of digestion by contaminating lysosomal proteinase(s). The matrix has a high peptidase activity, since glucagon, a small peptide, is very rapidly degraded by this fraction. These observations strongly suggest that distinct proteinases, with different specificities, are associated respectively with the intermembrane space and with both membrane fractions.  相似文献   

20.
Extraction of mouse liver plasma membranes with 4% (w/v) N-laurylsarcosinate-tris buffer, pH7.8, solubilized 80-90% of the protein and 60% of the 5'-nucleotidase activity. The membrane residue remaining after extraction was resolved on sucrose gradients into two fractions: a vesicular membrane fraction and a fraction characterized by the presence of large numbers of nexuses in an amorphous background. The vesicular fraction had a phospholipid/protein weight ratio of 7:1, it contained most of the plasma-membrane glycolipids, and polyacrylamide-gel electrophoresis indicated the presence of only five to eight proteins, including two or three glycoproteins. The 5'-nucleotidase and leucine naphthylamidase specific activities were 23- and 6-fold higher respectively than in the plasma membranes. Electron microscopy of thin sections and negatively stained preparations indicated that the nexuses present in the second fraction closely resembled gap junctions present in tissue sections and isolated plasma membranes. The nexus fraction contained a distinctive protein pattern, and of the 20 proteins present about four were identified as glycoproteins by Schiff-periodate staining. Examination of the lipid composition of the fractions by t.l.c. showed that in the nexus fraction, phospholipids and glycolipids were present in small amounts compared with triglycerides and cholesterol. Amino sugar analyses confirmed the t.l.c. results and amino acid analysis showed the fractions to have characteristic protein compositions. A ;reconstituted' membranous fraction prepared by dialysis against MgCl(2) of membrane components soluble in N-laurylsarcosinate-tris buffers, pH7.8, lacked the trilaminar image characteristic of the two other membrane fractions isolated and was devoid of enzyme activities. The results indicate that proteins and glycoproteins play an important role in the structural maintenance of the nexuses isolated from the liver by the present procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号