首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Natural vegetation is often replaced by invasive alien plants on isolated oceanic islands. To determine how invasive alien plants affect insect diversity, we compared flying insects captured using Malaise traps among different vegetation types on a small island (Nishijima; 0.49 km2) in the oceanic Ogasawara (Bonin) Islands in the north‐western Pacific. The numbers of individuals and species, and the species composition of pollinators (bees), predators (wasps) and wood borers (cerambycid, mordellid and elaterid beetles) were compared among three vegetation types: Casuarina equisetifolia (an invasive alien tree) forest, natural forest and natural grassland (forest edge), during two seasons (June and October–November 2005). In traps, 80.0, 66.7, 87.5, 85.7 and 100.0% of bee, wasp, cerambycid, mordellid and elaterid beetle species, respectively, were endemic to the Ogasawara Islands. Grassland had the highest wasp and bee species richness, whereas natural forest had the highest species richness of wood‐boring beetles. The C. equisetifolia forest had the poorest species richness for most insect groups (except mordellid beetles). More individuals of most insect groups (except bees) were captured in June than in October–November. More individual bees and wasps were captured in grassland than in forests, whereas more individual mordellid and elaterid beetles were captured in forests than in grassland. The number of cerambycid individuals did not differ among vegetation types. Redundancy analysis suggested that most insect species preferred natural forest or grassland to alien forest. Therefore, further invasion of natural grassland and forest by the alien tree C. equisetifolia may negatively affect the endemic insect fauna of Nishijima.  相似文献   

2.
To evaluate the role that a trap‐nest cover might have on sampling methodologies, the abundance of each species of trap‐nesting Hymenoptera and the parasitism rate in a Canadian forest were compared between artificially covered and uncovered traps. Of trap tubes exposed at eight forest sites in six trap‐nest boxes, 531 trap tubes were occupied and 1216 individuals of 12 wasp species of four predatory families, Vespidae (Eumeninae), Crabronidae, Sphecidae and Pompilidae emerged over 2 years, and no bee species were found. Results indicated that artificial covering led to a significant increase in the number of nested tubes of Ancistrocerus adiabatus, Ancistrocerus antilope, Ancistrocerus campestris and Auplopus mellipes, and significant effects of covering were not found for the other species. No significant difference in the overall parasitism rate between covered and uncovered traps was noted. These suggested that the covering technique could provide more opportunities for some wasp species to colonize trap nests.  相似文献   

3.
Cavity-nesting bees and wasps (Hymenoptera: Aculeata) have been showed to be suitable models to investigate the effects of forest fragmentation and human land use. Those studies are particularly pertinent when considering fragmented ecosystems such as the Atlantic semi-deciduous forest in Brazil. We investigated the changes in composition, nest abundance, and mortality of cavity-nesting bees and wasps over edge-center forest fragment immersed in a matrix of agricultural lands in southeastern Brazil. Trap-nests (bamboo canes and cardboard tubes) were set in nine sampling stations in three different zones in the study site: three sampling stations at the forest edge; three at 250 m away from the edge and another three at 500 m away from the edge. Nests were monitored monthly for 2 years (from June 2011 to May 2013). A total of 942 nests (706 built by 16 bee species; 236 from 18 wasp species) were collected in the fragment. A significant change over gradient edge-center was observed on the parameters analyzed. The Non-metric Multidimensional Scale analysis showed that 72% of the species (host and natural enemies) that present more than ten records were associated with the forest edge. Furthermore, the highest values of the abundance of nests, parasitism, and mortality were recorded in the edge. In spite of being surrounded by farmlands, the fragment hosts a great diversity of trap-nesting wasp and bee species. Our findings demonstrate that forest edges are important habitats to maintain communities of cavity-nesting bees and wasps.  相似文献   

4.
Pollination biology of 41 plants species of 21 families blooming in the forest understory was investigated in a lowland mixed diplerocarp forest in Lambir Hills National Park, Sarawak. Among these species, 29 species (71%) were pollinated by bees, four (10%) by nectariniid birds, three by small dipterans, and others by moths, butterflies, syrphid flies, wasps, and beetles. The 29 bee-pollinated species consisted of five distinct pollination guilds: ten species pollinated by medium traplining bees (two Amegilla species), nine by small traplining bees (three halictid and a xylocopine species), two by stingless bees and beetles, seven by stingless bees, and one by megachilid bees. The bees constituting the first two guilds were shade-loving, swiftly flying, long-tongued trapliners. Proboscis lengths of these pollinators correlated with flower depth of the host plant. Pollination systems in the forest understory were distinguished from that in the canopy by the prevalence of specific interactions, the number of traplining solitary bees, and lack of pollination systems by mass-recruiting eusocial bees, large Xylocopa bees, thrips, bats, and wind. These characteristics are largely similar between the Palaeotropics and the Neotropics through convergence of nectarivorous birds (spiderhunters vs. hummingbirds) and traplining bees (Amegilla vs. euglossine bees).  相似文献   

5.
The construction of nests to rear offspring is restricted to vertebrates and few insect taxa, such as termites, wasps, and bees. Among bees, species of the family Megachilidae are characterized by a particularly high diversity in nest construction behaviour. Many megachilid bees nest in excavated burrows in the ground, others place their brood cells in a variety of above‐ground cavities or attach them to the surface of a substrate, and yet others have adopted a kleptoparasitic habit. Evolutionary transitions between the different nesting sites and between conventional nesting and kleptoparasitism in bees are poorly understood. In the present study, we traced the evolution of nesting site selection and kleptoparasitism in the Annosmia–Hoplitis group (Osmiini), which displays an exceptionally high diversity in nesting behaviour. We found that the evolution of nesting behaviour proceeded unidirectionally from nesting in excavated burrows in the ground to nesting in rock depressions and cavities, followed by the colonization of snail shells and insect borings in dead wood or hollow stems. Kleptoparasitism evolved once and the kleptoparasitic species have derived from the same lineage as their hosts. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 108 , 349–360.  相似文献   

6.
Native vegetation is frequently replaced by alien plants on isolated oceanic islands. The effects of such replacements by invasive plants on the diversity and temporal dynamics of island-endemic insects remain unclear. We examined flying insect communities using Malaise traps on the small island of Nishi-jima in the oceanic Ogasawara Archipelago in the northwestern Pacific. On the island, an alien tree, Casuarina equisetifolia, has become dominant, occupying 57.3?% of the vegetation area. The species richness, composition, and abundance of pollinators (bees), predators (wasps), and wood-boring beetles (cerambycids, mordellids, and elaterids) were compared in each summer season of 4?years among three vegetation types: C. equisetifolia forest, natural forest, and grassland. In the traps, 82.3?% of species captured were endemic to the archipelago. The grassland harbored the highest species richness of native bees and wasps, whereas the natural forest had the highest species richness of native wood-boring beetles. The C. equisetifolia forest had the poorest species richness for most insect groups. Principal response curves indicated that differences in species composition among the three vegetation types were consistent through time for all insect groups. Most insect species were more abundant in natural forest or grassland than in C. equisetifolia forest. Standard deviations in both the numbers of individuals and species estimated under a Bayesian framework suggested that annual fluctuations of abundance and species density were similar among vegetation types (except for elaterid abundance). Therefore, replacement by C. equisetifolia has likely altered insect species composition but has not necessarily dramatically affected the temporal dynamics of insect assemblages on the island.  相似文献   

7.
The mycorrhizal fungi in the roots of achlorophyllous Sciaphila japonica and S. tosaensis (Triuridaceae) were identified by molecular methods. The habitats of S. japonica were in a tree plantation of Japanese cypress, Chamaecyparis obtusa, and bamboo forests, and those of S. tosaensis were in a camellia forest and a bamboo forest. In the root cortical cells of both plants, aseptate hyphal coils were observed, which suggested the Paris-type arbuscular mycorrhiza (AM). A phylogenetic analysis based on a partial sequence of an AM fungal nuclear small subunit ribosomal RNA gene showed that the fungal DNA sequences of S. japonica were separated into three closely related clades. Those of S. tosaensis were separated into two clades, which were also closely related to each other. The AM fungi of S. japonica and S. tosaensis were completely separated in the phylogenetic tree even among those found in the same habitat, which suggests the high specificities in the plant-fungal partnerships. All the detected AM fungi in these plants belonged to Glomus-group A. Even though the habitats are in quite common environments, both plant species are known as endangered species in Japan. Such a definite specificity in AM symbioses seems to restrict the distribution of the myco-heterotrophic plants.  相似文献   

8.
Information is presented on social wasps and bees caught in carrion traps in ‘terra firme’ rainforest in Caxiuanã, PA, Brazil. Six species of epiponine wasps were captured. Angiopolybia pallens was the most frequent species, being caught in approximately 43.5% of the trials, followed by Angiopolybia paraensis (15.8%), Agelaia fulvofasciata (5.6%) and Agelaia angulata (3.3%). Agelaia pallipes and Agelaia cajennensis both had only a single individual captured. Twelve species of social bees were captured. The genera Trigona, Partamona and Melipona had similar numbers of species, but frequencies varied considerably. One individual of Apis mellifera was captured.  相似文献   

9.
《Journal of Asia》2022,25(2):101907
Among bees, 85 % are solitary species, most of them are ground-nester and some are cavity-nesting and construct their nests in pre-existing cavities. This work was conducted to evaluate the substrate preference and nest architecture (acceptance, occupation percentage, seasonality and parasitism) of cavity-nesting bees in different substrates. Trap nests offered comprised five different materials (drilled cavities in wood, bamboo, cardboard tubes, plastic soda straws, and mud blocks). These were installed in four districts for two years. The nesting cavities of five different diameters (6, 8, 10, 12 and 14 mm) were provided in each nesting material with an average length of 180 ± 9.92 mm. In all the materials, 5400 nesting cavities were offered, out of which 628 were colonized by bees from two families (Megachilidae and Apidae) and six species (Megachile cephalotes, M. lanata, M. bicolor, Xylocopa basalis, X. fenestrata and Ceratina smaragdula), including one parasitic bee (Euaspis carbonaria). The bee species differed significantly in occupying five nesting materials. The most preferred diameters were 8 mm and 10 mm, with 52.20% and 29.45% of colonization, respectively. Nesting was done throughout the year except in winter. This study will serve as a baseline for future studies and conservation programs of cavity-nesting bees in Pakistan.  相似文献   

10.
Temporal variation of solitary wasps and bees, nesting frequency, mortality, and parasitism were recorded from a remanent forest in Belo Horizonte, MG, Brazil. Wasps and bees were collected in trap-nests placed in areas with 25, 100, and 400 m2, from February to November 2004. The 137 trap-nests collected contained 11 species of wasps and bees. Wasps occupied most nests (75%). Occupation peaks occurred in March (25%) and September (26%); in June, the lowest occupation (2%) was observed. Except for Trypoxylon (Trypargilum) lactitarse Saussure, no significant correlation was found between number of occupied nests, and temperature and rainfall means. In the nests, 48% of the immature specimens died; 13% of the nests were parasitized. Total death and parasitism rates of wasps and bees differed significantly.  相似文献   

11.
Euglossine bees are important pollinators of lowland Neotropical forests. Compared to disturbed habitats, undisturbed ones have been previously characterized by higher abundance and diversity of euglossine bees. Most past studies have relied on chemically baiting male bees at single sites within habitats. Over a two‐year period, we employed a repeated‐measures design in which we sampled bees at multiple sites within three different habitat types, reflecting a mosaic of human disturbance (farm, secondary forest, and old logged forest). After 22 monthly samples, a total of 2008 male bees were captured, representing 31 species in five genera: 1156 at the farm (57.6%, 21 spp.), 505 in the secondary forest (25.1%, 27 spp.), and 347 in the old logged forest (17.2%, 21 spp.). Eighty‐one percent of the bees captured belonged to the five most abundant species: Eulaema cingulata, El. chocoana, Euglossa hansoni, Eg. ignita, and Eg. imperialis. These species differed significantly in capture frequencies among habitats. Eulaema cingulata, El. chocoana, and Eg. ignita were captured most frequently at the farm, while Eg. imperialis was most abundant in the secondary forest. In contrast, Eg. hansoni, the sole short‐tongued species among the five, was equally abundant in the two forest habitats but occurred rarely on the farm. Additionally, habitats differed in bee composition. The high capture rates for long‐proboscis species at the farm may have been due to their ability to extract nectar from flowers with long floral tubes, which probably occurred at a greater density on the farmed land than in the adjacent forests.  相似文献   

12.
Annual net production was estimated in the secondary coppice forest near Tokyo, which was dominated by a deciduous oak,Quercus serrata Thunb. Lateral growth of stems and old branches was directly estimated by examining the annual rings for 35 shoots in a clear-cut quadrat of 10m×10m. Phytomasses of current organs were also weighed in the quadrat. Preharvest losses of current organs were determined by twelve 0.5 m2 litter traps for fine litter and twelve 6 m2 quadrats for woody litter. Branch production was also assessed indirectly by use of the stem-branch allometry and death of branches. The results of the indirect method were in sufficient agreement with the result of the direct one. Grazing loss of leaves from the canopy was estimated directly from the loss in leaf area and indirectly from the animal faeces caught by the litter traps. Net production of the canopy trees was 149 kg a−1 year−1, in which leaf production was 36.9 kg. Animals grazed about 14% of the leaf area by the end of the growing season. True consumption of leaves by animals was 7.6% of leaf production or 10% of leaf mass. Production of undergrowth, mainly a dwarf bamboo,Pleioblastus chino Makino, was 28 kg a−1 year−1, being 15% of the total stand production. Productivity of this forest was significantly higher than that of cool-temperate deciduous broadleaf forests.  相似文献   

13.
Abstract.  The use of olfactory cues for nest recognition by the solitary bee Osmia lignaria is studied in a greenhouse environment. Glass tubes are provided as nesting cavities to allow the in-nest behaviour of bees to be observed. In addition, each glass tube is cut into three sections for experimental manipulation and for subsequent chemical analysis. Nesting females drag their abdomen along the tube before exiting, spiral inside the tube, and sometimes deposit fluid droplets from the tip of the abdomen. For the manipulation, the outer section, the middle section, or both sections are removed and replaced with similar clean glass tube sections, and the behaviour exhibited by test females is recorded upon arrival in front of the nesting site and inside the nesting tubes. The resulting hesitation behaviour displayed by females after treatments appears to indicate the loss of some olfactory cues used for nest recognition inside the entire nest. Chemical analysis of the depositions inside the nesting tube, as well as analysis of the cuticular lipids of the nesting bees, reveals the presence of free fatty acids, hydrocarbons and wax esters.  相似文献   

14.
The spatial and temporal distributions of scoliid wasps in the coastal sand dunes at Hakoishi, Kyoto Prefecture, Japan, were investigated using three different sampling methods in 2002 and 2003. Of eight scoliid species collected in the present study, five species, Scolia historionica, Campsomeriella annulata, Scolia decorata, Scolia oculata, and Megacampsomeris schulthessi, were dominant. The flying insects caught by Malaise traps and flower‐visiting insects caught by insect nets were mostly males, and this biased pattern was due to the active mate‐searching behavior of male wasps and their frequent visits to flowers to supplement energy consumed by such behavior. Given that the ground traps caught females exclusively, female wasps seemed to actively engage in host‐searching behavior on and below the ground. Of the wasps caught by Malaise traps and flower‐visit sampling, five dominant species showed spatially different habitat use: S. historionica and C. annulata mainly occupied the grassland zone on the plain (Gp), S. decorata occupied the grassland zone on the terrace (Gt) and the forest zone (Fp), S. oculata occupied the small scrub zone on the plain (Sp), and M. schulthessi occupied the small scrub zone on the terrace (St). Ground trap samples also indicated that S. historionica and C. annulata shared habitats. On the basis of the observed seasonal changes in wasp abundance and the degree of wing wear as an index of wasp age, S. historionica and C. annulata are thought to be bivoltine species, whereas S. decorata, S. oculata, and M. schulthessi are thought to be univoltine species. These scoliid wasp species may play an important role in pollinating coastal plants in the grassland zone.  相似文献   

15.
The amount of litter moving down the slope was measured in three types of forest, together with an examination of rain as a factor in bringing this about. The three forest types were a natural mixed stand ofPinus densiflora and hardwood trees (plot A), aCryptomeria japonica plantation (plot S) and aChamaecyparis obtusa plantation (plot H). The amount of moved litter was quite large in plots A and H, but relatively small in plot S. The rain factor had little influence on litter movement in plot A, but was the main cause of movement in plot S and (especially) plot H. It is suggested that measurement of litter input and output not only by traps above ground level, but also by ones on the ground is essential for determining the cycling of elements inC. obtusa forests. It is also suggested that the decomposition of leaf litter should be studied both on the soil surface and in the soil inC. obtusa forests.  相似文献   

16.
Aim Anthropogenic changes in land use may have major consequences for global biodiversity. However, species diversity is determined by a suite of factors that may affect species differently at different spatial scales. We tested the combined effects of land use and spatial scale on α, β and γ diversity in the tropics using experimental communities of cavity‐nesting bees and waSPS (Hymenoptera: Aculeata). We aimed to determine whether: (1) land‐use intensity negatively affects species richness of cavity‐nesting Hymenoptera, (2) β diversity, both within and between plots, is higher in more natural systems, (3) species richness of flowering herbs correlates positively with species richness of Hymenoptera within and across habitats, (4) richness of cavity‐nesting Hymenoptera in highly modified habitats declines with increasing distance from natural or semi‐natural habitats, (5) the effects of land use, herb diversity and forest distance on Hymenoptera α and β diversity vary at different spatial scales, and (6) bees and waSPS respond to land use in a similar way. Location Manabi, south‐west Ecuador. Methods We examined diversity (species richness) within 48 plots of five habitat types that comprised a gradient of decreasing agricultural intensity from rice and pasture to coffee agroforests, unmanaged abandoned agroforests and forest fragments, using standardized nesting resources for reproducing communities of cavity‐nesting bees and waSPS. Results (1) Land use significantly affected α diversity of trap‐nesting bees and waSPS at the subplot (per trap) scale, but not subplot β diversity or plot‐scale species richness (γ diversity). (2) Beta diversity was surprisingly higher between plots within a land‐use type than between land‐use types. (3) Species richness of bees and waSPS increased with diversity of flowering herbs at the subplot (trap) scale only. (4) Forest distance correlated positively with bee species richness at the plot scale only. (5) Land use, herb diversity and forest distance each showed significant correlations with bee and wasp diversity at only one spatial scale. (6) Despite differences in life history, bees and waSPS responded to land‐use intensity in a similar way. Main conclusions The effects of land use on species richness were highly dependent on spatial scale. Subplot‐scale analyses showed that rice and pasture contained the highest species diversity, whereas plot‐scale analyses showed no significant difference in the diversity of different land‐use types. We emphasize caution in the estimation of biodiversity at only one spatial scale, and highlight the surprisingly large contribution of managed land to the regional biodiversity of these species.  相似文献   

17.
Many solitary ground-nesting wasps in the families Pompilidae and Sphecidae excavate nests after capturing prey for provisions. These wasps generally cache their immobilized prey temporarily during nest excavation, frequently by suspending the prey in a plant (aerial caching). Here I test the hypothesis that aerial caching by Ammophila spp. wasps (Sphecidae) functions to reduce prey theft by generalist predators, Formica spp. ants. Foraging ants removed baits placed on the ground more rapidly than baits suspended in plants; mean half-lives for ground and aerial baits were 14.5 and 145.7 min, respectively (mean values for experiments 1–3). Ant foraging activity decreased during the midday. Ant interference with nesting activities of Ammophila spp. also decreased during the midday, paralleling observed fluctuations in ant foraging activity.  相似文献   

18.
Wild pollinators have been shown to enhance the pollination of Brassica napus (oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter‐Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig.  1 ). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policy‐makers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services.
Figure 1 Open in figure viewer PowerPoint Left, a Nomada sp male; right, an Andrena sp male. Caption Left, a Nomada sp male; right, an Andrena sp male.

Introduction

Pollinators play an important functional role in most terrestrial ecosystems and provide a key ecosystem service (Ashman et al. 2004 ). Insects, particularly bees, are the primary pollinators for the majority of the world's angiosperms (Ollerton et al. 2012 ). Without this service, many interconnected species and processes functioning within both wild and agricultural ecosystems could collapse (Kearns et al. 1998 ). Brassica napus (oilseed rape, OSR) represents the most widespread entomophilous crop in France with almost 1.5 Mha in 2010 (FAOSTAT August 10th, 2012). Results differ between varieties, but even though it seems that OSR produces 70% of its fruits through self‐pollination (Downey et al. 1970 in Mesquida and Renard 1981 ), native bees are also known to contribute to its pollination (Morandin and Winston 2005 ; Jauker et al. 2012 ). Bee pollination leads to improved yields (Steffan‐Dewenter 2003b ; Sabbahi et al. 2005 ) and to a shorter blooming period (Sabbahi et al. 2006 ), thus increasing the crop's market value (Bommarco et al. 2012 ). The most widely used species in crop pollination is the honeybee (Apis mellifera L) which is sometimes assumed to be sufficient for worldwide crop pollination (Aebi and Neumann 2011 ). However, this assertion has been questioned by different authors (Ollerton et al. 2012 ), and several studies show that many wild bees are also efficient pollinators of crops (Klein et al. 2007 ; Winfree et al. 2008 ; Breeze et al. 2011 ). Recently, Garibaldi et al. ( 2013 ) found positive associations of fruit set with wild‐insect visits to flowers in 41 crop systems worldwide. They demonstrate that honeybees do not maximize pollination, nor can they fully replace the contributions of diverse, wild‐insect assemblages to fruit set for a broad range of crops and agricultural practices on all continents with farmland. Unfortunately, not only are honey bees declining due to a variety of different causes (vanEngelsdorp et al. 2009 ), wild bee populations are also dwindling (Potts et al. 2010 ). Their decline has been documented in two Western European countries (Britain and the Netherlands) by comparing data obtained before and after 1980 (Biesmeijer et al. 2006 ). These losses have mostly been attributed to the use of agrochemicals, the increase in monocultures, the loss of seminatural habitat and deforestation (Steffan‐Dewenter et al. 2002 ; Steffan‐Dewenter and Westphal 2008 ; Brittain and Potts 2011 ). Several studies have shown the importance of natural or seminatural habitats in sustaining pollinator populations or pollination services close to fruit crops (Steffan‐Dewenter 2003a ; Kremen et al. 2004 ; Greenleaf and Kremen 2006a ; Carvalheiro et al. 2010 ). Morandin and Winston ( 2006 ) presented a cost–benefit model that estimates profit in OSR agroecosystems with different proportions of uncultivated land. They calculated that yield and profit could be maximized with 30% of the land left uncultivated within 750 m of field edges. Other studies have demonstrated a negative impact of the distance from forests on pollination services or bee abundance and richness both in tropical ecosystems (De Marco and Coelho 2004 ; Blanche et al. 2006 ; Chacoff and Aizen 2006 ) and in temperate ecosystems (Hawkins 1965 ; Taki et al. 2007 ; Arthur et al. 2010 ; Watson et al. 2011 ). These studies all suggest that natural or seminatural habitats are important sources of pollinators, probably because they provide “partial habitats” (Westrich 1996 ) such as complementary mating, foraging, nesting, and nesting materials sites that bees need to complete their life cycle. In this study, we focused on the effect of distance to forest edge on bee assemblages in OSR ecosystems. Forest edges could provide one or more important partial habitats for different bee species in agricultural landscapes, in particular when associated with a mass‐flowering crop such as OSR (Le Feon et al. 2011 ). For example, the availability of untilled soil and dead branches might provide ground‐nesting and cavity‐nesting bee species with numerous nesting sites. Moreover, during spring at least, the understory and the forest edge can provide cover containing flowering plants and wild trees such as Prunus spp, Castanea sativa, or Salix spp and thereby allow bees to find alternative floral resources. During spring 2010 and 2011, in two areas in France, we examined wild bee abundance and taxa richness both along forest edges and inside OSR fields at different distances from the forest. Like other taxa, bees respond to environmental variables according to their biologic traits that determine access and requirements for nesting, mating, and forage resources, species mobility or physiological tolerance. Specifically, we hypothesized that (1) bee abundance, species richness, and composition of bee communities within the crop field are dependent on the distance from the forest edge (where complementary floral resources, nesting sites, shelters, etc. can be found) and on the orientation of the forest edge; (2) the identity of bees in the crop is related to their foraging range which we measured with the ITD (Inter‐Tegular distance); (3) the forest edge may be the nesting or mating sites for cavity‐nesting or ground‐nesting bees such as Osmia spp or Andrena spp which are important groups of potential early spring pollinators for OSR.  相似文献   

19.
Goro Hanya 《Plant Ecology》2005,181(2):167-177
I evaluated whether plants gain high dispersal success by synchronizing their fruiting with frugivore abundance. Fruiting phenologies, seasonal fluctuations in the abundance of frugivorous birds, and consumption of fruits by birds and Japanese macaques, Macaca fuscata Blyth, were studied in the montane forest of Yakushima for two years. At the community level, fruiting phenologies and seasonal fluctuations in frugivorous bird abundance were asynchronous because Zosterops japonica Temminck et Schlegel, a resident frugivore, decreased in number during the fruiting season. In addition, Symplocos myrtacea Sieb. et Zucc. fruited in September, before the migration of frugivorous birds (Turdus spp. and brown-eared bulbuls Hypsypetes amaurotis Temminck) in November and December. The phenology of other fruit species (Eurya japonica Thunb. and Cleyera japonica Thunb.p.p.emend. Sieb. et Zucc) were synchronized with migrant frugivorous birds. Fruit species with phenologies that are synchronized with migrant frugivore abundances have higher dispersal success either by birds (C. japonica) or macaques (E. japonica). Macaques predated most of the seeds of S. myrtacea. Dispersal success of S. myrtacea is low both by birds and macaques, thus the early fruiting by S. myrtacea does not seem to be an adaptation to maximize dispersal success by depending on resident dispersers or by avoiding intense competition for dispersers.  相似文献   

20.
Nest boxes provide sheltered nesting sites for both passerines and paper wasps. Although neither wasps nor birds appear to evict the other once one is fully established, it is unclear which is the dominant competitor at the onset of the breeding season. Using wire mesh, we excluded birds but not golden paper wasps Polistesfuscatus from alternating boxes along a transect through edge habitat in North Carolina from 2006 – 2008. If wasps dominate Carolina chickadees Poecile carolinensis and eastern bluebirds Sialia sialis during the early spring (all have similar nest initiation dates), we would expect wasps to settle in both box types at equal frequencies. However, if birds dominate wasps, we would expect wasp nests to be concentrated in “bird‐proof” boxes. We found wasps in bird‐proof boxes significantly more often than in bird‐accessible boxes, indicating that secondary‐cavity nesting birds are able to exclude wasps from available nest sites. Additionally, we found that during the period of nest initiation, birds usurp wasps more often than vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号