首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Ecklonia radiata (C. Agardh) J. Agardh kelp beds — a characteristic feature of the nearshore environment along the south‐west Australian coastline — contribute significantly to the coastal biodiversity in temperate Australia, yet, little is known about the organization of these macroalgal assemblages. By compiling existing and new data sets from habitat surveys, we have characterized and compared the structure of kelp‐associated macroalgal assemblages in three regions (Marmion Lagoon, Hamelin Bay and the marine environment neighbouring the Fitzgerald River National Park) across more than 1000 kilometres of the south‐west Australian coastline. 152 macroalgal taxa had been recognized within the three regions and this is in the range of species richness reported from other Australian and African kelp beds. The kelp‐associated algal assemblages were regionally distinct, 66% of all taxa were only found in one region and only 17 taxa were found in all three regions. Adjacent regions shared an additional 13–15 taxa. The regional shifts in assemblage structure were evident in species composition of both canopy and understorey. The organization of assemblages followed a spatial hierarchy where differences in assemblage structure were larger among regions (hundreds of kilometres apart) than among sites within regions (kilometres apart) and differences among sites within region were larger than differences among quadrats within sites (metres apart). Despite this hierarchy each level of nesting contributed approximately the same to total variation in assemblage structure and these spatial patterns were stronger than temporal differences from seasons to 2–3 years. Our results suggest that local and small‐scale processes contribute considerably to heterogeneity in macroalgal assemblages throughout south‐western Australia, and, in particular, our results are consistent with E. radiata exerting a strong influence on macroalgal assemblage structure. Further, our study contradicts the existence of a general south‐west Australian kelp assemblage, although a few species may form the core of E. radiata associations across regions.  相似文献   

2.
We tested the ability of sporophytes of a small kelp, Ecklonia radiata (C. Agardh) J. Agardh, to adjust their photosynthesis, respiration, and cellular processes to increasingly warm ocean climates along a latitudinal gradient in ocean temperature (~4°C). Tissue concentrations of pigment and nutrients decreased with increasing ocean temperature. Concurrently, a number of gradual changes in the metabolic balance of E. radiata took place along the latitudinal gradient. Warm‐acclimatized kelps had 50% lower photosynthetic rates and 90% lower respiration rates at the optimum temperature than did cool‐acclimatized kelps. A reduction in temperature sensitivity was also observed as a reduction in Q10‐values from cool‐ to warm‐acclimatized kelps for gross photosynthesis (Q10: 3.35 to 1.45) and respiration (Q10: 3.82 to 1.65). Respiration rates were more sensitive to increasing experimental temperatures (10% higher Q10‐values) than photosynthesis and had a higher optimum temperature, irrespective of sampling location. To maintain a positive carbon balance, E. radiata increased the critical light demand (Ec) exponentially with increasing experimental temperature. The temperature dependency of Ec was, however, weakened with increasing ocean temperature, such that the critical light demand was relaxed in kelp acclimated to higher ocean temperatures. Nevertheless, calculations of critical depth limits suggested that direct effects of future temperature increases are unlikely to be as strong as effects of reduced water clarity, another globally increasing problem in coastal areas.  相似文献   

3.
Plants are often grouped as canopy species or understorey species because it is thought that that these sets of taxa interact in predictable ways. Mensurative experiments in southern Australia demonstrated that the percentage cover of encrusting coralline algae was greater, and articulated (branching) coralline algae less, on boulders under a canopy of dense kelp (>7 plants per m2), Ecklonia radiata, than on boulders without kelp. Experimental clearances of kelp and reciprocal transplants of boulders between patches of E. radiata and patches without kelp showed that canopies maintained and facilitated the growth of encrusting coralline algae and reduced the cover of articulated coralline algae. Potential artefacts associated with clearing kelp and transplanting boulders were not detected when tested with a series of translocation controls. These results reject the model that the co‐occurrence of E. radiata and encrusting corallines is just an assemblage of plants caused by spatial and temporal coincidence. Instead, they support the model that kelp facilitates the growth and survival of understorey algae.  相似文献   

4.
Environmental conditions that are known to cause morphological variation in algae (e.g., wave exposure) often vary in both space and time and are superimposed onto the distinct seasonal growth cycles of most temperate macroalgae. We tested the hypothesis that the morphology of the small kelp Ecklonia radiata (C. Agardh) J. Agardh is the product of an interaction between site (five reefs of different wave exposure) and the time of year that sampling occurs (summer vs. winter 2004). We determined that wave exposure had a strong directional effect on kelp morphology, with “Reefs” accounting for up to 43.4% of variation in individual morphological characters. “Times” had a narrowly nonsignificant effect on overall morphology but accounted for up to 31% of variation in individual characters. Many characters were affected by wave exposure, whereas only a few were (strongly) affected by time (e.g., thallus biomass). Interactive effects between “Reefs” and “Times” were generally small, accounting for 15.8% of variation in lamina thickness, but much less for most other characters. We conclude that wave exposure exerts a strong control over the morphology of E. radiata, but that the nature of the effect depends on the magnitude of wave exposure. We also conclude that most of the effects of wave exposure are consistent through time and do not interact with cycles of growth and pruning in any major way.  相似文献   

5.
Ecosystem engineers are species that influence the abiotic and biotic environment around them and may assist the restoration of associated species, including other habitat‐forming species. We deployed an array of 28 artificial reefs with transplanted Ecklonia radiata, the dominant canopy‐forming kelp species across southern Australia, to investigate how the patch size and density of E. radiata influenced the establishment of the associated communities of plants and animals. Many of the reefs were rapidly colonized by Ostrea angasi, a critically depleted reef‐forming oyster. Over the 24‐month deployment of the reefs, thick oyster mats formed across the entire surface of many of the reefs with estimated biomass densities exceeding 5 kg of live oysters/m2; however, oyster density was dependent on E. radiata patch size and density. Increasing patch size and the presence of kelp resulted in significantly higher densities of oysters 5 months after the reefs were deployed and at the end of the experiment, where oysters were approximately three times more numerous on reefs with kelp compared to those without kelp. E. radiata appeared to facilitate the establishment of O. angasi largely through its capacity to reduce benthic light and thus suppress competition from turfing algae. These results may inform the development of novel approaches to tackle recruitment bottlenecks affecting the restoration of O. angasi reefs.  相似文献   

6.
The monthly productivity, standing stock, plant size and density of Ecklonia radiata (C.Ag.) J. Agardh is presented for a 2-yr period. Annual production was 20.7 kg wet wt · m?2 with maximum growth of 0.9% per day in spring (October–December) and minimum growth of 0.2% per day in late summer. (March–April). A close negative correlation was found between spring and summer growth and water temperature. Maximum biomass (18 kg wet wt · m ?2) did not coincide with maximum growth but occurred in late summer. Minimum biomass (6 kg wet wt · m ?2) occurred in winter. An estimate of erosion of plant material from the kelp bed was made from these data and a hypothesis concerning the ultimate destination of eroded and removed kelp plants was formulated.  相似文献   

7.
Disturbance of competitive‐dominant plant and algae canopies often lead to increased diversity of the assemblage. Kelp forests, particularly those of temperate Western Australia, are habitats with high alpha diversity. This study investigated the roles of broad‐scale canopy loss and local scale reef topography on structuring the kelp‐dominated macroalgal forests in Western Australia. Eighteen 314 m2 circular areas were cleared of their Ecklonia radiata canopy and eighteen controls were established across three locations. The patterns of macroalgal recolonisation in replicate clearances were observed over a 34 month period. Macroalgal species richness initially increased after canopy removal with a turf of filamentous and foliose macroalgae dominating cleared areas for up to seven months. A dense Sargassum canopy dominated cleared areas from 11 to 22 months. By 34 months, partial recovery of the kelp canopy into cleared areas had occurred. Some cleared areas did not follow this trajectory but remained dominated by turfing, foliose and filamentous algae. As kelp canopies developed, the initial high species diversity declined but still remained elevated relative to undisturbed controls, even after 34 months. More complex reef topography was associated with greater variability in the algal assemblage between replicate quadrats suggesting colonising algae had a greater choice of microhabitats available to them on topographically complex reefs. Shading by canopies of either Sargassum spp. and E. radiata are proposed to highly influence the abundance of algae through competitive exclusion that is relaxed by disturbance of the canopy. Disturbance of the canopy in E. radiata kelp forests created a mosaic of different patch types (turf, Sargassum‐dominated, kelp‐dominated). These patch types were both transient and stable over the 34 months of this study, and are a potential contemporary process that maintains high species diversity in temperate kelp‐dominated reefs.  相似文献   

8.
Temperate kelp forests (Laminarians) are threatened by temperature stress due to ocean warming and photoinhibition due to increased light associated with canopy loss. However, the potential for evolutionary adaptation in kelp to rapid climate change is not well known. This study examined family‐level variation in physiological and photosynthetic traits in the early life‐cycle stages of the ecologically important Australasian kelp Ecklonia radiata and the response of E. radiata families to different temperature and light environments using a family × environment design. There was strong family‐level variation in traits relating to morphology (surface area measures, branch length, branch count) and photosynthetic performance (Fv/Fm) in both haploid (gametophyte) and diploid (sporophyte) stages of the life‐cycle. Additionally, the presence of family × environment interactions showed that offspring from different families respond differently to temperature and light in the branch length of male gametophytes and oogonia surface area of female gametophytes. Negative responses to high temperatures were stronger for females vs. males. Our findings suggest E. radiata may be able to respond adaptively to climate change but studies partitioning the narrow vs. broad sense components of heritable variation are needed to establish the evolutionary potential of E. radiata to adapt under climate change.  相似文献   

9.
The Aleutian Archipelago coastal ecosystem has undergone a dramatic change in community composition during the past two decades. Following the removal of ~99% of the sea otters, Enhydra lutris, from the ecosystem, changes to the benthic communities resulted in widespread losses to most of the region’s kelp beds and corresponding increases in the prevalence of urchin barrens. Within the urchin barrens, the few kelps that have remained are exposed to elevated light, nutrients and currents, all of which may enhance their physiological condition and thus result in greater fecundity. To explore this further, we examined patterns of sporophyte fecundity in the dominant canopy‐forming kelp, Eualaria fistulosa, in both urchin barrens and in nearby kelp beds at seven Aleutian Islands spanning a range of 800 km. We found that the average weight of E. fistulosa sporophyll bundles was significantly greater on sporophytes occurring in the urchin barrens than in the nearby kelp beds. Furthermore, the average number of zoospores released per cm2 of sporophyll area was also significantly greater in individuals from the urchin barrens than the nearby kelp beds. When these two metrics were combined, our results suggest that individual E. fistulosa sporophytes occurring in the urchin barrens may produce as many as three times more zoospores than individual E. fistulosa sporophytes occurring in the nearby kelp beds, and thus they may contribute disproportionately to the following year’s sporophyte recruitment in both urchin barrens and the adjacent kelp beds.  相似文献   

10.
We investigated interspecific variation in leaf lifespan (persistence) and consequent differences in leaf biochemistry, anatomy, morphology, patterns of whole-tree carbon allocation and stand productivity. We tested the hypothesis that a species with short-lived foliage, Pinus radiata D. Don (mean leaf lifespan 2.5 years), grows faster than P. pinaster Ait., a species with more persistent foliage (leaf lifespan 5.6 years), and that the faster growth rate of P. radiata is associated with a greater allocation of nitrogen and carbon to photosynthetic tissues across a range of scales. In fully sunlit foliage, the proportion of leaf N in the major photosynthetic enzyme Rubisco (ribulose-1, 5-bisphosphate carboxylase) was greater in P. radiata than in P. pinaster, and, in mid-canopy foliage, the proportion of leaf N in thylakoid proteins was greater in P. radiata. A lesser proportion of needle cross-sectional area was occupied by structural tissue in P. radiata compared to P. pinaster. Foliage mass in stands of P. radiata was 9.7 t ha–1 compared with 18.2 t ha–1 in P. pinaster while leaf area index of both species was similar at 4.6 m2 m–2, owing to the compensating effect of differences in specific leaf area. Hence trade-offs between persistence and productivity were apparent as interspecific differences in patterns of whole-tree carbon allocation, needle morphology, anatomy and biochemistry. However, these interspecific differences did not translate into differences at the stand scale since rates of biomass accumulation were similar in both species (P. radiata 6.9±0.9 kg year–1 tree–1; P. pinaster 7.4±0.9 kg year–1 tree–1). The similarities in performance at larger scales suggest that leaf area index (and radiation interception) determines growth and productivity. Received: 13 July 1999 / Accepted: 31 January 2000  相似文献   

11.
We examined factors affecting the abundance and distribution of epiphytes (fouling) on the sublittoral kelp Ecklonia radiata. We first assessed the importance of phlorotannins as chemical defences against epiphytes by (a) correlating epiphyte loads on different parts of the thallus with the phlorotannin content of those tissues, and (b) experimentally testing the effects of variation in phlorotannin concentration against the settlement and growth of gametes of Ulva lactuca, a common epiphyte in the system. Tissue phlorotannin content was, at best, only weakly related to epiphyte loads, with r 2 values typically <0.10. Inhibition of Ulva gametes only occurred at concentrations >10 mg l−1, which is 5 orders of magnitude greater than levels of phlorotannins in the water column around beds of E. radiata, and 1–3 orders of magnitude greater than estimated levels in the boundary layer at the surface of the plant. We concluded that phlorotannins have a negligible impact on patterns of epiphytism on E. radiata, and proceeded to investigate other factors influencing the distribution and abundance of epiphytes. In our samples the relative age of different parts of the thallus was strongly correlated with epiphyte abundance, with epiphyte densities greatest on the oldest tissue and least on the youngest. Distal parts of the thalli also had greater epiphyte loads than basal parts. Field experiments in which kelp tissue was suspended at two heights in an E. radiata forest for varying lengths of time confirmed the importance of the length of time that the tissue was in the water, and its height in the water column, to the development of an epiphyte community. Comparison of epiphyte loads on tissue from primary (smooth) and secondary (rough) laminae in these experiments indicated that surface rugosity also affected fouling. Macroherbivores were rare on E. radiata, and abundances of mesofauna and epiphytes were positively related, suggesting that grazers were not important determinants of patterns of epiphyte abundance. Although phlorotannins have been previously suggested to play an important role as defences against epiphytes, we suggest that water-soluble compounds such as phlorotannins are less likely to be effective defences against epiphytes than non-polar metabolites, which can adhere to the surface of the producing organism.  相似文献   

12.
Reef-associated fishes can respond to changes in habitat structure and the nature of their response can change with different spatial scales of observation. A structured hierarchical mensurative sampling design was used to sample temperate reef fish assemblages in northeastern New Zealand at several spatial scales over 2 years. The three spatial scales examined were tens of meters (transects), hundreds to thousands of meters (sites) and hundreds of kilometers (locations). We tested the hypothesis that fish assemblages differed between kelp forest habitat (relatively dense stands of the kelp, Ecklonia radiata (C. Agardh) J. Agardh, median depth=13.5 m) and barrens habitat (rocky reef dominated by turfing and encrusting red algae and the grazing urchin, Evechinus chloroticus (Valenciennes), median depth=6.7 m). Recently developed multivariate techniques were used to test for and quantify multivariate variation at different spatial scales. There were significant effects of habitat on the spatial distribution of fish assemblages, characterised by greater abundances or frequencies of Parika scaber, Chromis dispilus, Trachurus novaezelandiae, Nemadactylus douglasii, Bodianus unimaculatus, Odax pullus and Pseudolabrus miles in kelp forest habitat, and greater abundances or frequencies of Notolabrus celidotus, Notolabrus fucicola, Girella tricuspidata, Coris sandageri, Chironemus marmoratus, Parma alboscapularis, Scorpis violaceus and Kyphosus sydneyanus in barrens habitat. Some of the more common species, including Upeneichthys lineatus, Scorpis lineolatus and Cheilodactylus spectabilis showed no strong consistent effects of these two differing habitats on their distributions. There was, however, a significant Habitat×Locations interaction: effects of habitat did not occur at all locations. Variability was highest at the scale of individual transects and variability from site to site and from location to location was comparable. Spatial variation was large compared to inter-annual variation, which was minimal, and spatial patterns were consistent in the 2 years examined. Further experiments, including manipulations, are required to understand what mechanisms and processes might be driving these patterns. This study, coupled with results from previous studies, suggests that there may be a dynamic inter-play between effects of habitat on fish and effects of fish on biogenic habitat, such as kelp forests.  相似文献   

13.
The amphipod Allorchestes compressa Dana inhabits large accumulations of detached macrophytes in the surf-zone of sandy beaches in southern Western Australia. A. compressa is most abundant on branching red algae and least abundant on intact thalli of the kelp Ecklonia radiata (Turn.) J. Agardh., yet the major component of the gut contents is brown algae (probably E. radiata) and decomposing E. radiata ranked first in laboratory food preference experiments. Observations on the feeding behaviour of Allorchestescompressa indicated that the amphipods obtain their food by feeding on small pieces (< 3 cm) of macrophyte tissue trapped within the highly branched algae, or amphipods may move with and feed on the plant particles as they are swept around in the surf. In a particle selection experiment, using plant particles 1–3 mm sieved from the surf, A. compressa selected particles of Ecklonia radiata, leached Ulva sp., Sargassum spp., and seagrass leaves but avoided branching red algae. The influence of potential foods on the darwinian fitness of Allorchestes compressa was assessed on the basis of adult survival, the percentage of females which carried eggs, growth rates, and time to maturity measured in laboratory rearing experiments. Fitness increased in the order red algae → intact seagrass leaves → mixed particles (1–3 mm) sieved from the surf → Eckloniaradiata tissue. Given the constraints of fish predation and the fluctuating supply of E. radiata, amphipods in the surf consume close to their theoretically optimum diet by feeding mainly on E. radiata from amongst the available particles of different macrophytes. Estimates of the significance of the Allorchestes compressa population in the turnover of Ecklonia radiata biomass in the surf-zone (estimated as g Ecklonia consumed per g Ecklonia per day) showed that amphipods could turnover E. radiata biomass twice per month in summer and once every 1 to 2 months during spring and autumn. These rates are comparable with those measured for the physical breakdown and microbial decomposition of E. radiata and, except during winter, grazing by Allorchestes compressa must, therefore, be considered an important process during the remineralization of nutrients tied up in kelp biomass in the surf-zone.  相似文献   

14.
Fluctuations in plant and frond characteristics are described for Macrocystis pyrifera (L.) C. Agardh (Laminariales, Phaeophyta) forming a fringing zone in the Falkland Islands. Giant kelp plants were sampled along a transect in the austral autumn (May 1986) and late spring (December 1986) which, according to previous frond weight analysis, were the times when extremes in population parameters were expected. Plant density and holdfast wet weights were similar for both seasons, but plants had more fronds and the fronds weighed more in spring than in autumn. Consequently, in autumn the frond biomass (1·1 wet kg m?2) and productivity (34·1 wet g m?2 d?1) were lower than in spring, when a biomass of 5·0 wet kg m?2 and a productivity of 72·4 wet g m?2 d?1 were recorded. Production of new fronds and loss of old fronds were determined at monthly intervals between April 1986 and March 1987. New frond production rates followed fluctuations in the quantity of light and varied between 0·08 and 0·48 fronds per plant per day. Frond loss rates did not show a seasonal pattern and fluctuated between 0·05 and 0·42 fronds per plant per day. It is suggested that the Falkland Islands Macrocystis population is more stable than most other giant kelp beds at high latitudes, because of the absence of winter storms.  相似文献   

15.
Survival of the giant kelp, Macrocystis pyrifera (Linnaeus) C. Agardh, in its natural habitat is governed by abiotic and biotic factors such as temperature, light, nutrients, current velocity, and predators. Factors affecting the survival of the alga in an aquarium setting, however, have not been investigated. The National Museum of Marine Biology and Aquarium (NMMBA), in subtropical Taiwan, is the only aquarium in the world that displays giant kelp that does not have naturally occurring specimens in nearby waters. Giant kelp displayed in aquaria often deteriorates within a 3-month period, yet the cause of this mortality is unknown. We investigated abiotic and biotic parameters affecting survival of giant kelp in aquaria over a 3-month period. The results indicated that temperature, salinity, pH, light, and nutrient concentrations did not affect giant kelp survival. However, the massive proliferation of epiphytic diatoms on kelp blades (from 7?×?102 cells cm?2 initially to 3?×?104 cells cm?2 after 1 month) was identified as being the most likely candidate affecting survival of giant kelp in an aquarium setting. Potential factors that may stimulate epiphyte proliferation include lack of epiphytic algae control via predation, high nutrient concentrations, a weak current, and a generally stable environment.  相似文献   

16.
Ecklonia radiata is the main foundation species in Australian temperate reefs, yet little has been published on its reproduction and how this may change across its depth range (1–50+ m). In this study, we examined differences in sporophyte morphology and zoospore production during a reproductive season and across four depths (7, 15, 25, and 40 m). Additionally, we examined differences in germination rate, survival, and morphological traits of gametophytes obtained from these four depths, cultured under the same light and temperature conditions. Multivariate morphology of sporophytes differed significantly between deep (~40 m) and shallow sites (7 and 15 m), but individual morphological traits were not significantly different across depths. Total spore production was similar across depths but the peak of zoospore release was observed in February at 15 m of depth (6,154 zoospores · mm?2 of tissue) and the minimum observed in January at 7, 25, and 40 m (1,141, 987, and 214 zoospores · mm?2 of tissue, respectively). The source depth of zoospores did not have an influence in the germination rate or the survival of gametophytes, and only gametophytes sourced from 40 m sites presented significantly less surface area and number of branches. Overall, these results indicate that E. radiata’s reproductive performance does not change across its depth range and that kelp beds reproducing in deeper areas may contribute to the replenishment of their shallow counterparts. We propose that deep kelps may constitute a mechanism of resilience against climate change and anthropogenic disturbances.  相似文献   

17.
P. D. Steinberg 《Oecologia》1995,102(2):169-173
Most theories for the evolution of plant chemical defences assume that defences are costly. In order to investigate the potential cost of phlorotannin production in the brown alga (kelp) Ecklonia radiata, I measured the correlation between changes in phlorotannin levels and growth rates for E. radiata in two seasons, spring and autumn. In spring, when both phlorotannin levels and growth rates in E. radiata were highest, there was a significant negative relationship between changes in phlorotannin levels and growth, consistent with a cost of phlorotannin production. No relationship was evident in autumn, indicating that moderate levels of phlorotannins and growth could be maintained simultaneously. These and related results suggest that the cost of defence will vary as a function of (1) endogenous patterns of growth or metabolite production and (2) variation in available resources. Evidence for a cost of phlorotannins in E. radiata adds to the paradox of the maintenance of high levels of phlorotannins in Australasian brown algae.  相似文献   

18.
Delayed recruitment of microscopic stages in response to cyclical cues is critical to the population dynamics of many annual and seasonally reproducing perennial seaweeds. Microscopic stages may play a similar role in continuously reproducing perennials in which adult sporophytes are subject to episodic mortality, if they can respond directly to the unpredictable onset and relaxation of unfavorable conditions. We experimentally evaluated the potential for temporary reduction in limiting resources (light, nutrients) to directly delay recruitment of giant kelp (Macrocystis pyrifera (L.) C.A. Agardh) gametophytes and embryonic sporophytes. Laboratory cultures were subjected to limiting conditions of light and nutrients for 1 month and then exposed to nonlimiting conditions for 10 days. Gametophytes in all treatments failed to recruit to sporophytes after 2 weeks, suggesting they are not a source of delayed recruitment in giant kelp. Sporophytes in light‐limited treatments, however, survived and grew significantly slower than non–light‐limited controls. When stimulated with light, light‐limited sporophytes grew from 2 to>10 times faster than unstimulated controls depending on nutrient availability. These results suggest that limiting resources can delay recruitment of embryonic giant kelp sporophytes for at least 1 month. Flexible timing of recruitment from embryonic sporophytes may enhance persistence of continuously reproducing perennial species when mac‐ roscopic adults are subject to episodic large‐scale removals.  相似文献   

19.
Light availability is a fundamental factor that controls the productivity and distribution of macroalgae and is highly variable, both spatially and temporally, in subtidal coastal systems. Our comprehension of how macroalgae respond to such variability is a significant knowledge gap that limits our understanding of how light influences the structure and productivity of these environments. Here, we examined the pigment characteristics of individual species, and for the first time the whole community, within one low‐light, and one high‐light kelp‐forest system in southern New Zealand. The aim was to quantify the range of pigmentation seen within the two kelp‐forests which differed in irradiance regime. Light availability was 33% and 64% greater at the high‐light compared to the low‐light site at 2 and 10 m depth, respectively. Results suggested Phaeophyceae species at deeper depths in the low‐light site may be living at the edge of their photosynthetic ability and pigment synthesis appeared significantly restricted. Even with greater investment in the pigment fucoxanthin, biomass of Phaeophyceae species was significantly lower in the low‐light site. Highly pigmented Rhodophyceae species made a greater proportional contribution to community biomass within the low‐light site where they likely possessed a photosynthetic advantage. This work helps explain discrepancies in community structure between the two study sites and explores the complex relationship between irradiance and photoacclimation. The comparison of community pigment concentration holds potential as a tool for assessing the relative degree of photoacclimation occurring between sites and provides a proxy of photosynthetic cost under a specific light regime.  相似文献   

20.
In unispecific plant stands, the logarithm of mean individual weight (w) depends on the logarithm of density (d) by the -3/4 power law (a slope of -1.5 and an intercept ranging from 2.3 to 5.0). The analysis of the w and d relationships in whole cohorts of two seaweed species from the Strait of Gibraltar shows deviations from the canonical equation. The kelp Phyllariopsis purpurascens (C. Agardh) Henry et South (Phaeophyta) growing at a 30-m depth has the lowest intercept value (0.6) recorded for any plant species and a slope not significantly different from -1.5. The slope value is in accordance with those found in species whose growth is not stopped by reproduction. Irradiance under a single layer of blades was lower than the photosynthetic light compensation point, and this could be due to overdispersion of the shoots and, in consequence, to the low intercept value of the self-thinning equation. The w to d relationships in Asparagopsis armata Harvey (Rhodophyta) show two different components: no dependence between these two variables (slope not significantly different from 0) at densities < 500 shoots·m?2, and a slope more negative (-2.1) than proposed by the -3/2 power law at densities > 500 shoots·m?2. The pattern at high densities could be due to intraspecific competition for light, whereas the slope ~0 at low densities could be related to inhibition of growth by reproduction (cystocarp and carpospore production). Therefore, rather than being considered exceptional, we suggest that a gradient of variability could be expected in the dependence of w on d when specific growth patterns and reproduction are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号