共查询到20条相似文献,搜索用时 0 毫秒
1.
植物的叶片与细根分别作为植物体地上和地下部分重要的营养器官, 很多功能性状在二者之间存在着一定的关联性。研究这种关联有助于理解植物各性状之间的相互作用、植物生长过程中对资源的利用和分配, 以及建立细根性状的估算模型。该研究对内蒙古锡林河流域65种植物叶片与细根的氮(N)含量、磷(P)含量、N:P以及比叶面积(SLA)和比根长(SRL)进行了比较研究, 结果表明: 在种间尺度上, 叶片与细根间的N、P和N:P存在显著的相关性, 而SLA与SRL之间相关性较弱; 在种内尺度上, 叶片和细根的N、P及SLA与SRL, 在不同的物种中呈现出不同的趋势。此外, 叶片与细根性状的关联, 在不同的植物功能群之间存在差异。例如, 双子叶植物叶片与细根间的N含量显著相关, P含量不相关; 而单子叶植物二者之间的P含量显著相关, N含量无关联。该研究的主要结论是, 在相对一致的生境中, 植物叶片与细根性状的关联主要发生在不同物种之间, 在种内尺度上这种关联不明显, 这可能与植物功能性状在种内存在较小的变异幅度有关。 相似文献
2.
Horacio Paz 《Biotropica》2003,35(3):318-332
I analyzed patterns of variation in root mass allocation and root morphology among seedlings of woody species in relation to environmental factors in four Neotropical forests. Among forests, I explored the response of root traits to sites varying in water or nutrient availability. Within each forest, I explored the plastic response of species to different microhabitats: gaps and understory. Additionally, I explored evidence for life history correlation of root and shoot traits by comparing species differing in their successional group (light‐demanding [22 spp.] or shade tolerant [27 spp.]) and germination type (species with photosynthetic cotyledons or species with reserve cotyledons). At each forest site, young seedlings from 10 to 20 species were excavated. A total of 55 species was collected in understory conditions and 31 of them were also collected in gaps. From each seedling, six morphological ratios were determined. Allocation to roots was higher in forest sites with the lowest soil resources. Roots were finer and longer in the most infertile site, while roots were deeper in the site with the longest dry season. Seedling traits did not differ between germination types. Shade tolerant species allocated more to roots and developed thicker roots than light‐demanding species. Light‐demanding species showed stronger plastic responses to habitat than shade tolerant species, and species with photo‐synthetic cotyledons showed lower plasticity than species with reserve cotyledons. Overall, these results suggest that among Neotropical species, root allocation and root morphology of seedlings reflect plant adjustments to water or nutrient availability at geographic and microhabitat scales. In addition, life history specialization to light environments is suggested by differences among groups of species in their allocation to roots and in their root morphology. 相似文献
3.
Grace P. John Christine Scoffoni Thomas N. Buckley Rafael Villar Hendrik Poorter Lawren Sack 《Ecology letters》2017,20(4):412-425
Leaf dry mass per unit leaf area (LMA) is a central trait in ecology, but its anatomical and compositional basis has been unclear. An explicit mathematical and physical framework for quantifying the cell and tissue determinants of LMA will enable tests of their influence on species, communities and ecosystems. We present an approach to explaining LMA from the numbers, dimensions and mass densities of leaf cells and tissues, which provided unprecedented explanatory power for 11 broadleaved woody angiosperm species diverse in LMA (33–262 g m?2; R2 = 0.94; P < 0.001). Across these diverse species, and in a larger comparison of evergreen vs. deciduous angiosperms, high LMA resulted principally from larger cell sizes, greater major vein allocation, greater numbers of mesophyll cell layers and higher cell mass densities. This explicit approach enables relating leaf anatomy and composition to a wide range of processes in physiological, evolutionary, community and macroecology. 相似文献
4.
Observations of false mating behavior in entocytherid ostracods from the northwestern United States 下载免费PDF全文
Five male entocytherid ostracods of four different species recovered from signal crayfish Pacifastacus leniusculus were observed exhibiting false mating behaviors with either another adult male, an A1 sub‐adult male, or an A3 juvenile of indeterminate species and sex. In all five instances, the ostracod being mated was not sclerotized, indicating recent molt. In one case, a male of Uncinocythere thektura was observed in false copulation with an A1 male of a different species, U. occidentalis, suggesting that taxonomic designations of females in mixed populations of Uncinocythere can be problematic. Possible reasons for false mating behavior include stress of being confined post‐collection, lack of available females, or possibly males mistaking non‐sclerotized partners for A1 females. 相似文献
5.
The understory evergreen perennial Pteridophyllum racemosum Sieb. et Zucc. (Papaveraceae) has the ability to increase root mass per unit transpiring leaf area (RMA) if irradiance increases gradually over several years. In this study, we examined how P. racemosum changes its root length/leaf area ratio and specific root length when the species encounters abrupt increases in irradiance, such as sudden and unexpected canopy openings. Plants were transplanted from a low light condition in a subalpine wave-regenerating forest (photon flux density on the forest floor relative to the full sun (RPFD) was 2.7%) to a high light condition in a glasshouse (30% RPFD) (LH treatment). Transplantation from the low light condition in the forest to a low light condition in the glasshouse (LL) and transplantation from a high light condition in the forest (33% RPFD) to a high light condition in the glasshouse (HH) were also conducted as controls. Compared to the LL plants, the LH plants exhibited significant increases in RMA and root length/leaf area ratio from 30 to 70 days after transplantation. On the other hand, the effect of increased irradiance on specific root length (SRL) was weak, and both the LL and LH plants showed increased SRL from 30 to 70 days after transplantation. Increased SRL results from longer root length per unit construction cost. We concluded that increased root length/leaf area ratio of P. racemosum in response to abrupt increases in irradiance was caused by a combination of enhanced carbon allocation to roots with increased SRL. 相似文献
6.
7.
Grégoire T. Freschet Peter J. Bellingham Philip O'B. Lyver Karen I. Bonner David A. Wardle 《Ecology and evolution》2013,3(4):1065-1078
Functional trait plasticity is a major component of plant adjustment to environmental stresses. Here, we explore how multiple local environmental gradients in resources required by plants (light, water, and nutrients) and soil disturbance together influence the direction and amplitude of intraspecific changes in leaf and fine root traits that facilitate capture of these resources. We measured population‐level analogous above‐ and belowground traits related to resource acquisition, i.e. “specific leaf area”–“specific root length” (SLA–SRL), and leaf and root N, P, and dry matter content (DMC), on three dominant understory tree species with contrasting carbon and nutrient economics across 15 plots in a temperate forest influenced by burrowing seabirds. We observed similar responses of the three species to the same single environmental influences, but partially species‐specific responses to combinations of influences. The strength of intraspecific above‐ and belowground trait responses appeared unrelated to species resource acquisition strategy. Finally, most analogous leaf and root traits (SLA vs. SRL, and leaf versus root P and DMC) were controlled by contrasting environmental influences. The decoupled responses of above‐ and belowground traits to these multiple environmental factors together with partially species‐specific adjustments suggest complex responses of plant communities to environmental changes, and potentially contrasting feedbacks of plant traits with ecosystem properties. We demonstrate that despite the growing evidence for broadly consistent resource‐acquisition strategies at the whole plant level among species, plants also show partially decoupled, finely tuned strategies between above‐ and belowground parts at the intraspecific level in response to their environment. This decoupling within species suggests a need for many species‐centred ecological theories on how plants respond to their environments (e.g. competitive/stress‐tolerant/ruderal and response‐effect trait frameworks) to be adapted to account for distinct plant‐environment interactions among distinct individuals of the same species and parts of the same individual. 相似文献
8.
9.
Foliar endophytic fungi (FEF) are diverse and ubiquitously associated with photosynthetic land plants. However, processes shaping FEF assemblages remain poorly understood. Previous studies have indicated that host identity and host habitat are contributing factors, but these factors are often difficult to disentangle. In this study, we studied FEF assemblages from plants grown in a botanical garden, enabling us to minimize the variation in abiotic environmental conditions and fungal dispersal capacity. FEF assemblages from 46 Ficus species were sequenced using next‐generation methods, and the results indicated that closely related host species had clearly differentiated FEF assemblages. Furthermore, host phylogenetic proximity was significantly correlated with the similarity of their FEF assemblages. In the canonical correspondence analysis, eleven leaf traits explained 32.9% of the total variation in FEF assemblages, whereas six traits (specific leaf area, leaf N content, leaf pH, toughness, latex alkaloid content, and latex volume per leaf area) were significant in the first two dimensions of ordination space. In the multiple regression on distance matrix analysis, 21.0% of the total variance in FEF assemblage was explained by both host phylogeny and leaf traits while phylogeny alone explained 7.9% of the variance. Thus, our findings suggest that both evolutionary and ecological processes are involved in shaping FEF assemblages. 相似文献
10.
摩天岭北坡森林木本植物叶性状在物种和群落水平沿海拔梯度的变化 总被引:1,自引:0,他引:1
该研究采用样线和样地相结合的方法,对甘肃省白水江国家级自然保护区摩天岭北坡大垭子梁森林不同海拔(1 600~2 100m)的植物群落进行野外调查、采样分析,并运用线性回归分析、Pearson相关性分析及曲线拟合分析方法,研究木本植物的比叶面积(SLA)、叶干物质含量(LDMC)、叶碳氮磷含量(LCC、LNC、LPC)及其计量比(C/N、C/P、N/P)等叶性状变化特征,以及在物种和群落水平随海拔梯度的变化趋势和相关性。结果表明:(1)摩天岭北坡大垭子梁山地森林为落叶阔叶林带,共有木本植物13科23种,其中乔木6种,灌木17种,且整体上灌木种类较为丰富。此外,有些物种在不同海拔间都有分布,如华北落叶松(Larix principis-rupprechtii)、胡枝子(Lespedeza bicolor)等,反映出不同植物对于异质环境的适应。(2)8个叶功能性状中变异系数最小的是LCC(4.6%),属于弱变异,最大的是SLA(42.1%),其他叶性状都属于中等变异,表明在其他叶性状的协同作用下,使得木本植物的碳获取保持在一定的水平以确保群落的稳定性。(3)叶片功能性状间的关联性普遍存在,是植物适应环境的一种对策.该研究表明SLA-LNC以及LNC-LPC在物种和群落水平上的相关性及其相关程度均一致,而其他叶性状间相关关系则有所不同,这为以后进行大尺度研究时对叶性状的选择提供了一定的依据。(4)叶性状随海拔的变化趋势,除C/N和N/P在物种和群落水平上变化趋势不一致外,其他各个性状随海拔的总体变化趋势基本一致,但显著程度只有LNC一致外其他均不同,反映了木本植物的不同叶片功能性状对海拔造成的不同环境的适应。 相似文献
11.
Tuomas Toivainen Tanja Pyhäjärvi Anne Niittyvuopio Outi Savolainen 《Molecular ecology》2014,23(5):1040-1052
Northern and central European Arabidopsis lyrata ssp. petraea populations are locally adapted to prevailing climatic conditions through differences in timing of life history events. The timing of flowering and, in perennials, the timing of growth cessation influence fitness. Phytochrome A may have an important role in regulating these life history traits as it perceives changes in daylength. We asked whether PHYA has contributed to local adaptation to the northern conditions in A. l. petraea. To search for signals of directional selection at the PHYA locus, we resequenced PHYA and 9 short fragments around PHYA from a 57‐kb region from a German (Plech) and a Norwegian (Spiterstulen) population and compared patterns of differentiation and diversity to a set of 19 reference loci around the genome. First, we found that the populations were highly differentiated: there were three nonsynonymous fixed differences at the PHYA locus, which was in stark contrast with the total four fixed differences in the 19 reference loci. Compatible with a sweep hypothesis, variation was almost completely removed from the 9.4‐kb region around PHYA in the northern Spiterstulen population. The overall level of linkage disequilibrium (LD) was higher in Spiterstulen, but there was no LD across the PHYA locus in the population, which is also a known consequence of a selective sweep. The sweep has likely occurred after the last glacial maximum, which suggests that it has contributed to adaptation to the northern conditions. 相似文献
12.
13.
干热河谷植物叶片,树高和种子功能性状比较 总被引:2,自引:1,他引:2
植物功能性状 (plant functional trait)是近年来生态学研究的热点。以云南怒江和澜沧江干热河谷36种木本植物为研究对象,选取比叶面积 (SLA)、植株高 (H) 和种子干重 (SM) 3个功能性状,研究它们的相互关系,比较其在河谷间、河谷内的差异。结果表明:1)两个河谷内36种木本植物的以上3种功能性状间没有显著的相关性 (P值分别为0.8739,0.5763,0.5517);2)河谷间的比叶面积存在显著差异 (P=0.02944),植株高和种子干重无显著差异 (P分别为0.4070, 0.8867);3)两个河谷内木本植物功能性状中,种子干重差异最大,植株高次之,比叶面积最小。 相似文献
14.
理解植物各器官间功能性状的关联, 有助于确定控制功能性状的内在机制以及性状间的比例关系。基于内蒙古温带草地19个地点、42种优势草本植物的野外观测, 分析了叶片、茎、生殖器官、细根和粗根间功能性状(N、P含量、N:P、比叶面积、比根长以及叶片和细根的组织密度)的关联。主要结果如下: 在种群和物种水平上, 各器官的N和P含量都显著正相关, 比叶面积与叶片N、P含量和组织密度在种群水平上显著负相关, 而在物种水平上没有显著的相关关系; 而比根长仅在种群水平上与细根的组织密度显著负相关。N、P含量以及N:P在各器官之间一致呈显著正相关, 而比叶面积和比根长没有显著的相关关系。叶片和细根的组织密度在种群水平上显著负相关, 而在物种水平上没有显著的相关关系。非禾草比禾草相应器官(除茎外)的N、P含量高, 但二者茎的N、P含量没有显著的差异; 豆科植物比非豆科植物相应器官的N含量高, 而P含量没有显著的差异。 相似文献
15.
Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply 总被引:17,自引:1,他引:17
Despite their difference in potential growth rate, the slow-growing Brachypodium pinnatum and the fast-growing Dactylis glomerata co-occur in many nutrient-poor calcareous grasslands. They are known to respond differently to increasing levels of N and
P. An experiment was designed to measure which characteristics are affected by nutrient supply and contribute to the ecological
performance of these species. Nutrient acquisition and root and shoot traits of these grasses were studied in a garden experiment
with nine nutrient treatments in a factorial design of 3 N and 3 P levels each.
D. glomerata was superior to B. pinnatum in nutrient acquisition and growth in all treatments. B. pinnatum was especially poor in P acquisition. Both species responded to increasing N supply and to a lesser extent to increasing
P supply by decreasing their root length and increasing their leaf area per total plant weight. D. glomerata showed a higher plasticity. In most treatments, the root length ratio (RLR) and the leaf area ratio (LAR) were higher for
D. glomerata. A factorization of these parameters into components expressing biomass allocation, form (root fineness or leaf thickness)
and density (dry matter content) shows that the low density of the biomass of D. glomerata was the main cause for the higher RLR and LAR. The biomass allocation to the roots showed a considerable plasticity but did
not differ between the species. B. pinnatum had the highest leaf weight ratio. Root fineness was highly plastic in D. glomerata, the difference with B. pinnatum being mainly due to the thick roots of D. glomerata at high nutrient supply. The leaf area/leaf fresh weight ratio did not show any plasticity and was slightly higher for B. pinnatum.
It is concluded, that the low density of the biomass of D. glomerata is the pivotal trait responsible for its faster growth at all nutrient levels. It enables simultaneously a good nutrient
acquisition capacity by the roots as well as a superior carbon acquisition by the leaves. The high biomass density of B. pinnatum will then result in a lower nutrient requirement due to a slower turnover, which in the long term is advantageous under nutrient-poor
conditions. 相似文献
16.
V. De Micco C. Amitrano A. Stinca L. G. Izzo E. Zalloni A. Balzano R. Barile P. Conti C. Arena 《Plant biology (Stuttgart, Germany)》2020,22(Z1):93-102
- In Mediterranean ecosystems, some natural areas are exposed to severe anthropogenic impact. Especially in summer, the considerable number of tourists visiting such areas, often with vehicles, causes deposition of dust over the vegetation due to formation of powder clouds, also favoured by wind erosion, high temperature, low precipitation and incoherent soil structure. The main aim of this study was to analyse whether the deposition of dust can induce changes in leaf anatomical functional traits and in the efficiency of photosynthetic apparatus in Centranthus ruber, a species widespread in Mediterranean ecosystems.
- Leaf morpho‐functional traits were quantified in plants growing at sites characterised by high (HD) and low (LD) dust deposition, in periods with high anthropogenic impact. Analyses included quantification of chlorophyll fluorescence emission parameters, photosynthetic pigment concentration as well as stomatal size and frequency, leaf lamina thickness, quantification of intercellular spaces and phenolics in the mesophyll through microscopy.
- The overall analysis suggested that the different conditions of dust deposition induced different adjustment of morpho‐functional traits in leaves of C. ruber. High dust deposition shielded the leaf lamina, protecting the photosynthetic apparatus from excess light and favoured plant photochemical efficiency. Leaves exposed to low dust deposition showed higher accumulation of phenolic compounds, protecting chloroplast membranes and characterised by high thermal dissipation of excess light.
- Such adaptive phenomena can affect vegetation dynamics due to possible different species‐specific plant responses, resulting in different plant competitiveness under the limiting conditions of Mediterranean environments.
17.
Differences in seedling growth behaviour among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients 总被引:14,自引:0,他引:14
1 Species-pairs from woody dicot lineages were chosen as phylogenetically independent contrasts (PICs) to represent evolutionary divergences along gradients of rainfall and nutrient stress, and within particular habitat types, in New South Wales, Australia. Seedlings were grown under controlled, favourable conditions and measurements were made for various growth, morphological and allocation traits.
2 Trait correlations across all species were identified, particularly with respect to seedling relative growth rate (RGR) and specific leaf area (SLA), a fundamental measure of allocation strategy that reflects the light-capture area deployed per unit of photosynthate invested in leaves.
3 Across all species, SLA, specific root length (SRL) and seed reserve mass were the strongest predictors of seedling RGR. That is, a syndrome of leaf and root surface maximization and low seed mass was typical of high RGR plants. This may be a high-risk strategy for individual seedlings, but one presumably mitigated by a larger number of seedlings being produced, increasing the chance that at least one will find itself in a favourable situation.
4 Syndromes of repeated attribute divergence were identified in the two sets of gradient PICs. Species from lower resource habitats generally had lower SLA. Thus, in this important respect the two gradients appeared to be variants of a more general 'stress' gradient.
5 However, trends in biomass allocation, tissue density, root morphology and seed reserve mass differed between gradients. While SLA and RGR tended to shift together along gradients and in within-habitat PICs, no single attribute emerged as the common, primary factor driving RGR divergences within contrasts. Within-habitat attribute shifts were of similar magnitude to those along gradients. 相似文献
2 Trait correlations across all species were identified, particularly with respect to seedling relative growth rate (RGR) and specific leaf area (SLA), a fundamental measure of allocation strategy that reflects the light-capture area deployed per unit of photosynthate invested in leaves.
3 Across all species, SLA, specific root length (SRL) and seed reserve mass were the strongest predictors of seedling RGR. That is, a syndrome of leaf and root surface maximization and low seed mass was typical of high RGR plants. This may be a high-risk strategy for individual seedlings, but one presumably mitigated by a larger number of seedlings being produced, increasing the chance that at least one will find itself in a favourable situation.
4 Syndromes of repeated attribute divergence were identified in the two sets of gradient PICs. Species from lower resource habitats generally had lower SLA. Thus, in this important respect the two gradients appeared to be variants of a more general 'stress' gradient.
5 However, trends in biomass allocation, tissue density, root morphology and seed reserve mass differed between gradients. While SLA and RGR tended to shift together along gradients and in within-habitat PICs, no single attribute emerged as the common, primary factor driving RGR divergences within contrasts. Within-habitat attribute shifts were of similar magnitude to those along gradients. 相似文献
18.
Estimating occupancy dynamics for large‐scale monitoring networks: amphibian breeding occupancy across protected areas in the northeast United States 下载免费PDF全文
Regional monitoring strategies frequently employ a nested sampling design where a finite set of study areas from throughout a region are selected and intensive sampling occurs within a subset of sites within the individual study areas. This sampling protocol naturally lends itself to a hierarchical analysis to account for dependence among subsamples. Implementing such an analysis using a classic likelihood framework is computationally challenging when accounting for detection errors in species occurrence models. Bayesian methods offer an alternative approach for fitting models that readily allows for spatial structure to be incorporated. We demonstrate a general approach for estimating occupancy when data come from a nested sampling design. We analyzed data from a regional monitoring program of wood frogs (Lithobates sylvaticus) and spotted salamanders (Ambystoma maculatum) in vernal pools using static and dynamic occupancy models. We analyzed observations from 2004 to 2013 that were collected within 14 protected areas located throughout the northeast United States. We use the data set to estimate trends in occupancy at both the regional and individual protected area levels. We show that occupancy at the regional level was relatively stable for both species. However, substantial variation occurred among study areas, with some populations declining and some increasing for both species. In addition, When the hierarchical study design is not accounted for, one would conclude stronger support for latitudinal gradient in trends than when using our approach that accounts for the nested design. In contrast to the model that does not account for nesting, the nested model did not include an effect of latitude in the 95% credible interval. These results shed light on the range‐level population status of these pond‐breeding amphibians, and our approach provides a framework that can be used to examine drivers of local and regional occurrence dynamics. 相似文献
19.
Selfish genetic elements (SGEs) are DNA sequences that are transmitted to viable offspring in greater than Mendelian frequencies. Medea SGEs occur naturally in some populations of red flour beetle (Tribolium castaneum) and are expected to increase in frequency within populations and spread among populations. The large‐scale U.S. distributions of Medea‐4 (M4) had been mapped based on samples from 1993 to 1995. We sampled beetles in 2011–2014 and show that the distribution of M4 in the United States is dynamic and has shifted southward. By using a genetic marker of Medea‐1 (M1), we found five unique geographic clusters with high and low M1 frequencies in a pattern not predicted by microsatellite‐based analysis of population structure. Our results indicate the absence of rigid barriers to Medea spread in the United States, so assessment of what factors have limited its current distribution requires further investigation. There is great interest in using synthetic SGEs, including synthetic Medea, to alter or suppress pest populations, but there is concern about unpredicted spread of these SGEs and potential for populations to become resistant to them. The finding of patchy distributions of Medea elements suggests that released synthetic SGEs cannot always be expected to spread uniformly, especially in target species with limited dispersal. 相似文献
20.
Ian J. Wright Julia Cooke Lucas A. Cernusak Lindsay B. Hutley Marina C. Scalon Wade C. Tozer Caroline E. R. Lehmann 《Austral ecology》2019,44(2):339-350
Plant growth rates strongly determine ecosystem productivity and are a central element of plant ecological strategies. For laboratory and glasshouse‐grown seedlings, specific leaf area (SLA; ratio of leaf area to mass) is a key driver of interspecific variation in growth rate (GR). Consequently, SLA is often assumed to drive GR variation in field‐grown adult plants. However, there is an increasing evidence that this is not the general case. This suggests that GR – SLA relationships (and perhaps those for other traits) may vary depending on the age or size of the plants being studied. Here we investigated GR – trait relationships and their size dependence among 17 woody species from an open‐canopy, fire‐prone savanna in northern Australia. We tested the predictions that SLA and stem diameter growth rate would be positively correlated in saplings but unrelated in adults while, in both age classes, faster‐GR species would have higher light‐saturated photosynthetic rate (Asat), higher leaf nutrient concentrations, higher branch‐scale biomass allocation to leaf versus stem tissues and lower wood density (WD). SLA showed no relationship to stem diameter GR, even in saplings, and the same was true of leaf N and P concentrations, and WD. However, branch‐scale leaf:stem allocation was strongly related to GR in both age groups, as was Asat. Together, these two traits accounted for up to 80% of interspecific variation in adult GR, and 41% of sapling GR. Asat is rarely measured in field‐based GR studies, and this is the first report of branch‐scale leaf:stem allocation (analogous to a benefit:cost ratio) in relation to plant growth rate. Our results suggest that we may yet find general trait‐drivers of field growth rates, but SLA will not be one. 相似文献